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Envelope Approach to Degenerate
Complex Monge—Ampere Equations on
Compact Kahler Manifolds

Slimane Benelkourchi

Abstract. 'We use the classical Perron envelope method to show a general existence theorem to de-
generate complex Monge-Ampere type equations on compact Kéhler manifolds.

1 Introduction

Let (X, w) be a compact Kihler manifold of complex dimension n. Recall that a
(1,1)-cohomology class is big if it contains a Kihler current that is a positive closed
current that dominates a Kihler form. Fix « € H"!(X,R) a big class. Assume that «
admits a smooth closed real (1,1)-form representative 6 which is semi-positive. An
0-plurisubharmonic function (8-psh for short) is an upper semi-continuous function
¢ on X such that 6 + dd°¢ is nonnegative in the sense of currents. We let PSH(X, 6)
denote the set of all such functions. In this note we consider equations of complex
Monge-Ampere type

(L1) (0+dd e)" =F(gp,-)du,

where u denotes a non-negative Radon measure, F: R x X — [0, +00) is a measurable
function, and the (unknown) function ¢ is 6-psh.

It is well known that we cannot make sense to the left-hand side of (1.1). But accord-
ing to [4] (see also [8,9,15]), we can define the non pluripolar product (6 + dd¢)" as
the limit of 1, _jy (0 +dd‘(max(¢p, —))". It was shown in [9] that its trivial extension
is nonnegative closed current and

f(9+dd‘u)”s[9“.
X X

Denote by £ (X, 0) the set of all 8-psh with full non-pluripolar Monge-Ampére mea-
sure i.e., 0-psh functions for which the last inequality becomes equality.

Equation (1.1) has been extensively studied by various authors; see, for example,
[1,2,5,9,14,17-21] and reference therein. In this note, we prove the following result.
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Main Theorem  Assume that F:R x X — [0, +00) is a measurable function such that
the following hold:

(i) forall x € X the function t — F(t,x) is continuous and nondecreasing;
(i) F(t,-)eL"(X,dy) forallteR;
(iii) forall x € X, lim;,,c0 F(#,x) = +00 and lim;_,_o, F(t,x) = 0.

Then there exists a unique (up to additive constant) 0-psh function ¢ € E(X, ) solution
to the equation

(0+dd°¢)" =F(¢,-)duy.

Note that a similar result was proved recently in [5] by using fixed point theory.
Our main objective here is to give an alternative proof by using the classical Perron
upper envelope. Therefore, the solution ¢ is given by the following upper envelope of
all sub-solutions

¢ = sup{u;u €&(X,0)and (6 +ddu)" > F(u, )y}
2 Proof

We start the proof with a global version of Demailly’s inequality.

Lemma 2.1 Letu,ve &(X,0). Then
(0 +dd max(u,v))" 2 Lgysyy (0 +ddu)" + 15,0, (0 +ddv)".

For the convenience of the reader, we include a proof using the same idea as in [12]
in the local context.

Proof It is enough to show the inequality on the set {u > v}. Let K ¢ {u > v} be
compact.

First, we assume that 1 and v are bounded and non-positive. By the quasicontuin-
ity (see [16, Corollary 3.8]), we have for any & > 0 there exists an open subset G ¢ X
such that Capx(G) < € and u and v are continuous X \ G. Here Cap,(U) denotes
the capacity of the open set U given by

Capy(U) = sup{/U(G +dd9)",pel(X,0)and 1< ¢ < 0}.

Let uj,v; € (X, 0) be two nonincreasing sequences of continuous functions con-
verging towards u and v, respectively. Then for every § > 0 there exists an open
neighbourhood U of K such that u; +§ > vj on U \ G for jlarger than some jo. Then

f(9+ddcu)”slir_ninff(0+ddcuj)”
K jooo JU
< 1)"¢ + liminf 0+ddu;)"
_(SIJJ(p|u|+)£+1]r1_1>i? U\G( +dd‘uj)
s(sup|u|+1)”£+liminff (0+dd”max(uj+6,vj))n.
X J—oo UNG
Now let ¢ - 0 and j - +oo to get

/;((9+ddcu)” s/;(9+ddcmax(u+8,v))n,
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where L o U is compact. Therefore,

f(9+dd‘u)” gf(9+ddcmax(u+8,v))n,
K K

and the inequality follows if we let § — 0.
Now, if u and v are not bounded, we consider the sequences u’ := max(u, —j) and
v/ := max(v, —j). Let K ¢ X be compact. Then we have

[((9 +dd® max(u,v))"

:lim[ 0+ dd° max(u,v,—j))"
Kn{max(u,v)>—j}( ( ]))

j—oo
> lim inf (0 +ddu)"
j=oo  JKn{u/>vi}n{max(u,v)>-j}
+liminf (6 +ddvi)"

jooo Kn{ui<vi}n{max(u,v)>—j}

:liminf(f (9+ddfuf)”+f (9+dd‘vj)”)

j—oo Kn{uizvi}n{u>-j} Kn{ui<vi}n{v>—j}

> lim (/ (6+ddcuj)”+f (9+ddcvj)”)
jooo Kn{u>vin{u>-j} Kn{u<v}in{v>-j}

- 0+ ddu)" / 0+ ddv)". -
[Kﬂ{uzv}( i M) " Km{u<v}( " V)

Proof of the Main Theorem Consider the set
K= {go €&(X,0);(0+dd )" >F(g, )y}
of all sub-solutions of the Monge-Ampeére equation (1.1).

Claim 1. 3{ is not empty.
Indeed, by condition (ii) in the theorem, there exists a real ¢y € R such that

fXF(tO,x)dy(x):er".

Then, by [7] (see also [9]) there exists a function uy € E(X, 0) such that maxx ug =0
and

(0+dduy)" = F(to, - )du.
Hence,
(6 +dd(uo+ to)) "= (0 +ddug)" = F(to, )dp > F(ug + to, - )dp.

Therefore, g := ug + to € H.
Let H, denote {¢ € F; ¢ > ¢ }.

Claim 2. H is stable under taking the maximum.
Indeed, let ¢y, @, € Hy. Itis clear that max(¢@;, ¢2) > @o. Since (X, 6) is stable by
taking the maximum, then max(¢;, @) € £(X, 0). On the other hand, by Lemma 2.1,
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we have
(60 +dd max(@1, 92))" 2 1(py2¢,) (0 +dd p1)" +1(4,<0,) (0 +dd 93)"
2 Lgy290) F (@1, - )t + 1(g,<pp) F (92, - )dp
> F(max(¢1, 92), -)dp,
which implies that max(¢;, ¢,) € Ho.

Claim 3. 3, is compact in L'(X).
First, we prove that the functions of 3, are uniformly bounded from above on X.
Let
m := sup sup ¢(x).
@edo xeX
Then
m = lim sup ¢;(x),
J7o° xeX
where ¢; is a sequence in H,.
Since JH is stable under taking the maximum, we can assume that (¢;); is non-
decreasing. The sequence (¢; — supy ¢;) is relatively compact in L' (X). Let ¢ be a
cluster point of (¢; —supy ¢;). Then ¢ € PSH(X, 6). After extracting a subsequence,

we can assume that (¢; — sup, ¢;) converges to ¢ point-wise on X \ A, where A is a
pluripolar subset of X. By Fatou’s lemma, we have

Vol(a) = [ (0+ddgy)" =j§5nwfx(e+ddc¢,-)"

>liminf [ F(gj, -)du
b’

j—+too

> f liminf F(¢; —sup¢; +sup ¢j, - )du
X X X

j—o+oo

> [ F(¢g+m,-)du,
—fx(¢+m )du

which proves that m < co.

To complete the proof of the claim, it is enough to prove that H is closed. Let ¢; €
Ho be a sequence converging towards a function ¢ € PSH(X, 0). The limit function is
given by ¢ = (limsup; . ¢;)" = lim;_,co (supy, ; ¢ ). Hence, ¢ > ¢, and therefore
¢ € E(X, 0). Now observe that the sequence (sup,,; ¢x)* decreases towards ¢ and
for any j € N, the sequence (max;kz; ¢k )iy increases towards (supy ; ¢x)*. Thus,
the continuity of the complex Monge-Ampére operator along monotonic sequences
and Lemma 2.1 yield

(0+dde)" = lim (6 +dd*(sup gi)*)"
j—+oo k>j
= lim lim (6 + dd max ¢;)"

jo+oo [>+o0 I2k>j

j—=+oo l>+o0

>F(gp,-)du.

> lim lim F(max ¢y, - )dy
I>k>j

Therefore, ¢ € .

https://doi.org/10.4153/CMB-2017-048-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-048-7

Degenerate Complex Monge-Ampére Equations 709

Now consider the following upper envelope
¢(x) :=sup{v(x); veIHo}, VxeX.

Notice that in order to get a 8-psh function ¢ we should a priori replace ¢ by its
upper semi-continuous regularization ¢*(z) := limsup, _, , ¢({), but since ¢* € Iy,
¢* contributes to the envelope and therefore ¢ = ¢*.

Claim 4. ¢ is the solution to Monge-Ampére equation (1.1).
Indeed, by Choquet’s lemma there exists a sequence ¢; € H such that

¢ = (limsup(/)j) "
jo+oo

Since H is stable under taking the maximum, we can assume that the sequence ¢; €
J, is nondecreasing.

Let B, be a local chart such that 8 = dd°p, where p is smooth in B;. Fix B € B; to
be a small ball. For j > 1, the sequence hj.‘ := max(¢;j, —k) € E(X, 0) and decreases to

¢;. Now the function f].k =p+ gbj‘ is bounded psh on B. Denote the set

G(B) = {u e &(B);limsupu(z) < ];;k and (ddu)" > 15F(u —p, - )du},
z—0B

where fk denotes the smallest maximal function above fjk (cf. [10] for the general
definition), but in our context, it can be defined by

ﬁ‘(z) = sup { v(z);lim ?;;p v(z) < fjk ondB,v e PSH(B)}, VzeB,
Zz—

where £(B) denotes the largest subset of PSH(B) where the (local) complex Monge-
Ampere is well defined (cf. [11] for more details).
Consider the function

H}‘(z) = sup{u(z); ue 9(B)}, Vz € B.
It follows from [6] that (dd°H j‘ )" is well defined as a nonnegative measure and
(dd°H})" = 13F(H} - p, - )du.

Let 1//;-‘ be the function given by H f — p on B and extended on the complementary
k k. . . —
of Bby hj. Then y; is a global 0-psh and decreasing with respect to k. Denote y; :=
limg, 4 oo 1//;.‘. This is a 8-psh function on X and equal to ¢; on X \ B. On B we have
(0+ddy;)" = lim (dd°H¥)" =15 lim F(H% -p,-)du.
k—+oo J k—+o00 J

Hencey; € Handyj,; > y; 2 ¢;. Then ¢ = lim;_, o, ¥;. The continuity of the complex
Monge-Ampeére operator along monotonic sequences imply that ¢ is a solution of (1.1)
on B and therefore on X, since B was arbitrary chosen.

Uniqueness follows in a classical way from the comparison principle [3] and its
generalizations [9,13]. Indeed, assume that there exist two solutions ¢; and ¢, in
&(X, 6) such that

(0 +dd g:)" = F(gi, )du, i=12.
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Then
Jo Beudus< [ g )du= [ (0+ddgy)"
(p1<92) (¢1<92) (p1<92)
g[ (6+ddc¢1)":f Flo - )du.
(@1<92) (p1<92)
Therefore,

F(p1, -)dp =F(gz, - )du  on (g1 <¢2).
In the same way, we get the equality on (¢; > ¢, ) and then on X. Hence,

(0+ddp)" = (0 +dd°g,)".

It follows from [13, Theorem 1.2] that ¢; — ¢; is constant which completes the proof.
| ]
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