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Small drag-reducing riblets and larger drag-increasing ridges are longitudinally invariant
and laterally periodic surface structures that differ only in the details of their lateral
periodicity and their size in viscous units. Due to their different drag behaviour,
typically riblets and ridges have been analysed separately. By studying experimentally
trapezoidal-grooved surfaces of different sizes, we address systematically the transition
from riblet-like to ridge-like behaviour in a unified framework. The structure height and
lateral wavelength are varied both physically, by considering eight different surfaces, and
in their viscous-scaled form, by spanning a wide range of bulk Reynolds number Reb. The
effective skin-friction coefficient Cf is determined via pressure-drop measurement in a
turbulent channel flow facility designed for accurate drag measurements. An unexpectedly
rich drag behaviour is unveiled, in which different drag regimes are distinguished
depending on the value of l+g , the viscous-scaled square root of the groove area. The
well-known drag-reducing regime of riblets that spans up to l+g = 17 is followed by a
regime in which the roughness function ΔU+ increases logarithmically with l+g , indicating
an apparent fully rough behaviour up to l+g ≈ 40. Further increase of l+g leads to a clear
departure from the fully rough regime, and an unexpected non-monotonic behaviour of the
roughness function ΔU+ for 50 < l+g < 200 is reported for the first time. For sufficiently
large Reb and lg, it is shown that a single parameter, similar to the classical hydraulic
diameter, is sufficient to describe the drag behaviour of ridges. We find that an appropriate
definition of the effective channel height is crucial for interpreting the drag behaviour.
When the longitudinal protrusion height of the structured surface is accounted for in the
channel height definition, a laminar flow exhibits the same Cf (Reb) relation known for
flat surfaces. This approach thus allows us to discern the modification of Cf induced by
turbulence. We provide predictive correlations for the fully rough regime and the high
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Reynolds number range of trapezoidal-grooved surfaces that become possible thanks to
the chosen channel height definition.

Key words: turbulent boundary layers

1. Introduction

Two-dimensional (2-D) surface structures aligned with the main flow direction and
periodically repeating with wavelength s in the direction perpendicular to it have been
studied extensively over the last decades due to their capability to alter momentum and
heat transfer properties of turbulent flows. Beside the details of the surface geometry, their
height h and spacing s relative to the viscous length scale ν/uτ determines the effect
that such surfaces have on skin-friction drag (Goldstein & Tuan 1998; García-Mayoral,
Gómez-De-Segura & Fairhall 2019). Here, ν is the kinematic viscosity of the fluid, and
uτ = √

τw/ρ is the friction velocity based on the average wall-shear stress τw and fluid
density ρ. Non-dimensionalization with viscous quantities is denoted with the superscript
‘+’ throughout the paper.

Small riblets are surfaces that, when spaced at wavelength s+ ≈ 15, are known to reduce
skin-friction drag up to 10 % in canonical flows at low values of the Reynolds number
(Bechert et al. 1997). Various riblet shapes have been tested (Walsh & Lindemann 1984),
and trapezoidal-grooved riblets, which yield 8.2 % maximum drag reduction in similar
conditions, are deemed a good compromise between drag-reducing performance, feasible
manufacturing and durability (Bechert et al. 1997).

On the other hand, significantly larger streamwise invariant surface structures exceeding
100 viscous units in size typically yield the opposite effect and increase skin-friction drag.
These drag-increasing structures, named ridges, are the object of many recent studies
(see, for instance, Hwang & Lee 2018; Medjnoun, Vanderwel & Ganapathisubramani
2020; Stroh et al. 2020), where they are employed as a simplified model for laterally
inhomogeneous roughness. Such roughness configurations are observed in a variety of
natural and industrial turbulent flows, such as river bed flows (Colombini 1993) or
flows over ablated turbine blades (Barros & Christensen 2014). Incorporating lateral
inhomogeneities in roughness predictions remains an unsolved challenge (Chung et al.
2021), and simplified 2-D structures can serve as means to address explicitly the effect of
spanwise inhomogeneities on skin-friction drag.

Despite the geometrical similarity of riblets and ridges, their skin-friction drag
characteristics have not been related so far. Given the similarity, it is conceivable that
observations and predictions made for riblets might extend to ridges, and vice versa, and
thus the question arises of whether a unifying framework can be found to describe the drag
properties of both surfaces. For the sake of clarity, since we will frequently resort to the
terms riblets and ridges in the paper, it is worth discussing how structures are classified
as belonging to either category in the following. Generally speaking, a 2-D surface is
termed a riblet if it can potentially yield drag reduction, a capability that depends on
the specific operating range and dimensions of the experimental facility. However, it is
known (see, for instance, Endrikat et al. 2021) that typical riblet geometries such as the
presently investigated trapezoidal grooves achieve drag reduction when the viscous-scaled
square root of the groove area l+g (García-Mayoral & Jiménez 2011a), i.e. the fluid area
between two consecutive riblet crests, is l+g < 17 (see also figure 1a). Moreover, riblets
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From drag-reducing riblets to drag-increasing ridges
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Figure 1. Schematic of different drag regimes. Hypothetical curves inspired by Gatti et al. (2020) for riblets
and by Medjnoun et al. (2020) for ridges.

reduce drag only in turbulent flows (Bechert et al. 1997) such that the lower bound of the
viscous-scaled half-channel height δ+ (i.e. the friction Reynolds number) has to be beyond
δ+ ≈ 100. Thus only 2-D structures that fulfil

lg
δ

� 0.17 (1.1)

can potentially lead to drag reduction. Such structures are referred to as riblets throughout
the present paper. In this paper, we will assess the drag behaviour of both surfaces
characterized by lg/δ < 0.17 (riblets) and surfaces that exceed lg/δ > 0.17 (ridges).

Currently, only the skin-friction drag of small 2-D riblets is predictable from the
geometrical properties of the surface alone. In the so-called viscous or linear regime of
riblets, the flow in the riblet vicinity is dominated by viscosity and thus its behaviour can be
described via Stokes flow solutions. Luchini, Manzo & Pozzi (1991) characterized the flow
above riblets with streamwise and spanwise protrusion heights h‖ and h⊥, respectively.
The protrusion height is measured as the distance below the riblet tips at which the
spatially averaged velocity profile obtained from the Stokes solution above the riblet
tips predicts a zero velocity when extrapolated towards the wall. In this context, h‖ is
associated with the streamwise flow, and h⊥ accounts for the virtual origin perceived by the
predominant turbulence effect in the wall vicinity, i.e. the spanwise velocity fluctuations.
If h⊥ is located closer to the riblet crest than h‖ – i.e. the virtual origin perceived by
turbulent eddies is displaced further into the flow than the one perceived by the mean
flow – then the skin-friction drag is reduced. Quantitatively, ΔU+ = −(h+

‖ − h+
⊥) holds

for riblet sizes of the order of the viscous sublayer of the turbulent flow (Luchini et al.
1991). Here, ΔU+ corresponds to the roughness function (Perry, Schofield & Joubert
1969), i.e. the downward shift of the mean streamwise velocity in the logarithmic layer.
Negative values of ΔU+ indicate drag reduction. Grüneberger & Hage (2011) confirmed
experimentally the drag behaviour suggested for very small riblets based on the protrusion
height difference h+

‖ − h+
⊥, which corresponds to a linear relation between drag reduction

and l+g . This behaviour is referred to as the viscous regime, which breaks down once the
riblet size substantially exceeds the viscous sublayer.

While the protrusion height difference captures the amount of achievable drag reduction,
l+g has been shown to be an appropriate choice of length scale to describe the collapse of
the drag reducing regime for different riblet types (García-Mayoral & Jiménez 2011a).
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Ridges are known to induce drag increase (Medjnoun et al. 2020). This drag increase
can be quantified through the roughness function ΔU+ if the mean velocity profile exhibits
a logarithmic law of the wall similar to smooth wall turbulence. The downward shift of the
logarithmic region of the rough wall velocity profile compared to the smooth wall one
is given by ΔU+ (Chung et al. 2021). For rough surfaces (in particular so-called k-type
roughness; Jiménez 2004), ΔU+ increases linearly (slope 1/κ) with the logarithm of the
viscous-scaled roughness size in the fully rough regime.

The typical drag behaviour of 2-D surfaces is sketched in figure 1, where figure 1(a)
shows ΔU+ as a function of l+g . As noted before, negative ΔU+ indicates drag reduction.
Concerning riblets, we observe the linear viscous region, after which the breakdown
of the viscous regime begins with the maximum drag reduction reached at l+g ≈ 11
(García-Mayoral & Jiménez 2011a). A further increase of l+g leads to an increasing friction
with ΔU+ = 0 at l+g ≈ 17. The occurrence of secondary flows consisting of matched
pairs of streamwise vortices (Goldstein & Tuan 1998), or alternatively the emergence of
Kelvin–Helmholtz (KH) instabilities, were proposed (García-Mayoral & Jiménez 2011b)
as the mechanisms underlying the drag increase of riblets. Recent studies exploiting direct
numerical simulations (DNS) in minimal channels indicate that KH instabilities contribute
to an increase of ΔU+, but are not solely responsible for the breakdown of the viscous
drag-reduction regime of riblets (Endrikat et al. 2021). In fact, only sharp-triangular and
blade riblets show a significant friction contribution of KH rollers (Endrikat et al. 2021),
whereas the breakdown of the viscous regime occurs inevitably for all riblets. Furthermore,
Modesti et al. (2021) showed that secondary flows contribute significantly to ΔU+ for
various riblet shapes by analysing the dispersive stresses as a footprint of secondary
flows.

As the mechanism associated with the viscous breakdown of riblets remains an open
question, also the friction behaviour of larger 2-D structures (l+g > 20) is currently not
well understood, whether they be riblets beyond the drag-reducing regime or ridges.
When transitioning from the drag-reducing to the drag-increasing regime, Jiménez
(2004) suggested that riblets might behave as regular (k-type) roughness. Global friction
measurements reported by Gatti et al. (2020) confirm the initial agreement in the
drag-increasing regime of riblets with the fully rough reference, but indicate a departure
from the fully rough behaviour for l+g > 40, as shown schematically in figure 1(a).
Typically, in the fully rough state, ΔU+ obeys the log-law ΔU+ = 1/κ ln k+ + B, where k
is an appropriate roughness length scale, κ is the von Kármán constant, and B is a variable
additive constant (Perry et al. 1969). Even for the relatively simple 2-D structures, the
choice of roughness length scale is not obvious. Gatti et al. (2020) employed the structure
height for one single set of drag-increasing riblets. Since the breakdown of the viscous
regime collapses for different riblet geometries when scaled by l+g (García-Mayoral &
Jiménez 2011a), l+g seems a sound choice for a roughness length scale between various
riblet shapes.

The skin-friction coefficient Cf = 2τw/(ρU2
b) is an alternative measure to assess fully

rough behaviour, since its value becomes independent of the bulk Reynolds number Reb =
2Ubδ/ν in the fully rough regime. In the case of channel flow, δ denotes the half-channel
height, and Ub is the bulk velocity. Schematically, Cf (Reb) is sketched in figure 1(b) for
trapezoidal-grooved riblets such as those assessed experimentally by Gatti et al. (2020)
with respect to a smooth reference. For sufficiently small Reb, Cf is located below the
value of the reference smooth wall, indicating drag reduction. A region of approximately
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From drag-reducing riblets to drag-increasing ridges

constant Cf (Reb) follows at intermediate values of Reb. Eventually, Cf begins to decrease
again for sufficiently large Reb (Gatti et al. 2020).

While the drag behaviour of riblets can be described a priori at least in the viscous
regime, no such geometry-based description of ridge-induced drag has been developed so
far. Recently, ridge-type 2-D structures have been investigated systematically by Medjnoun
et al. (2020), who considered skin-friction drag and its interplay with secondary currents
for triangular, rectangular and half-sphere shapes of the order of l+g ≈ 200. Based on
oil-interferometry Cf measurements, they report a decreasing skin-friction coefficient Cf
with increasing Reynolds number, indicating the absence of a fully rough regime for large
2-D structures, in agreement with channel flow pressure-drop measurements by von Deyn
et al. (2019, 2021). The Cf versus Reb behaviour of ridges is included schematically in
figure 1.

Considering the friction behaviour of 2-D structures as sketched schematically in
figure 1, the question arises of how and whether the drag behaviours of riblets and ridges
differ or not. Therefore, we need to understand whether the drag-increasing behaviour of
riblets as reported by Gatti et al. (2020) can be reproduced with other riblet shapes and
sizes, and whether riblets at very large l+g eventually behave like ridges.

In order to tackle these questions, we analyse the global friction of 2-D
trapezoidal-grooved structures and provide unprecedented friction measurements over
a wide range of dimensionless structure size. By varying systematically height h and
spanwise spacing s over one order of magnitude for a total of eight surface structures,
measured individually in a bulk Reynolds number range 4.5 × 103 < Reb < 8.5 × 104,
we are capable of varying l+g in the range 1 < l+g < 1340. We specifically chose the
physical structure size of the riblet cases where l+g becomes sufficiently large to compare to
ridge-type behaviour known from literature cases (e.g. Medjnoun et al. 2020). Vice versa,
the l+g of ridge cases is designed to overlap with drag-increasing riblets. In doing this, we
provide novel experimental evidence in a concerted study of riblets and ridges on different
drag regimes and their connection, and discuss predictive options.

2. Turbulent drag definition and its implications

The definition of skin friction, Reynolds number and their relationship with the streamwise
pressure gradient is straightforward for plane turbulent channel flows, but less so for
parallel flows with complex cross-section, like the 2-D structures addressed in the present
work. It is therefore discussed in the following.

Let the three velocity components be denoted (u1, u2, u3) = (u, v, w) along the
streamwise, wall-normal and spanwise (x1, x2, x3) = (x, y, z) direction, respectively. For
fully developed plane turbulent channel flow, the wall-shear stress τw is a function of the
time-averaged streamwise pressure gradient

τw = − ∂ p̄
∂x1

δ, (2.1)

where δ corresponds to the half-channel height (see below) and ( · ) denotes time
averaging. This relation is used in the present experimental campaign (see § 3) to obtain
the skin-friction coefficient

Cf = 2τw

ρU2
b
, (2.2)
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Figure 2. Sketch of investigated surface structures, where h‖ and h⊥ represent streamwise and spanwise
protrusion heights (Luchini et al. 1991), and havg is the averaged (meltdown) height. The half-channel height δ

is defined as the distance between the channel centreline and h‖ below the structure tip.

where Ub is the bulk velocity (volume flow rate per unit width V̇ ′, normalized by channel
height 2δ) also used for the formulation of the bulk Reynolds number

Reb = 2δUb

ν
= V̇ ′

ν
. (2.3)

Additionally, based on τw, the friction velocity uτ = √
τw/ρ and the respective friction

Reynolds number Reτ = uτ δ/ν are obtained.
Equation (2.1) is derived for turbulent channels with plane walls, for which τw then

represents the temporally and spatially averaged wall-shear stress, and δ is the univocally
defined half-channel height. When the same equation is applied to non-planar surfaces,
τw assumes the different meaning of an effective wall-shear stress, which balances the
measured pressure gradient as if it were caused by a virtual flat wall placed at distance δ

from the channel centreline. The definition of δ is therefore not trivial when the walls are
not flat.

We choose to place the wall-normal origin of the channel at the streamwise protrusion
height h‖ below the structure’s tip for the present study (see figure 2). This ensures that
the surface structures do not induce any drag variation under laminar flow conditions, as
discussed in the following. In § 5.2 and the Appendix we present the evaluated drag change
for alternative channel height definitions.

In order to determine h‖ and h⊥, a Stokes flow problem given by

− 1
ρ

∂p
∂xi

+ ν
∂2ui

∂xj ∂xj
= 0 (2.4)

in conjunction with the conservation of mass is solved numerically. Shear flow aligned
with the surface structure is considered to obtain h‖, whereas (2.4) is solved for shear flow
perpendicular to the structure orientation to obtain h⊥. The protrusion heights, h‖ and h⊥
correspond to the distance below the structure tip at which the spatially averaged Stokes
solution extrapolates to zero. In this configuration, (2.4) simplifies to the Laplace equation
∇2u = 0 for the parallel flow configuration, and analytical solutions can be found in the
case of 2-D structures via conformal mapping (Bechert & Bartenwerfer 1989). The values
stated in table 2 below for h‖ and h⊥ are computed numerically via finite elements utilizing
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From drag-reducing riblets to drag-increasing ridges

the software FreeFem++ (Hecht 2012). The procedure was validated against the analytical
solution and literature references (Luchini et al. 1991; Bechert et al. 1997). For the present
surface structures, h⊥ is located closer to the structure tip compared to h‖, as visualized in
figure 2. The figure also includes the meltdown height havg, which is located closer to the
bottom of the surface structure.

For the investigated 2-D surface structures, the laminar channel flow solution and the
Stokes flow solution for h‖ coincide. Therefore, the channel height definition based on
h‖, as indicated in figure 2, provides a set-up in which the well-known Cf –Reb relation
for laminar channel flow (Cf = 12/Reb) also applies for a channel with riblets. Thus,
by choosing the current definition of δ, we focus on the surface structure influence on
turbulent drag, since the laminar drags of smooth and structured channel are identical by
definition. This is in agreement with the drag-reduction prediction for the viscous regime
as outlined briefly in § 1, which suggests zero drag change for vanishing viscous-scaled
riblet size (Luchini et al. 1991).

Although the drag force of a specific surface for a given flow rate is unambiguous, as it
can be e.g. measured with a force sensor, its dimensionless representation does depend on
the length scales used for normalization. As can be seen from (2.1) and (3.2), the choice
of δ enters the definitions of τw and Cf and, through τw, also affects all friction-related
quantities such as l+g . Note that Reb is independent of the choice of δ since it is determined
directly by the volume flow rate.

3. Test facility

The channel flow is generated by a blower-type wind tunnel (Mehta & Bradshaw 1979).
The schematic set-up of the facility is shown in figure 3. The flow is driven by a radial
fan with a large operational range 40–6000 m3 h−1, and progresses through a supply pipe
into a large settling chamber. The air is blown towards the back wall of the settling
chamber, which is opposite the nozzle directing into the actual test section, in order
to ensure a homogeneous flow distribution. The air flows through five grids embedded
in wooden frames and a honeycomb flow straightener on its way through the settling
chamber towards the test section. The arrangement of the radial fan outside the settling
chamber minimizes the blockage and decouples the vibrations generated by the radial fan.
A nozzle of contraction ratio 6 : 1 connects the settling chamber with the rectangular duct
test section. There are 21 pairs of pressure taps (diameter 0.3 mm) spaced at intervals of
200 mm located along the side walls of the test section in order to measure the streamwise
pressure gradient. Changes in ambient conditions are accounted for by tracking the inlet
and outlet temperatures via PT100 thermocouples with maximum error below 0.1 K, and
the ambient pressure pamb and humidity aq using Adafruit BMP 388 and BME 280
sensors, respectively. The BMP sensor has absolute accuracy 0.5 hPa, while the BME
sensor resolves aq with error ±3 %.

On the suction side of the radial fan, an inlet pipe of diameter D is installed. A zigzag
tripping is located at the pipe entrance 32D upstream of an orifice flow meter of diameter d
and diameter ratio β = d/D, across which the pressure drop Δpo is measured and related
to the orifice flow rate

V̇o = C√
1 − β4

ε
π

4
d2

√
2 Δpo

ρin
. (3.1)

The coefficients C and ε are derived from empirical expressions (International
Organization for Standardization 2003b), where C depends on the diameter ratio β and
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Figure 3. Schematic of the experimental facility with respect to wind tunnel components and measurement
instrumentation.

Marker Pipe diameter D Inner diameter d Approximate range in Reb

� 100 mm 60 mm 4.5 × 103 < Reb < 1.3 × 104

◦ 200 mm 105 mm 6 × 103 < Reb < 2.3 × 104


 200 mm 120 mm 7 × 103 < Reb < 3.8 × 104

� 200 mm 150 mm 3 × 104 < Reb < 8.5 × 104

Table 1. Specifications of the different orifice flow meter configurations. Introduced markers are used in
figures 4–10.

the pipe Reynolds number ReD (Sattary & Reader-Harris 1996). As a result, the orifice
flow rate V̇o is computed with the iterative procedure outlined in norm EN (International
Organization for Standardization 2003a), since ReD itself is dependent on V̇o. The mass
flow rate ṁ through the pipe (and thus also the channel test section) is obtained based on
multiplication of the volume flow rate with the air density ρin deduced from the ideal gas
law including humidity effects and a temperature measurement Tin at the pipe inlet.

In order to keep the dissipative losses generated by the orifice flow meter within
reasonable limits and to avoid compressibility effects, a maximum differential pressure
Δpomax = 625 Pa across the orifice is considered, thereby limiting the maximum
achievable flow rate for a given d. For the sake of covering a range of the bulk
Reynolds number 4.5 × 103 < Reb < 8.5 × 104 (this corresponds to 150 � Reτ � 2000
for the smooth wall case) in the test section, two different orifice flow meters are
installed with inlet pipe diameters D = 100 mm and D = 200 mm, respectively. Each
custom-manufactured annular orifice measuring chamber can be equipped with orifice
plates of varying inner diameter d. The configurations are specified in table 1. The orifice’s
pressure drop is measured with one of two Setra 239D (125 Pa and 625 Pa full-scale)
unidirectional differential pressure transducers with accuracy 0.07 % of the full scale,
switching automatically depending on Δpo.

The resulting (effective) wall-shear stress in the considered portion of the channel test
section is determined by evaluating the streamwise pressure gradient at a given flow rate.
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From drag-reducing riblets to drag-increasing ridges

Based on the measured pressure gradient Π = −(Δp̄/Δx) and the measured mass flow
rate ṁ = V̇oρin, the skin-friction coefficient is computed via

Cf = 8Πδ3W2ρ

ṁ2 , (3.2)

where ρ denotes the density at the test section’s outlet, and W is the test section
width. For the pressure measurement, an MKS Baratron 698A unidirectional differential
pressure transducer with 1333 Pa maximum range and accuracy 0.13 % of the reading
is employed. In order to measure the pressure drop at all streamwise pressure taps, a
Scanivalve multiplexer is used that switches mechanically between the individual pressure
taps such that all pressure differences are measured with the same high-accuracy pressure
transducer.

The test section consists of a flat rectangular duct of aspect ratio AR = 12, with W =
0300 mm and δ = 12.6 mm in the smooth reference case. It extends in the streamwise
direction L = 3950 mm, corresponding to L = 313.5δ. Two plates for the top and bottom
walls, as well as two monolithic rods for the side walls, form the test section. The duct
walls are made of polished aluminium of average roughness Ra = 0.4 mm, and the top
and bottom walls consist of three segments (950 mm, 1500 mm, 1500 mm) that can be
exchanged individually.

The bulk Reynolds number in the test section is constant along its length and computed
via

Reb = ṁ
Wρν

. (3.3)

Two trip strips are installed at the inlet of the test section along the whole channel
width. Each strip protrudes 1.6 mm (0.13δ) from the wall and extends for 0.3 mm in
the streamwise direction, resulting in 13 % cross-section blockage. The trip provides
fully-developed turbulent flow conditions for Reb > 4500 starting 160δ downstream of
the tripping location (Güttler 2015).

The measurement uncertainty is quantified via Gaussian error propagation at 95 %
confidence level, as outlined in the Appendix of Gatti et al. (2015) for the utilized
facility. The accumulated uncertainty of Cf is below ±2.7 %, where the biggest uncertainty
contribution stems from the orifice flow rate measurement with ±1.7 %. Assuming the
error in the flow rate measurement to be systematic, and considering only the error arising
from the measurement instrumentation (i.e. random error sources), the measurement
uncertainty for drag change measurements ΔCf /Cf 0 (where Cf 0 denotes the smooth
reference value at matched Reb) reduces to 0.4 % (Güttler 2015).

4. Experimental matrix

For the present investigation, 8 sets of 2-D trapezoidal-grooved geometries of varying
height h and spacing s are considered (see figure 2 for geometrical definitions), which are
installed on both channel walls symmetrically in the most downstream 119δ of the test
section. All cases are listed in table 2. The naming convention is introduced following
the distinction between riblets and ridges outlined in the Introduction: an ID starting with
dr refers to potentially drag-reducing riblets with lg/δ < 0.17, and purely drag-increasing
ridges that exceed lg/δ > 0.17 are labelled di.

The number part of the ID represents the ratio of the wavelength s and the structure
width sr, i.e. dr_1a, . . . , dr_1c are sawtooth riblets, while di_13 are widely spaced ridges.
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ID s/δ h/δ s/sr α lg/δ lg/s P/s h‖/s h⊥/s ηc
(deg.) (×10−1) (×10−2)

dr_1a 0.0068 0.0072 1 51.1 0.0049 0.709 2.31 1.791 8.083 —
dr_1b 0.0136 0.0144 1 50.6 0.0099 0.729 2.34 1.795 8.089 —
dr_1c 0.0808 0.0703 1 60 0.0533 0.660 2.01 1.707 8.017 —
dr_2 0.0492 0.0235 2.07 53.5 0.0302 0.614 1.59 1.744 8.021 —
di_2 0.4423 0.1666 2.3 60 0.2401 0.543 1.44 1.643 7.946 0.933
di_4 0.7569 0.1639 4 60 0.3295 0.435 1.25 1.359 7.865 0.956
di_8 1.4909 0.1614 8 60 0.4749 0.319 1.13 0.869 6.538 0.97
di_13 2.1572 0.158 13.2 54.8 0.5726 0.265 1.09 0.635 5.23 0.974

Table 2. Dimensions of the investigated geometries as introduced in figure 2. Here, P denotes the perimeter,
lg is the square root of the groove area as introduced by García-Mayoral & Jiménez (2011a), h‖, h⊥ are the
streamwise and spanwise protrusion heights measured from the tip as defined by Luchini et al. (1991), and
ηc represents a constant hydraulic channel height relation δhyd/δ = const. (see (5.6) for the definition of δhyd)
obtained a posteriori from figure 10.

Both h and s are varied systematically over one order of magnitude. For the interested
reader, note that the mean flow data of di_13 up to Reb = 5 × 104 is discussed in von Deyn
et al. (2021). Moreover, set dr_2 corresponds to the one discussed in Gatti et al. (2020).

In doing this, the evolution of the drag change with respect to a smooth surface is studied
starting from very small drag-reducing riblets submerged in the viscous sublayer up to
widely spaced drag-increasing ridges that protrude into the logarithmic flow region and are
known to induce large-scale secondary motions (Medjnoun et al. 2020). Note that di_2 was
designed purposely as an enlarged trapezoidal riblet geometry. To quantify the increase
in wetted surface area, the perimeter P to spanwise wavelength ratio P/s is included in
table 2. For each geometry, the Stokes flow solution (see § 2) is computed to obtain the
protrusion height values h‖ and h⊥.

The changes in skin-friction drag ΔCf are obtained by comparing two consecutive
experiments: first, a smooth wall measurement used as a common reference for all
structured cases was conducted, followed by skin-friction measurements of the structured
plates. The smooth data are fitted with a polynomial function of fifth order for each
orifice configuration stated in table 1, enabling a comparison at constant flow rate between
smooth and structured cases. All measurements are carried out in the most downstream
third 1500 mm (or 119δ) portion of the test section, allowing 194δ for flow development.
The pressure taps in the second segment are used as a reference to confirm reproducibility
between different measurements. The investigated structures were milled in 1500 mm-long
aluminium plates with a high precision CNC milling-machine, with the exception of sets
dr_1a and dr_1b, which consist of a riblet foil manufactured by 3M glued onto aluminium
plates. The net half-channel height δ̃avg, defined as the distance between the channel
centreline and the average structure height havg (see figure 2), is adjusted to match the
smooth reference value δ = 12.6 mm. In doing so, the net fluid volume in the channel
is kept identical between different cases. This set-up was chosen initially because we
considered δ̃avg an appropriate channel height for the comparison among different types
of riblets and ridges. As will be discussed in § 5.2, a more physically sound choice for
interpreting the measurements is δ based on h‖. Thanks to the use of dimensionless
numbers, the choice of channel height in the experimental set-up can be converted easily
to other choices in the data evaluation.
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Figure 4. Skin-friction coefficient Cf as a function of the bulk Reynolds number Reb. Different markers
indicate different orifice diameters as introduced in table 1. Riblets (dr, drag-reducing) are depicted in red, and
ridges (di, purely drag increasing) are shown in blue. The reference measurements (black markers) are shown
in comparison to the correlation proposed by Dean (1978). The horizontal and vertical error bars represent the
measurement uncertainty for exemplary data points.

The geometrical parameters stated in table 2 were verified via optical (Sensofar S neox)
and tactile measurements (perthometer Mahr MarSurf PCV). Next to the geometrical
parameters s, h, sr and α as defined in figure 2, the square root of the groove area lg
and the perimeter P are included in table 2.

5. Measurement results

In order to assess the skin-friction drag and identify respective drag regimes, the
pressure-drop measurement results obtained for all surface structures specified in table 2
and the smooth reference are analysed in the following.

5.1. Skin-friction measurements
The skin-friction coefficient Cf (see (2.2)) as a function of Reb is presented in figure 4.
The smooth results are shown as black markers with respect to the well-known correlation
proposed by Dean (1978). The different markers denote the varying orifice flow meter sizes
employed to measure the volumetric flow rate (see § 3). Overall, the reference results show
very good agreement with the Dean correlation with detected deviations below 2.7 %, i.e.
within the measurement uncertainty margin. Also note that the data collected by Dean
(1978) to derive his famous correlation are subject to significant scatter.

The colour code is introduced following the distinction between riblets and ridges: riblet
data are depicted with red symbols in different shades, while ridge data are shown in
shades of blue. Lighter colours indicate physically smaller riblets, or more widely spaced
ridges. Sets dr_1a, dr_1b, dr_1c and dr_2 are at least partially located below the smooth
reference in the Nikuradse-type diagram of figure 4, indicating that these surfaces reduce
skin-friction drag in this particular Reynolds number range in the present facility. The
drag-reducing effect scales in viscous units (Bechert et al. 1997), thus the drag-reducing
regime of the different structures is shifted to lower Reb with increasing ID/colour intensity
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(a,b,c and 2) due to their increasing physical size. All drag-increasing structures (in blue)
reveal a monotonically decreasing Cf with increasing Reb, indicating that none of the
investigated geometries reaches an apparent fully rough (i.e. Cf independent of Reb) flow
state in the investigated Reynolds number range.

The physically larger riblet sets dr_1c (lg/δ = 0.0533) and dr_2 (lg/δ = 0.0302) are
one order of magnitude larger than the smallest riblet set dr_1a (lg/δ = 0.0049). They
transition from a drag-reducing to a drag-increasing behaviour within the present Reynolds
number range, exhibiting a region of constant Cf for a limited range of Reynolds numbers
before eventually showing Cf (Reb) behaviour similar to that of the drag-increasing ridges.
A trace of nearly constant Cf is also present for di_2 (lg/δ = 0.2401) at very low Reynolds
numbers, which hints at a similarity between the two surface structures di_2 and dr_2.

The measurement results of the differently spaced ridge configurations reveal that
narrower-spaced ridges (darker blue colour) of the same element height produce more
skin-friction drag compared to wider-spaced ridges, i.e. skin-friction drag increases with
increasing perimeter P to wavelength s ratio P/s. However, we observe that the increase
in Cf is not simply proportional to the ratio P/s. A further discussion of this geometrical
parameter is presented in § 5.3.4.

Locally, e.g. for set dr_1c at Reb ≈ 3 × 104, small (<2 %) differences of Cf between
the different orifice flow meter configurations can be observed. As specified in table 1,
the different orifice configurations are necessary to cover the full range of Reb. The
observed scatter in the data points is related to systematic uncertainty arising from the
flow rate measurement, and is within the expected measurement uncertainty discussed
in § 3. Also note that the flow rate uncertainty is a function of the orifice pressure drop
Δpo, increasing nonlinearly for small Δpo. Therefore, the overlap of Cf measurements
obtained with different orifices is particularly challenging, since one of them must work
towards its lower Reb limit of applicability, as specified in table 1, i.e. at low Δpo and
larger uncertainty. However, the offset in Cf induced by the flow rate measurement is
independent of the investigated individual surface structure. Therefore, the offset error
cancels when evaluating the relative drag change (Cf − Cf 0)/Cf 0 = ΔCf /Cf 0 or ΔU+
discussed in the following subsections. In consequence, the resulting uncertainty for these
relative quantities is significantly smaller.

5.2. Implications of the channel height definition
As discussed in § 2, the arbitrary choice of the effective half-channel height directly affects
Cf and many other flow quantities. In the present work, the wall-normal origin has been
placed a streamwise protrusion height h‖ below the surface crest, which is the position
where the far-wall Stokes flow oriented in the mean turbulent flow direction predicts zero
average velocity. For non-planar surfaces, the resulting half-channel height δ differs from
the average half-channel height δ̃avg, which is defined as the distance between the average
structure height havg (see figure 2) and the channel centreline. This definition is commonly
used for rough surfaces due to its relatively easy accessibility (Chan et al. 2015).

In order to show that the present choice of the effective channel height is particularly
suited to assess the effect of 2-D structures on turbulent drag, we compare how the
relative drag change varies when it is computed assuming half-channel heights δ and δ̃avg,
respectively. For the sake of clarity, quantities computed with δ̃avg are denoted with (̃ · ).

The corresponding results for ΔCf /Cf 0 are presented in figure 5 for the riblet data sets,
where figure 5(a) shows ΔC̃f /C̃f 0. Utilizing δ̃avg as half-channel height, i.e. placing the
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Figure 5. Relative drag change ΔCf /Cf 0 versus the viscous-scaled square root of the groove cross-sectional
area l+g , with zoomed view on ΔCf /Cf 0 < 0. (a) Wall-normal origin placed at the averaged structure
(meltdown) height havg, where (̃·) is used to denote the change of the wall-normal origin to havg above
the structure valley. (b) Wall-normal origin placed at h‖ below the structure crest. The vertical error bars
represent the measurement uncertainty for exemplary data points. The horizontal error bars are negligible in
this representation.

wall-normal origin at the average (meltdown) height, corresponds to comparing C̃f of
the structured surface against C̃f 0 of a reference channel with the same cross sectional
area and at the same Reb. The physically small (h < 0.3 mm, i.e. h/δ < 0.0235) riblet
sets dr_1a, dr_1b and dr_2 show the expected negative ΔC̃f /C̃f 0, in agreement with
previous wall-shear stress balance results of Bechert et al. (1997). Compared at the same
viscous-scaled riblet size, one would expect the geometrically similar but physically larger
data set dr_1c (h/δ = 0.0703) to behave similarly to dr_1a and dr_1b. However, this is
clearly not the case, as shown in figure 5(a), where ΔC̃f /C̃f 0 is generally positive for dr_1c.
Moreover, the zero crossing ΔC̃f /C̃f 0 = 0 for data sets dr_1b and dr_2 does not occur at
l+g ≈ 17, as commonly reported for riblets (García-Mayoral et al. 2019; Endrikat et al.
2021). Therefore, even though ΔC̃f /C̃f 0 is an easily accessible quantity and thus might
seem favourable at first glance, considering the drag change at matched cross-sectional
area and flow rate does not result in collapsing drag curves for different data sets, and
yields evidence contrasting the present understanding of riblets from the literature.

As an alternative, figure 5(b) shows ΔCf /Cf 0. Note that δ is generally smaller than δ̃avg
for structured surfaces. Thus utilizing δ as half-channel height corresponds to comparing
Cf of the structured surface against Cf 0 of a reference channel with a slightly larger
cross-sectional area and at the same Reb. The data presented in figure 5(b) can be related
directly to the δ̃avg-based scaling via the expressions:

ΔCf

Cf 0
=
(

ΔC̃f

Cf 0
+ 1

)
δ3

δ̃3
avg

− 1, l+g = l̃+g

√
δ

δ̃avg
. (5.1a,b)

In comparison to figure 5(a), the differences are largest for the physically large riblets.
This is due to the fact that in the case of the physically smallest set, dr_1a (h/δ = 0.0072),
δ is only 0.2 % smaller compared to δ̃avg, while for dr_1c (h/δ = 0.0703), the two heights
differ by 2.2 %. In figure 5(b), the expected ΔCf /Cf 0 behaviour is recovered. All riblet
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data sets yield negative ΔCf /Cf 0 for small l+g , and a better data collapse around the zero
crossing at l+g ≈ 17 is obtained. This indicates that the h‖-based definition of δ is better
suited to compare data sets of strongly varying physical size at the additional expense of
evaluating the Stokes flow solution.

In the drag-reducing regime, sets dr_1a, dr_1b and dr_2 exhibit the expected ΔCf /Cf 0
trends, while set dr_1c yields 38 % less maximum ΔCf /Cf 0 compared to the geometrically
similar sets dr_1a and dr_1b. This is a result of the challenging manufacturing process:
instead of the desired sharp tips, set dr_1c has rounded tips with 70 mm curvature radius,
i.e. R/s = 0.07. In this respect, data set dr_1c agrees well with the findings of Walsh
(1990), who reported 40 % decrease of ΔCf /Cf 0 for tip radius to spanwise spacing ratio
R/s = 0.08. Note that only the maximum ΔCf /Cf 0 is affected by the tip rounding, while
the optimum ΔCf /Cf 0 still occurs at l+g ≈ 11, as discussed previously by García-Mayoral
& Jiménez (2011a). It is noteworthy that sets dr_1a and dr_1b are expected to collapse
due to their geometric similarity. The visible deviations and slightly smaller ΔCf /Cf 0 of
dr_1b can be an effect of local imperfections observable visually on the 3M riblet foils.The
influence of further channel height definitions on the present data evaluation is shown in
the Appendix.

5.3. Drag regimes
As introduced with the schematic in figure 1, the data evaluation in terms of roughness
function ΔU+ allows us to distinguish different drag regimes. Figure 6 shows ΔU+ against
l+g for all investigated cases. Here, ΔU+ is retrieved from Cf and Cf 0 measured at the same
Reb via the relationship

ΔU+ = 1
κ

ln

√
Cf

Cf 0
+
√

2
Cf 0

−
√

2
Cf

, (5.2)

which is obtained from the Prandtl–von Kármán friction relation as described in Gatti
et al. (2020), i.e. by approximating the change ΔU+

c of centreline velocity, unknown
for the present experiment, with the change ΔU+

b of bulk velocity. This methodology
is also employed in other studies dealing with pressure-drop measurements of flows over
irregular roughness (Barros, Schultz & Flack 2018; Flack, Schultz & Barros 2020). The
viscous-scaled mean velocity profile retrieved from DNS data (see von Deyn et al. 2021),
which is available for the case di_13, hints at the applicability of the described framework
also for large ridges.

5.3.1. Drag-reducing regime
The viscous prediction introduced by Luchini et al. (1991) for the physically smallest riblet
set dr_1a is also included in figure 6 and can be expressed as

ΔU+ = h‖−h⊥
lg

l+g = −0.14l+g (5.3)

for the viscous regime (García-Mayoral et al. 2019). The measurement results show
excellent agreement with this viscous prediction for 1 < l+g < 7, thus confirming its
applicability as also demonstrated previously by Grüneberger & Hage (2011). As noted
before, the smaller drag reduction achieved with the geometrically similar data set dr_1b is
probably related to local imperfections of this riblet foil. For increasing l+g , ΔU+ deviates
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Figure 6. Roughness function ΔU+ versus l+g . The black solid line represents the fully rough behaviour
(see (5.4)) with κ = 0.39 and B = −7.3. The red solid line represents the viscous friction prediction with
ΔU+ = ((h‖ − h⊥)/lg)l+g = −0.14l+g computed for set dr_1a. Additionally, the Colebrook roughness function
is included for reference as a black dashed line (Colebrook et al. 1939). The vertical error bars represent
the measurement uncertainty for exemplary data points. The horizontal error bars are negligible in this
representation.

from the predicted behaviour and the well-known breakdown of the viscous regime occurs,
leading to an increase of ΔU+ past the point of maximum drag reduction. In agreement
with literature data, the drag-reducing regime extends up to l+g ≈ 17, where ΔU+ = 0 is
found.

5.3.2. Fully rough drag regime
For even larger l+g , the fully rough drag regime follows. In this regime, the riblet surfaces,
which cannot induce any pressure drag due to their streamwise invariant surface, reveal an
apparent fully rough behaviour (typically attributed to the dominance of pressure drag
on roughness elements). The data sets dr_1b, dr_1c and dr_2 show remarkably good
agreement. In addition, data set di_2 – which is geometrically similar to dr_2 – also reaches
into this region and partially overlaps with dr_2. We note that this collapse between riblets
and ridges is obtained only for a data evaluation based on the half-channel height δ. The
alternative channel height definitions discussed in § 5.2 and in the Appendix do not yield
this collapse. For reference, the Colebrook roughness function (Colebrook et al. 1939) is
also included in figure 6, which does not capture the observed trends as it is also found for
irregular roughness (Chung et al. 2021).

The good collapse of all experimental data indicates that the combination of l+g and a
half-channel height definition based on h‖ are particularly well-suited for the description of
the fully rough drag regime that extends up to l+g ≈ 40. Note that choosing s+ or h+ leads
to worse agreement between data sets compared to l+g . The corresponding relation between
ΔU+ and l+g corresponds to the one of a classical fully rough surface (Perry et al. 1969)
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with l+g as the roughness length scale

ΔU+(l+g ) = 1
κ

ln l+g + B. (5.4)

Employing a von Kármán constant κ = 0.39 yields an additive constant B = −7.3. A
comparison with the corresponding relation for the Nikuradse sand grain roughness
ΔU+(k+

s ) = (1/κ) ln k+
s − 3.5 (Chung et al. 2021) results in an equivalent sand grain

roughness

k+
s = l+g /4.4 (5.5)

for the investigated surface structures. The equivalent sand grain roughness of the
identified fully rough regime of riblets and ridges appears thus to be predictable based
on the geometrical properties of the surface, in particular lg and h‖. This is a remarkable
result since the identification of such links between surface topography and the hydraulic
roughness scale ks (and thus the related drag) is one of the key issues in roughness research
due to large uncertainties in the existing predictive correlations (Chung et al. 2021). In
analogy to (5.3), (5.5) or (5.4) can thus be employed directly to predict the drag of 2-D
streamwise-aligned trapezoidal-grooved surface structures in a certain region of l+g , here
17 � l+g � 40.

5.3.3. Non-monotonic regime
Beyond l+g ≈ 40, ΔU+ exhibits a weaker increase with l+g than in the preceding fully rough
drag regime. The present data sets confirm the deviation from the logarithmic increase of
ΔU+ around l+g ≈ 40 reported previously by Gatti et al. (2020) (based on data set dr_2)
for additional riblet (data set dr_1c) and ridge (data set di_2) structures.

Then ΔU+ increases mildly for 200 < l+g < 1000. Before this mild increase is reached,
data sets di_2 and di_4 reveal a particular behaviour, most striking for di_2, that is reported
for the first time. Following the deviation from the fully rough regime, ΔU+ reaches a local
maximum at l+g ≈ 60 before it decreases towards a local minimum at l+g ≈ 100–200. Set
di_4 also exhibits this non-monotonic behaviour in ΔU+, with a local minimum around
l+g ≈ 85.

Based on these observations, an additional regime can be introduced where ΔU+
decreases unexpectedly and which we term the non-monotonic regime. This regime can
be identified in only two of the present data sets, and it remains to be investigated in
future studies whether this non-monotonic behaviour of ΔU+ featuring local maxima and
minima is a universal feature of 2-D longitudinally aligned surface structures.

5.3.4. Hydraulic channel height regime
The observed mild increase of ΔU+ for 200 < l+g < 1000 for the ridge cases corresponds
to a Reynolds number range in which the data sets di_2, . . . , di_13 exhibit Cf curves that
seem retrievable by shifting the Cf 0 versus Reb curve upwards (see figure 4). In other
words, the Cf curves of the structured surfaces could be derived by multiplying the smooth
reference by a constant factor. Such a procedure is comparable to the common definition of
the hydraulic diameter Dhyd = 4A/P, where A corresponds to the duct cross-section and P
to the wetted perimeter (Schiller 1923). Pirozzoli (2018) showed that this classic definition
is not applicable for ducts with high aspect ratios, and presented an alternative formulation
for the hydraulic diameter. However, this formulation assumes a constant distribution of
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Figure 7. Hydraulic half-channel height ratio η = δhyd/δ obtained from (5.6) versus l+g . Grey lines indicate
values for constant η, referred to as ηc. The corresponding values are included in table 2. The vertical error
bars represent the measurement uncertainty for exemplary data points. The horizontal error bars are negligible
in this representation.

wall-shear stress across the span, which is a fair assumption for ducts whose cross-section
varies mildly and regularly, but clearly does not hold for the present trapezoidal-grooved
surfaces.

In order to assess whether the present data can be described by a concept similar to a
hydraulic diameter approach, we evaluate a hydraulic half-channel height δhyd a posteriori
for each surface structure and Reb. If δhyd assumes a constant value independently of Reb,
then the friction behaviour in this regime can be described solely by the ratio δhyd/δ and the
smooth wall Cf 0(Reb) correlation, in analogy with the well-established hydraulic diameter
concept for low-aspect-ratio ducts.

For each (Cf , Reb) pair measured for a considered 2-D surface, we compute δhyd by
answering the question: ‘what would be the channel height of a smooth channel driven
at the same flow rate that yielded the same skin-friction coefficient?’ Therefore, δhyd is
expressed based on the ratio Cf 0/Cf via (3.2), such that

δhyd = δ

(
Cf 0

Cf

)1/3

. (5.6)

In analogy to the definition of the smooth wall reference channel height δ (based on
an identical Cf (Reb) correlation for smooth and structured walls under laminar flow
conditions), δhyd represents the channel height of a smooth wall reference channel with
the same friction coefficient under turbulent flow conditions. The ratio η = δhyd/δ can
thus be interpreted as a measure for the effective change in hydraulic channel height due
to turbulence.

Figure 7 shows η as a function of l+g . Riblets that yield ΔCf /Cf 0 < 0 (see figure 5)
result in values η > 1, while the opposite occurs for l+g > 17 (where ΔCf /Cf 0 > 0), where
turbulence is modified such that δhyd is smaller than δ (η < 1).

For high values of l+g , the ratio η = δhyd/δ tends to a surface-specific constant value,
which we denote as ηc. The corresponding values are included in table 2. The observed
trend indicates that the friction behaviour of drag-increasing ridges can be described by
a hydraulic reference channel height in the high-Reynolds-number regime (or high l+g
regime), which we term the hydraulic channel height regime. Widely spaced ridges such
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Figure 8. Constant hydraulic channel height ratio ηc obtained in the hydraulic channel height regime as
a function of different geometrical surface properties. Larger markers indicate increasing s/δ, with marker
colours representing the individual data sets as introduced in figure 10. (a) Perimeter increase P/s; (b) lg/s; (c)
reciprocal spanwise wavelength δ/s.

as di_13 saturate to ηc at l+g ≈ 300, whereas the narrow-spaced ridges undergo a transient
region and approach ηc at higher l+g : di_2, . . . , di_8 at l+g ≈ 500. Given the discrepancy for
the onset of the hydraulic channel height regime in terms of l+g , l+g does not seem to be
the suitable scaling to determine its onset. The existence of such a scaling remains to be
investigated in future studies. We note that the observed hydraulic channel height regime
is not in agreement with a constant friction increase ΔCf /C0 beyond the fully rough drag
regime postulated by Gatti et al. (2020).

In order to obtain a complete predictive framework for the drag behaviour in the
hydraulic channel height regime, an a priori definition of ηc would be required. The
classical hydraulic diameter approach is built on the idea that geometrical parameters
such as the perimeter increase P/s determine the drag behaviour. Such parameters are
considered in the following, and figure 8 shows ηc as a function of different geometrical
surface parameters, namely the relative increase of wetted surface area P/s, the square
root of the groove area normalized by the tip distance lg/s, and the reciprocal of the
structure spacing normalized by the half-channel height δ/s. The geometrical similarity
of the surfaces for which we were able to achieve the hydraulic channel height regime
does not allow general predictive statements, albeit that clear trends can be recognized.

Figure 8(a) reveals a nearly linearly decreasing ηc, and thus higher drag, with increasing
P/s. For the limiting case of wide-spaced small ridges, for which the increase of wetted
perimeter becomes negligibly small, P/s tends to 1. One would thus expect to retrieve
ηc = 1 at P/s = 1, which is fulfilled approximately with the observed trend in figure 8(a).

Since lg is a length scale commonly applied to capture and unify different riblet shapes,
lg/s can be understood as a measure of groove shape versus ridge spacing. The available
four data points from the present study appear to follow a nonlinear decrease η(lg/s) in
figure 8(b). The limit ηc = 1 is reached in this representation for increasing s at fixed h,
decreasing h at fixed s, or a combination of both. Again, this limiting data case is retrieved
approximately by the observed data trend.

The constant hydraulic channel height ratio ηc as a function of the reciprocal spanwise
wavelength s/δ is plotted in figure 8(c) such that the limiting case of a smooth wall
(ηc = 1) is located at δ/s = 0. In this representation, a linear trend is also observed, which
agrees reasonably well with the limiting value for a smooth wall.

Overall, all investigated surface structure features seem equally suitable to obtain a
predictive correlation for ηc. Additional ridge configurations of varying cross-sectional
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Figure 9. Sketch to illustrate the definition of the hydraulic channel height difference Δhhyd = δhyd − δ. Note
that Δhhyd can assume positive and negative values depending on the drag regime.

shape need to be investigated in future studies in order to tackle a possible identification
of a unified empirical or physics-informed predictive correlation for the hydraulic channel
height ratio induced by ridges. This remaining challenge of an a priori definition for the
hydraulic channel height ratio η can be compared to ‘the bottleneck in our ability to make
full-scale predictions of drag’ (Chung et al. 2021) in roughness research by means of the
equivalent sand grain roughness (which is also a hydraulic quantity) based on geometrical
surface properties.

5.3.5. Hydraulic channel height difference
To further assess the change of the hydraulic channel height induced by different surface
structures in the drag decreasing and drag-increasing regimes, we introduce the hydraulic
channel height difference defined as

Δhhyd = δhyd − δ, (5.7)

which is visualized in figure 9. Here, Δhhyd assumes positive values if η > 1 and is
otherwise negative, thus offering an alternative way to visualize changes in Cf .

Figure 10 shows Δhhyd normalized by the structure height h as a function of Reb for all
investigated surface structures. In this normalization, all physically large ridge structures
show small negative values, indicating that the reduction of the effective channel height
for turbulent flow conditions is larger than h‖, i.e. larger than the one that would occur in a
laminar flow, but still much smaller than the maximum height of the structures. In contrast,
the physically smaller riblet surface structures result in values Δhhyd/h that in modulo can
be significantly larger than 1. This indicates an interesting property of riblets: the origin
for δhyd can be located below the riblet valleys in the drag-reducing regime, and above the
riblet tips in the drag-increasing regime.

In figure 10, constant values of Δhhyd/h indicate the presence of the hydraulic channel
height regime discussed above. In this plot versus Reb, it appears as if this regime is also
reached for the physically largest riblet case, dr_1c. However, the resulting visualization
in figure 6 suggests that this might still be a transient behaviour. Therefore, this surface
structure is not considered to have reached the hydraulic channel height regime within the
Reb range of our experimental facility. In fact, we expect a decrease of Δhhyd/h for dr_1c
beyond the fully rough regime, resulting in values more similar to the ones observed for
ridges.

951 A16-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

79
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.796


L.H. von Deyn, D. Gatti and B. Frohnapfel

0

0

2

–2

–4

4

0.2 0.4
Reb

0.6 0.8 1.0
(×105)

�
h hy

d
/h

Figure 10. Hydraulic channel height difference Δhhyd defined in analogy to the protrusion height (see sketch
in figure 9 for definitions) normalized with the structure height h as a function of Reb. Same markers as in
figure 7. The horizontal and vertical error bars represent the measurement uncertainty for exemplary data
points.

6. Concluding remarks

The high-precision pressure-drop measurements carried out on eight 2-D trapezoidal-
grooved surface structures provide a comprehensive description of the occurring drag
regimes spanning the well-understood drag-reducing regime, where 2-D structures are
commonly termed riblets, up to the drag-increasing regime of ridge-type roughness, where
such structures are usually termed ridges. Varying Reb, the spanwise wavelength s and the
structure height h over one order of magnitude allow to study the skin friction Cf and
related drag change, expressed as the roughness function ΔU+, with respect to the smooth
reference in the range 1 < l+g < 1340. In doing so, we investigate four 2-D surfaces with
lg/δ < 0.17 that we term riblets, and four surfaces exceeding lg/δ ≈ 0.17 that we refer to
as ridges.

Investigating the drag change of three geometrically similar riblets of varying physical
sizes highlights the importance of the choice of the effective channel height. In the present
study, the wall-normal origin is placed at h‖ below the crest of the 2-D structures. The
streamwise protrusion height h‖ is obtained by solving an inexpensive Poisson equation.
The resulting effective channel height δ, utilized to translate the measured pressure
gradient into an equivalent wall-shear stress of a virtual flat wall, is smaller than the
average channel height. The present definition ensures that the relation Cf = 12/Reb, valid
for laminar flow over flat surfaces, also holds for laminar flow above the structured ones. In
this way, all surface-induced changes of Cf measured in turbulent channel flows stem from
turbulent effects only. With this choice of δ, the drag-change curves collapse remarkably
well both in the drag-reducing regime (all structures achieve maximum drag reduction at
l+g ≈ 11 and cross ΔCf = 0 at l+g ≈ 17) and in the drag-increasing regime up to l+g ≈ 40.

The challenge of choosing a physically sound value of δ is shared by many recent studies
(Chan-Braun, Garcí-A-Villalba & Uhlmann 2011; Endrikat et al. 2021; Ibrahim et al. 2021)
involving surface structuring, not only of the 2-D kind addressed here. Even numerical
studies, where τw can be determined directly without resorting to (2.1), face this ambiguity
as the different problem of the virtual wall placement, typically required to represent
spanwise-averaged turbulence statistics. For instance, Ibrahim et al. (2021) propose a
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virtual wall placement relying upon turbulent statistics obtained a posteriori. Evaluation
of the effective wall-shear stress for DNS of rough wall flows (Forooghi et al. 2017) often
also relies on a posteriori methods. Naturally, any a priori method has clear advantages
for experimental studies in which the full flow field information is not available. More
importantly, one has to be aware of the fact that different definitions of the effective
channel height could lead to different interpretations of Cf variations, especially when
the scale separation between structure size and boundary layer thickness is not very large.
Since it is possible to re-evaluate ΔCf for different channel heights following (5.1a,b), all
data published in this field should contain a clear statement about the equivalent channel
height (or virtual origin) definition. Sensitivities of Cf to other equivalent channel height
definitions can then be evaluated easily.

Enabled by the present choice of δ, four main outcomes can be drawn from the analysis
of the structure-induced drag changes of the present study. First, the viscous prediction
of riblet drag reduction based on the difference of the streamwise (h‖) and spanwise (h⊥)
protrusion heights (Luchini et al. 1991) agrees very well with the measured drag-change
curve of the physically smallest riblet set dr_1c for 1 < l+g < 7. Also, for larger structures
such as dr_1c, the expected drag-reducing effect known from the literature (see, for
instance, Walsh 1990; Bechert et al. 1997) is obtained.

Second, past the drag-reducing regime (l+g ≥ 17) and up to l+g ≈ 40, the drag-change
curves in terms of the roughness function ΔU+ plotted against l+g are found to collapse
onto one single curve that agrees well with the fully rough behaviour or rough wall surfaces
characterized by a logarithmic increase of the roughness function ΔU+. Interestingly,
data for geometrically similar riblets and ridges are found to collapse in this regime,
confirming that the distinction between riblets and ridges is just mere nomenclature. For
the equivalent sand grain roughness ks of the identified (apparent) fully rough regime,
the empirical relation ks = lg/4.4 is found, making the drag in this regime predictable.
Since riblets and ridges cannot experience any pressure drag (the dominance of which is
typically associated with fully rough drag behaviour), it remains to be understood which
flow phenomena induce this particular phenomenon.

Third, an unexpectedly rich drag behaviour is observed for the first time beyond the fully
rough regime (l+g ≥ 40). The departure from the fully rough behaviour, whose onset was
already observed by Gatti et al. (2020) relying upon the same data set dr_2, is confirmed
distinctly here via the additional riblet geometry dr_1c. The new data show that such
deviation from the fully rough regime is very complex, with ΔU+ exhibiting local maxima
and minima for two sets of ridges, di_2 and di_4. Thus we term this regime, found for
50 < l+g < 200 for the investigated geometries, the non-monotonic regime.

Finally, a drag regime beyond l+g = 200 is identified in which a hydraulic channel height
ratio (similar to a hydraulic diameter concept) is sufficient to describe the drag behaviour
of ridges. Riblets might also eventually reach such a regime, but this is not the case for the
presently investigated riblet shapes within the Reynolds number range of the experimental
facility. The hydraulic channel height ratio η is a quantity obtained a posteriori that
compares the effective hydraulic channel height under turbulent flow conditions to
its laminar counterpart, which is exactly the equivalent channel height δ employed
for the present study. In the hydraulic channel height regime, η assumes a constant
but surface-specific value ηc. Relating this hydraulic surface property to geometrical
surface properties remains an open task for which data for different ridge geometries are
required.
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Appendix. Drag-change measurements scaled with alternative channel height
definitions

In the present work, the parallel protrusion height h‖ is utilized to define the channel height
(see § 2) in order to discern drag changes in structured channels caused by turbulence.
However, a number of different channel height definitions are commonly applied in the
literature. Besides a definition based on the surface meltdown height as already discussed
in § 5.2 (see figure 5), other common choices include channel heights based on the
spanwise protrusion height (see e.g. Ibrahim et al. 2021) or the structure crests (see e.g.
Schönecker & Hardt 2015). In figure 11, the drag change results for riblets are re-scaled for
these channel height definitions. The variables are denoted by (·)⊥ and (·)tip, such that δtip
corresponds to the smallest reference channel height among all discussed choices, whereas
δ⊥ lies between δ and δtip.

In agreement with the observations with respect to figure 5, a smaller reference channel
height leads to a larger relative change of Cf . This is particularly true for larger surface
structures, while smaller ones (such as dr_1a and dr_1b, for which h/δ � 1) reveal hardly
any difference. In both representations of figure 11, the set dr_1c achieves a relative change
of Cf comparable to or larger (in absolute value) than sets dr_1a and dr_1b. This result
is unexpected, given that the shape of these sets is geometrically similar but dr_1c has
rounded riblet tips, which is known in the literature to be associated with reduced riblet
performance (Walsh 1990).

It can be seen that also the zero crossing for ΔCf is influenced by the channel height
definition. Very good collapse of all data sets at this location is obtained for both channel
height definitions in figure 11, albeit at different values of l+g .

Overall, these different types of data evaluation indicate that the choice of reference
channel height strongly influences the drag values obtained through pressure-drop
evaluation of internal flow when large-scale separation between the surface structure or
roughness size and the boundary layer thickness is not fulfilled. It is thus of utmost
importance that the choice of the reference channel height is reported clearly for such
cases. A posteriori translation of the results for other reference channel heights can then
be carried out following (5.1a,b).
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Figure 11. Effect of other wall-normal origin definitions on the drag-change curves. Same as figure 5, but
different wall-normal origins: (a) wall-normal origin placed at h⊥ below the structure crest; (b) wall-normal
origin placed at the structure tip.
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