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Shock reflection with incident shock–wedge
trailing-edge expansion fan interaction
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Steady shock reflection where the incident shock is free of interaction with other waves
has been well studied. In this paper, we consider the less studied shock reflection problem
where the incident shock interacts with the wedge trailing-edge expansion fan, which
occurs when the wedge trailing-edge height surpasses a threshold. The influence of this
interaction on the advance of transition from Mach reflection to regular reflection is
quantified in terms of the wedge trailing-edge height ratio. The wave pattern, including
primary and reflected Mach waves, for Mach reflection with interaction is clarified using
computational fluid dynamics (CFD) and the method of characteristics. Those reflected
Mach waves having an important effect on Mach reflection are identified. A simplified
Mach stem model that accounts for the direct role of the interaction on the incident shock
and its indirect role on the reflected shock and slipline is built up on a past model without
interaction. Both theory and CFD show that the Mach stem height decreases nonlinearly
with increasing trailing-edge height.

Key words: shock waves, supersonic flow

1. Introduction

The reflection of an incident shock over a reflecting surface is an important phenomenon
in steady supersonic flow. Past studies have mainly been devoted to free shock reflection,
where the incident shock is free of interaction with other waves. In certain conditions the
incident shock may be subjected to interference from an expansion wave. One situation
occurs when the inflow stream is inclined at some angle to the reflecting surface, so that
an upstream expansion fan is generated and interferes with the incident shock. Another
situation occurs when the height of the wedge trailing edge (trailing edge for short) is
large enough so that the incident shock interferes with the trailing-edge expansion fan
(TE expansion fan for short), as illustrated in figures 1(a) and 1(b) for regular reflection
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Figure 1. Illustration of shock reflection with interaction: (a) RR and (b) MR.

(RR) and Mach reflection (MR). The last situation will be called ‘shock reflection with
interaction’ for short.

Hillier (2007) studied the first situation and identified three types of Mach reflection
structure, when the triple point is before, in and after the expansion fan. Hillier also
used the method of characteristics to model the upstream expansion fan–incident shock
interaction and clarified the influence of this interaction on the transition conditions
between RR and MR. For the second situation, Vuillon, Zeitoun & Ben-Dor (1995) found
numerically that increasing the relative trailing-edge height g = h/HA (where h is the
wedge trailing-edge height and HA is the inlet height) may trigger transition from MR
to RR. Later on, Li & Ben-Dor (1997) clarified that MR to RR transition occurs for g
beyond the threshold at which interaction between the TE expansion fan and incident
shock occurs. However, Li & Ben-Dor (1997) have not quantified the influence of g on
transition and Mach reflection configuration when interaction occurs, and this influence
will be studied in this paper. Apart from its academic value as for free reflection, such a
study could be useful in practical application: for instance, in the design of a supersonic
intake, one should know when interaction occurs and, if it occurs, what is the influence of
interaction.

In § 2 we will quantify the threshold of g for interaction, build a fast analytical model
for the shape of the incident shock, and give in the M0–θw plane the relative height g
above which transition from MR to RR occurs. The fast analytical model is composed of
an approximate method for characteristics and a local Mach wave–shock wave interaction
model, and such a fast model is needed in this paper since we want to quantify the effect
of interaction for a wide range of g. In § 3, we use computational fluid dynamics (CFD)
and the method of characteristics to: clarify the complex wave pattern (including both
primary waves and Mach waves reflected from the primary waves) for Mach reflection;
build a Mach reflection model capable of predicting the Mach stem height and shape of
the reflected shock and slipline, by accounting for the particular features due to interaction
in a previous free Mach reflection model; and quantify the influence of g on the Mach
reflection configuration.

Appendix A.1 outlines the basic assumptions, the method for shock waves, the method
of characteristics (including an approximate one) and the method for the numerical
simulation. The rest of Appendix A is devoted to an approximate method for regular and
Mach reflection configurations.
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Incident shock–wedge TE expansion fan interaction

(b)(a)

Figure 2. Numerical solution for M0 = 4, θw = 35.82◦ and g = 0.76: (a) Mach number and (b) pressure.
Dashed lines are contour lines. Solid lines are characteristics.
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Figure 3. Regular reflection with interaction.

2. Regular reflection and transition conditions

2.1. Regular reflection configuration and condition of interaction
Figure 2 displays a typical numerical result for regular reflection with interaction. Figure 3
is a schematic display of the flow depicted from this numerical solution and will be used
for analysis in this section. In figure 3, PQ is a typical TE expansion wave that interacts
with the incident shock. At any point q on PQ, there are three families (C−, C0 and C+)
of characteristics. See Appendix A.1 for the method to display the characteristic lines.

The property of the characteristics displayed in figure 2 will be used to simplify the
model in § 2.2. In figure 3 and throughout this paper, region 0 is upstream of the incident
shock and region 1 is between the incident shock and the TE expansion fan. The coordinate
system, with x axis along the reflecting surface and the y axis passing the wedge leading
edge (A), will also be used in § 3 for Mach reflection.
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Figure 4. Contour lines of g = gmax.

The initial interaction point (I), as shown in figure 3, lies on the leading characteristic
line and the incident shock, so that

yI − HA = −xI tan β01, yI − yR = −(xI − xR) tan(θw + μ1). (2.1a,b)

The critical value hmax of h for interaction corresponds to yI = 0 and, in terms of g, this
height is given by

gmax = hmax/w
hmax/w + sin θw

,
hmax

w
= cos θw tan β01 − sin θw

tan(θw + μ1) − tan β01
tan(θw + μ1), (2.2a,b)

and is shown in figure 4. It is seen that the space of g with interaction is not small, and
gmax becomes smaller if M0 or θw is larger. For RR, interaction (between the incident
shock and the TE expansion fan) occurs for all g > gmax, and, due to this interaction, the
reflection point G is shifted to the right compared to the reflection point G′ in the case of
no interaction. In MR, g > gmax is only a necessary condition for interaction, and whether
there is interaction depends on the Mach stem height (Li & Ben-Dor 1997).

2.2. Shape of the incident shock
The standard transition criteria can be applied based on the (local) angle βG of the curved
incident shock at the point G at which it is incident upon the wall. Thus, all that is
essentially required is solving for the shape of the curved shock segment (IG) influenced
by the TE expansion fan. For interaction between the incident shock and an upstream
expansion fan, Hillier (2007) used the method of characteristics to determine the shape
of the incident shock. In the present problem, the characteristics inside the TE expansion
fan are perturbed by the reflected waves from the incident shock before interacting with
the incident shock. We need an analytical method accounting for this perturbation while
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Incident shock–wedge TE expansion fan interaction

Figure 5. Shape of the incident shock wave by CFD and theory. Open circles correspond to dθR = 0.01◦ and
filled circles to dθR = 0.04◦.

Case M0, θw, g (xG/HA)The, (xG/HA)CFD (βG)The, (βG)CFD

1 4, 25, 0.72 1.2815, 1.2833 34.1252, 34 ± 0.5
2 4, 30, 0.72 1.0448, 1.0463 36.8219, 37 ± 0.5
3 4, 33, 0.76 0.9761, 0.9757 35.3501, 36 ± 0.5
4 4, 35, 0.76 0.8631, 0.8613 36.7427, 37 ± 0.5

Table 1. Comparison of the coordinates of G and βG by theory (The) and CFD.

being fast enough so as to give the transition condition covering a wide parameter range.
For this purpose, the fast model is composed of an approximate method for perturbed
characteristics and a local Mach wave–shock wave interaction model. The details of the
algorithm are given in Appendix A.2. The shape is solved up to the point at which
y = yG = 0.

Figure 5 displays the predicted positions (circles) of the incident shock and
cut-streamlines on the Mach number contour lines by CFD, for M0 = 4, θw = 35.82◦ and
g = 0.76. In the solution of the model, we have tested various choices of dθR and we
find the results with dθR = 0.01◦ and dθR = 0.04◦ display no obvious differences. It is
seen that theory agrees well with CFD results. Similar comparison is observed for other
conditions. Table 1 displays a comparison of the coordinates of G and the shock angle βG
at point G, for four sets of conditions. Note that the shock angle βG can only be measured
approximately from CFD contour lines of Mach number or pressure. We have an error near
±0.5◦ in measuring the shock angle.

2.3. Transition criteria
The use of the algorithm in § 2.2 gives the shock angle βG at the reflecting surface, which
is used here as the input shock angle for the usual von Neumann condition and detachment
condition of transition. Specifically, for any given set of M0 and θw, we find the value of g
at which the shock angle βG is equal to the usual von Neumann condition βG = β

(N)
01 (M0)

and the critical value of g is denoted g(N) = g(N)(M0, θw). We also find the critical value of
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Figure 6. Critical conditions in the M0–θw plane: (a) the von Neumann condition g = g(N) and (b) the
detachment condition g = g(D).

g such that βG is equal to the usual detachment condition βG = β
(D)
01 (M0) and this critical

g is denoted g(D) = g(D)(M0, θw). These critical conditions are displayed in figure 6, in
terms of contour lines (iso-value lines) in the M0–θw plane. The usual transition criteria in
the case of a free incident shock wave are also displayed.

For any M0 and θw above the usual von Neumann condition, if g < g(N)(M0, θw), we
may have a double solution or pure Mach reflection, and if g > g(N)(M0, θw), only regular
reflection is possible. For fixed θw, the critical value g(N) decreases when M0 increases,
meaning that transition from MR to RR occurs at smaller g when M0 increases. In contrast,
for fixed M0, increasing θw also increases g(N), meaning that transition from MR to RR
occurs at larger g when θw increases. For any M0 and θw above the usual detachment
condition, if g > g(D)(M0, θw), we are in the double solution domain or in the pure RR
domain, and if g < g(D)(M0, θw), only Mach reflection is possible. Similarly as for the von
Neumann condition, for fixed θw, g(D) decreases when M0 increases and, for fixed M0,
increasing θw also increases g(D).

Since g(N) < 1, there is always a value of g above which Mach reflection will transit to
regular reflection, due to interaction between the TE expansion fan and the incident shock.

Another way to see the influence of g is to look at the transition criteria in the g–θw
plane for fixed M0, as shown in figures 7(a) and 7(b) for M0 = 4 and 6. Line CD is the
detachment condition and line AB is the von Neumann condition. The lines D′CD and
B′AB enclose the double solution domain where both reflections are possible.

Now we provide some numerical evidence on the influence of g on transition. Note that
this is not a hysteresis study, but a study to show whether we can have MR or RR or
both. In the dual solution, caution should be exercised in setting the initial condition; see
Appendix A.1.

First, consider the condition with M0 = 4 and θw = 30◦, which is above the usual
detachment condition, so we must have Mach reflection for small g. Now consider a large
value g = 0.69 for which we should have a double solution due to interaction, according to
figure 7(a). We indeed have double solutions according to the numerical results displayed
in figure 8(a) for RR and figure 8(b) for MR. For g = 0.75, we obtain similar results,
according to numerical solutions not shown here.
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Figure 7. Transition criteria in the g–θw plane: (a) M0 = 4 and (b) M0 = 6.
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Figure 8. Mach contours showing double solution for M0 = 4 and θw = 30◦: (a) RR with g = 0.69 and
(b) MR with g = 0.69.

The transition from MR to RR due to increasing g can also be seen from the numerical
results of Mach stem height variation versus g, as shown in figure 9(a) for M0 = 4 and
θw = 25◦ (double solution domain in the case of free reflection) and figure 9(b) for M0 = 4
and θw = 30◦ (pure Mach reflection domain in the case of free reflection). Hornung &
Robinson (1982) used such a variation to demonstrate transition due to increase of wedge
angle. Filled circles represent the Mach stem heights when the Mach reflection solution
can be obtained and open circles, for zero Mach stem height, mean that regular reflection
can be obtained by numerical solution. In the pure Mach reflection domain, we only have
filled circles. In the pure regular reflection domain, we only have open circles. If, for the
same value of g, we have both types of circles, then we are in the double solution domain.

For the case shown in figure 9(a), we have been able to produce regular reflection in all
cases. Numerically, the transition from Mach reflection to regular reflection corresponds
to g ≈ 0.725, while, according to figure 7(a), the theoretical transition condition is
g = g(N) = 0.731 (represented by line L); thus the theoretical value g(N) is close to the
CFD value. For the case shown in figure 9(b), where L1 and L2 represent, respectively,
the theoretically predicted detachment condition g(D) = 0.6868 and the von Neumann
condition g(N) = 0.7668, we observe that these theoretical values are very close to the
CFD prediction.
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Figure 9. Numerical results for normalized Mach stem heights as a function of the normalized wedge
trailing-edge height for M0 = 4: (a) θw = 25◦ and (b) θw = 30◦.

Recall that the Mach stem height Ht/H0 decreases almost linearly with g, according
to previous studies (Vuillon et al. 1995; Li & Ben-Dor 1997; Bai & Wu 2021). Let gv

be the value of g at which the extended line of this linear curve intersects the g axis
(see figure 9). Owing to interaction, MR to RR transition occurs at g = g(N), not at
g = gv . Thus the quantity gd = g(N) − gv may measure indirectly the effect of transition
delay due to interaction. Here gv can be obtained using the data by CFD for free Mach
reflection. We get gv ≈ 0.7665, g(N) ≈ 0.8 and gd ≈ 0.034 for M0 = 3 and θw = 25◦,
we get gv ≈ 0.7, g(N) ≈ 0.722 and gd ≈ 0.022 for M0 = 4 and θw = 25◦, and we get
gv ≈ 0.717, g(N) ≈ 0.76 and gd ≈ 0.043 for M0 = 4 and θw = 30◦.

Recall that transition from MR to RR for large g has been observed numerically by
Vuillon et al. (1995) and Li & Ben-Dor (1997) for some particular conditions. Here we
have obtained the threshold of g for transition for a wide parameter range.

3. Mach reflection with interaction

3.1. Wave structure in Mach reflection with interaction
The secondary waves generated over the slipline due to reflection of transmitted expansion
waves and due to equilibrium of pressures across the slipline have been found to have an
important effect on the shape and size of free Mach reflection (Gao & Wu 2010; Bai &
Wu 2017). Here the problem is more pronounced since secondary waves and shear layers
are also generated from reflection of expansion waves over the incident shock. Thus, it is
important to clarify the wave structures.

The wave structure can be made clear if we show both contour lines and characteristics.
See Appendix A.1 for the method to display the characteristic lines. In figures 10(a) and
10(b) we display the contour lines of the Mach number M and pressure p, superimposed by
characteristic lines, obtained by numerical simulation with M0 = 4, θw = 30◦ and g = 0.7.
Figure 11 is a schematic display of the various waves depicted following figure 10. Now we
describe the particular features of the various waves, shear layers and the flow structures
typical of Mach reflection with interaction.

(a) Mach waves from the TE expansion fan (belonging to C−). According to figure 10,
these waves have small curvature, a property that justifies the approximation (A8) and
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Figure 10. Numerical solution of Mach reflection for M0 = 4, θw = 30◦ and g = 0.7: (a) Mach number
contours and characteristic lines, and (b) pressure contours and characteristic lines. The characteristic lines
are displayed as solid lines and the contour lines as dashed lines.
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Figure 11. Schematic display of wave patterns for Mach reflection. The three families of characteristics are
displayed in various types of curves.

similar approximation used in Appendix A.3. Below the cut-streamline, the Mach contour
lines are not aligned with the characteristics lines C− so that the Mach number is not
constant along C−, while the pressure and also the flow deflection angle θ according to
numerical results not shown here are nearly constant along C− (a property to be used in
Appendix A.3 for the upstream condition of the reflected shock).

(b) Reflected Mach waves from the incident shock (belonging to C+). The reflected Mach
waves (cf. i2r1) from the incident shock (part i0i1i2T) disturb the expansion fan above
the cut-streamline. These reflected Mach waves are one order of magnitude weaker than
the incoming Mach waves, according to Guan, Bai & Wu (2020, figure 6) for a similar
problem, and thus their influence may be neglected in a first-order approximation.

(c) Shear layers from the incident shock (belonging to C0). These characteristics C0 (like
i1r1) are along the streamlines. Figure 10(a) shows that the Mach number contour lines are
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Figure 12. Slopes of the characteristics C− and C+ along the slipline for M0 = 4, θw = 30◦ and g = 0.7.

highly distorted below the cut-streamline i0r2 shown in figure 11. Thus the influence of
these shear layers on the reflected shock cannot be neglected (see Appendix A.3 for how
to model this interaction).

(d) Three types of incoming waves upstream of the reflected shock. Consider a typical
point r1 on the reflected shock. There are three waves coming from upstream of this point:
the wave iC0

3 r1 (C−) comes from R, the wave i1r1 (C0) comes from the incident shock, and
the wave i2r1 (C+) is a reflected Mach wave from the incident shock. These waves alter
the upstream condition of the reflected shock. As discussed above, iC0

3 r1 and i1r1 cannot
be neglected but i2r1 can be omitted.

(e) Waves over the slipline. The transmitted Mach waves (such as r1s3) belonging to C−
are reflected over the slipline to produce Mach waves (cf. s3r6) belonging to C+.

( f ) Waves downstream of the reflected shock. Apart from the transmitted Mach waves
(like r1s3) and characteristics belonging to C0 (like r1o), reflected waves from the slipline
(like s1r1) appear downstream of the reflected shock and may change its shape. The
strengths of these reflected waves can be measured by the variation of eigenvalues
tan(−θ ± μ) along the slipline. Figure 12 displays tan(−θ ± μ) for M0 = 4, θw = 30◦
and g = 0.7, with θ and μ obtained from CFD. The variation of tan(−θ + μ) for the
reflected wave is much smaller than tan(−θ − μ) for the transmitted wave. Similar results
are observed for g = 0.675 and 0.7. Thus, the reflected Mach waves from the slipline are
weak and its influence on the shape of the reflected shock can be neglected, like in previous
studies of free Mach reflection.

In summary, the overall flow configurations are highly disturbed by Mach waves and
shear layers generated by interaction between the TE expansion fan and the incident shock.
Not only is the upstream condition of the reflected shock perturbed by three families of
waves, one from the wedge corner, but also the transmitted expansion waves are perturbed
by shear layers from the incident shock.

3.2. Modelling of the Mach reflection configuration
In his monograph, Ben-Dor (2007) stated that the mechanism by which the size of the
entire wave configuration of the MR was determined has been considered as an important
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Figure 13. Notations for wave structure used for model construction.

issue; see also Ben-Dor & Takayama (1992) for the importance of this. Hornung &
Robinson (1982) argued that the Mach stem height is affected by the pressure decreasing
information from the wedge TE expansion fan, since this information can be carried out to
the subsonic flow region in the quasi-one-dimensional flow region below the slipline and
then transported upstream to the triple point through the subsonic pocket. As a result, the
size and shape of this subsonic pocket are controlled by the distance between the Mach
stem and the sonic throat, which in turn depends on the geometry of the wedge and the
relative height (g) of the trailing edge.

Since then, theoretical modelling of the Mach stem height for free Mach reflection has
been attempted a number of times: see, for instance, Azevedo & Liu (1993), Li & Ben-Dor
(1997), Mouton & Hornung (2007), Gao & Wu (2010) and Bai & Wu (2017) for planar
two-dimensional shock reflection, and Shoesmith & Timofeev (2021) for axisymmetrical
shock reflection. It remains to consider Mach reflection with interaction. Though modern
CFD can predict the details for each given condition, a very fine grid is needed to capture
the height of the Mach stem, as shown in Appendix A.1. So it is better to use CFD and
theoretical modelling in a combined way if we want to study the Mach stem height for a
wide range of parameters.

The wave pattern used for modelling is shown in figure 13, accounting for the various
waves and shear layers shown in figure 11. As usual, the perturbation of the reflected waves
from the slipline on the downstream condition of the reflected shock is not accounted for.
The modelling given below is based on that given by Bai & Wu (2017) for free reflection,
accounting for the particular features due to interaction. The detailed algorithm is given in
Appendices A.2–A.5; below, we only summarize the particular features due to interaction.

The first particular feature is that the triple-point solution is coupled with the global
solution, unlike in free Mach reflection where the triple-point solution only depends on
the inflow condition and the wedge angle. Thus, the triple-point solution is determined
in a coupled way with the Mach stem height model and the incident shock shape model.
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For each temporal height of the Mach stem, the shape of the incident shock is solved up to
the triple point, using the method given in Appendix A.2 which gives the shock angle β

(T)
01

at the assumed triple-point location. The conventional triple-point theory of von Neumann
is then used to find β

(T)
12 , β

(T)
03 , θ

(T)
2 , θ

(T)
s , M(T)

k , ρ
(T)
k and p(T)

k (k = 1, 2, 3).
The second particular feature is that the upstream flow conditions of the reflected shock

are subjected to the influence of waves and shear layers produced over the incident shock
(see Rf , Qf and Q′f for each point on the incident shock, as shown in figure 13), unlike
free Mach reflection for which the upstream condition of the reflected shock is determined
uniquely by the TE expansion fan. This requires the consideration of three families of
characteristics, to bring information from the wedge trailing edge and from the curved
incident shock.

There are also particular features associated with the shape of the reflected shock, the
transmitted expansion waves and the shape of the slipline, noting that modelling these
shapes is already very difficult in free Mach reflection. Like in free Mach reflection,
the shape of the reflected shock and its downstream flow conditions are determined by
conventional type I interaction between Mach waves and shock wave (Bai & Wu 2017),
but with far more complicated upstream flow conditions (determined in Appendix A.3)
for the reflected shock segment TF. Unlike in free Mach reflection, where the transmitted
Mach waves are usually treated as straight lines and the pressure is assumed to be constant
along the transmitted Mach waves (Li & Ben-Dor 1997; Bai & Wu 2017), here, due to
the oncoming waves and shear layers from the incident shock, the characteristics should
be regarded as curved lines and the pressure should be determined by the compatibility
relation (outlined in Appendix A.1). The model for the shape of the slipline does not have
new features compared to free Mach reflection. The algorithm is outlined in Appendix A.4.

The global algorithm for the Mach stem height and for the shape of the reflected shock
and slipline, outlined in Appendix A.5, is similar to that for free Mach reflection, except
that, as stated above, the triple-point solution is coupled with the estimated value of the
Mach stem height, which again depends on the triple-point solution, the shape of the
reflected shock and the shape of the slipline. Thus, the global algorithm for the Mach
stem height is more complex than in free Mach reflection.

Figure 14 shows Mach stem heights as a function of g, obtained by both prediction and
CFD, for three sets of M0 and θw: M0 = 3, θw = 25◦; M0 = 4, θw = 25◦; and M0 = 4,
θw = 30◦. The theory predicts a Mach stem height slightly higher than CFD in all cases
but the absolute errors reduce for larger g. In free Mach reflection, similar amounts of
errors also exist due to simplifications needed in a solvable model (Azevedo & Liu 1993;
Li & Ben-Dor 1997; Mouton & Hornung 2007; Gao & Wu 2010).

Figure 15 overlaps the shape of the slipline, incident shock and reflected shock predicted
by theory on the Mach number contour lines by CFD, for M0 = 4, θw = 30◦ and two g
values, showing how the theory agrees with CFD.

3.3. Influence of interaction on the Mach reflection configuration
The influence of interaction on the overall wave configuration for a typical value of g
has been discussed in § 3.1. One point to be emphasized again is that the flow below the
cut-streamline (especially the Mach number according to figure 10a) is highly perturbed
by the waves and shear layers produced over the incident shock.

According to a number of numerical results, the overall wave pattern is similar for
various values of g, except that the cut-streamline and the critical characteristic line (the
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Figure 14. Mach stem heights as functions of g for three sets of M0 and θw.
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Figure 15. Shapes of incident shock, reflected shock and slipline for M0 = 4, θw = 30◦ and (a) g = 0.7 or
(b) g = 0.73.
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Figure 16. Relative positions of F and f marked on Mach number contours for M0 = 4, θw = 30◦ and
(a) g = 0.7 or (b) g = 0.73.

characteristic line of the expansion fan joining the sonic throat, see Bai & Wu (2021)) may
intersect at a point upstream or downstream of the reflected shock. Figure 16 shows, for
M0 = 4 and θw = 30◦, that these two lines intersect at a point upstream of the reflected
shock when g = 0.7, and downstream when g = 0.73. These two possibilities should be
considered in the solution of the Mach stem model, since the flow should be solved up to
the critical characteristic line in the Mach reflection model (see Appendix A.5).

The Mach stem height is an important parameter that characterizes the Mach reflection
configuration, as mentioned at the beginning of § 3.2. For the present problem with
interaction, the value of g at which interaction occurs is also of interest (note that, for
regular reflection, this condition has been given in figure 4). We consider how the Mach
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Figure 17. Mach stem heights as a function of the normalized wedge trailing-edge height: (a) M0 = 4 and
five θw; and (b) θw = 25◦ and four M0.

stem height varies with M0 and θw when interaction occurs, and how the Mach stem height
depends on g. Figures 17(a) and 17(b) display the curve Ht/H0 = f (g) for various choices
of θw and M0.

As in the three cases shown in figure 14, for each set of θw and M0, Ht/H0 decreases
nonlinearly with g, much more slowly than the linear decrease observed in free reflection
(Vuillon et al. 1995; Li & Ben-Dor 1997; Bai & Wu 2021). In both figures 17(a) and 17(b),
the starting abscissa g = gs (marked with a dot) for each curve is the point where the
leading characteristic line of the wedge TE expansion fan intersects the triple point.

According to figure 17(a), which shows Ht/H0 = f (g) with M0 fixed to 4 and with
various θw, the Mach stem is higher for larger θw. The same trend has been observed
in free Mach reflection (Hornung & Robinson 1982). According to figure 17(a), which
shows Ht/H0 = f (g) with θw fixed to 25◦ and with various M0, the Mach stem is higher
for smaller M0. The same trend has been observed in free Mach reflection (Gao & Wu
2010).

The location gs of the starting point of interaction is found to be monotonically
decreasing when M0 increases, according to figure 17(b). However, when M0 is fixed to
be 4, the smallest value of gs occurs at θw around 28◦. For larger and smaller θw, gs takes
larger values. The width

gi = g(N) − gs (3.1)

is the interval of g over which interaction occurs. It is the width of g over which the Mach
stem vanishes from the beginning of interaction. According to figure 17(a), for larger
θw, the Mach stem height is larger, and requires a wider interval gi for vanishing Mach
stem height. However, according to figure 17(b), for smaller M0, though the Mach stem
height is larger, it requires a shorter interval gi for vanishing Mach stem height. Consider,
for instance, M0 = 3 and θw = 25◦: interaction starts at g = gs ≈ 0.73 and the Mach
stem height vanishes at g = g(N) ≈ 0.8, so gi ≈ 0.07; while for M0 = 5 and θw = 25◦,
interaction starts at g = gs ≈ 0.624 and the Mach stem height vanishes at g = g(N) ≈ 0.7
so gi ≈ 0.076.

Note that, for low enough g, the flow will not start or will ‘unstart’ if the reflected
shock intersects the wedge lower surface before the trailing edge, according to Li &
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Ben-Dor (1997, figures 7 and 8). In the present paper, we are interested in high g, and
the ‘unstart’ problem is not encountered for the range of g we have studied.

4. Conclusion

In this paper we have studied the influence of the interaction between the trailing-edge
(TE) expansion fan and the incident shock wave on both regular reflection (RR) and
Mach reflection (MR), including on the transition criteria and on the Mach reflection
configuration. This influence is parametrized in terms of g, the wedge trailing-edge height
divided by the inlet height.

It is shown that the parameter range for interaction is large, especially for large Mach
number, where interaction may occur for small g (see figure 4). The von Neumann
condition and detachment condition are displayed in the M0–θw plane for various values of
g (see figure 6). These results quantify the effect of g on transition delay due to interaction,
and complement the previous work of Vuillon et al. (1995) and Li & Ben-Dor (1997), who
first pointed out the possibility that MR to RR transition would occur for large enough g.

Through the display of the characteristics of various families, the complex waves and
shear layers embedded in the overall Mach reflection configuration are clarified. The
particular features from interaction in the mechanism by which the size and shape of the
overall flow configuration are determined are discussed. The inclusion of the particular
features into a previous Mach reflection model (for free reflection) gives a Mach stem
height model capable of accounting for the interaction and predicting the Mach stem
height for a wide range of g. It is found that the relative Mach stem height decreases
nonlinearly with increasing g for Mach reflection with interaction. This is in contrast
to free Mach reflection, where this height decreases almost linearly with g according to
previous studies (Vuillon et al. 1995; Li & Ben-Dor 1997; Bai & Wu 2021). Meanwhile,
even with interaction, the relative Mach stem height increases with θw and decreases with
M0 if the other parameters are fixed, as in free reflection. The expansion fan interacts with
the incident shock before the triple point at g = gs, where gs is monotonically decreasing
when M0 increases when θw is fixed, while gs is not monotonic with θw for M0 fixed, at
least for the parameters considered. The interval of g over which the Mach stem vanishes
starting from interaction is also found to depend on θw and M0.
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Appendix A. Numerical and analytical modelling

A.1. Basic flow models, approximate characteristics method and numerical simulation
The present study considers only two-dimensional inviscid flow of a perfect gas, with a
specific heat ratio γ (= 1.4 for air). As convention, the Mach number is denoted as M, the
pressure as p, density as ρ, the Mach angle as μ (= arcsin(1/M)), the local shock angle
as β and the local flow deflection angle as θ . The upstream supersonic flow is set to be
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horizontal, and the angle θ is with respect to the horizontal direction and assumed to be
positive when the flow deflects towards the reflecting surface.

Throughout this paper, the shock angle relation is abbreviated as |θ(u) − θ(d)| =
fθ (M(u), β), and the oblique shock-wave relations are abbreviated as p(d) =
p(u) fp(M(u), β) and M(d) = fM(M(u), β), where the superscripts (u) and (d) mean
upstream and downstream. The expressions fθ (M, β), fp(M, β) and fM(M, β)
can be found in any classic textbook for gas dynamics. The abbreviation
ϑ(M) = [1 + 1

2 (γ − 1)M2]γ /(γ−1) that arises from isentropic flow relations is also used.
There are three families of characteristics, C−, C0 and C+. Along the characteristic lines

dy/dx = tan(−θ ∓ μ) belonging to C− and C+ the following compatibility relations hold
(cf. Holt 1956; Liepmann & Roshko 1957; Hayes & Probstein 2004):

− dθ ∓ Φ( p, M)dp = 0, Φ( p, M) =
√

M2 − 1
γ M2p

(C∓). (A1a,b)

Along the characteristic line dy/dx = tan(−θ) belonging to C0, the following holds:

dp − a2dρ = 0, ρVdV + dp = 0 (C0). (A2a,b)

We will see that some characteristic lines have small differences in their slopes at
their two ends, so the approximation of Li & Ben-Dor (1997) can be applied to these
characteristic lines, giving

y2 − y1 = (x2 − x1) tan Λ(δ1, δ2), (A3)

where δ1 and δ2 are the slopes at the two end points 1 and 2, and

Λ(δ1, δ2) = arctan
2 tan δ1 + tan(δ2 − δ1)

2 − tan δ1 tan(δ2 − δ1)
. (A4)

Tecplot can draw streamlines, with velocity components as input. This streamline
function is used to draw the characteristic lines dy/dx = tan(−θ ∓ μ), by using
(1, tan(−θ ± μ)) as the fictive velocity (θ ± μ are from the CFD solution).

The CFD results are obtained by solving the compressible Euler equations for a perfect
gas (air) using the well-known second-order Roe scheme, on a structured grid. The inlet
is supersonic, the reflecting surface is symmetric, the wedge lower surface is an inviscid
wall, the upper boundary downstream of the wedge is also an inviscid wall, and the exit is
a supersonic outlet. For Mach reflection simulations, the exit is sufficiently far downstream
so that the exit flow (in the streamtube downstream of the Mach stem) is supersonic. As
usual, an unsteady approach is used to converge to the steady-state solution, so we need
an initial condition. A uniform initial condition with the flow parameters set to the inlet
values is used, which is found to give RR in the RR domain, and MR in the MR domain.
Caution should be taken in the dual solution domain, if one wants to produce RR in one
computation and MR in another. If we want to display that a numerical solution with
RR is possible, then a uniform initial condition is given. If we want to demonstrate that
a numerical solution with MR is possible, then the initial condition can be set as the
converged numerical solution corresponding to a smaller inflow Mach number above the
detachment condition.

To see how the numerical results are dependent on the grid density, we consider M0 = 4,
θw = 30◦ and g = 0.675 and test four grids: grid A has 380 × 180 points, grid B has
760 × 360 points, grid C has 1520 × 720 points, and grid D has 2280 × 1080 points.
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Grid Hm/HA Relative error (%)

A 0.07815 18.16
B 0.08772 8.14
C 0.09345 2.13
D 0.09549 0

Table 2. Mach stem heights for various grid densities.

A grid density like grid A has been considered suitable for Mach stem height study without
interaction (cf. Gao & Wu 2010). Below, we will see that this is not the case when there is
interaction.

The role of grid density is seen from the Mach stem heights. Table 2 displays the Mach
stem heights on the four grids. It is seen that the Mach stem heights with grids C and D are
very close, so the solution with grid D may be considered as a reference result. Compared
to this reference result, grid A has an error close to 19 %, and for grid B, which is two
times finer than grid A, the error is reduced almost two times. Grid C, which is two times
finer than grid B, has an error of about 2 %.

In summary, the grid density usually used for free Mach reflection has a large error for
the present problem with interaction. A much finer grid, like grid C or grid D, should be
used for accurate prediction. In this paper, we will use a grid as dense as grid C. Moreover,
along the Mach stem we use 80 points between the reflecting surface and the triple point,
to resolve the Mach stem. The total number of grid points in the vertical direction is about
1000.

A.2. An algorithm for the shape of the incident shock
Consider a typical characteristic RQ as shown in figure 3. Point P also is on the
cut-streamline that separates the TE expansion fan into an upper region and a lower region.
According to figure 2(a), the Mach number inside the TE expansion fan is seriously
perturbed by interaction only in this lower region. Thus the characteristics in the upper
region can be treated as simple waves and those in the lower region can be treated using
the method of characteristics for rotational flow. To do this, we first need the shape of
the cut-streamline. Note that Liepmann & Roshko (1957) asked readers to do a homework
exercise to find this shape, and the algorithm given below would be different from what
they envisaged.

For a variation dθR of the flow deflection angle θR inside the TE expansion fan,
starting from θw, the variations of the parameters MR, pR and ρR are obtained from the
well-known isentropic Mach wave relations, which can be found in classical textbooks for
gas dynamics. The coordinates of P, with θP = θR, on the cut-streamline are then solved
using ⎧⎨

⎩
dyP

dxP
= − tan θP (P is on the streamline),

yP − yR = −(xP − xR) tan(θP + μP) (P is on PR),
(A5)

where μP = sin(1/MP) with MP related to θP through the Prandtl–Meyer relation
ν(MP) − ν(M1) = θw − θP, ν(M) being the well-known Prandtl–Meyer function.
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The coordinates of Q are related to the shock angle βQ by dyQ = − tan βQ dxQ, where
βQ is the shock angle at point Q. To determine βQ we need the downstream flow conditions
at point Q. The required downstream conditions here are the pressure pQ and the flow
deflection angle θQ, which will be related to the pressure pP and flow deflection angle θP
using the relations along the characteristic PQ. According to figure 2(a) and according to
the numerical result for θ not shown here, both p and θ have little variation along PQ, so
that the first-order approximation

θP − θQ = ΦSQ( pQ − pP) (A6)

can be used to approximate the compatibility relation for C− (see (A1a,b)). Here, ΦSQ can
be approximated by using the averaged values at points P and Q. The use of the oblique
shock relations gives another expression for θQ and pQ:

pQ = p0 fp(M0, βQ), θQ = fβ(M0, βQ). (A7)

For any given θP = θR, expressions (A6) and (A7) define a closed set of relations
for θQ, βQ and pQ. The density and Mach number at point Q are then computed
as ρQ = ρ0 fρ(M0, βQ) and MQ = fM(M0, βQ). The Mach angle is computed as μQ =
arcsin M−1

Q .
The coordinates of Q are then related to the coordinates of P through the characteristic

line dy/dx = tan δ, where δ = −θ − μ is the slope of PQ. Since the variation of this slope
along PQ is small according to figure 2, the second-order curve approximation (A3) is
used to establish a relation between P and Q, giving

yQ − yP = (xQ − xP) tan Λ(δ1, δ2), (A8)

where δ1 = −(θP + μP) and δ2 = −(θQ + μQ). Combining dyQ = − tan βQ dxQ and the
differential form of (A8) gives dxQ = ZQ and dyQ = −ZQ tan βQ, where

ZQ = tan Λ dxP − dyP − (xQ − xP)(Λδ1dδ1 + Λδ2dδ2) cos−2 Λ

tan βQ + tan Λ
. (A9)

Here, Λδ1 and Λδ2 denote derivatives of Λ with respect to δ1 and δ2.
Now we outline the algorithm for the shape of the incident shock. Let M0 and θw and

g be provided. Without loss of generality, we set HA = 1, p0 = 1 and ρ0 = 1. Then h =
gHA = g, w = (HA − h)/sin θw, xR = w cos θw and yR = h. The parameters β01, M1, p1
and ρ1 in the unperturbed region (1) are obtained using the oblique shock-wave relations.
Put μ1 = arcsin(1/M1). Compute xI and yI (see (2.1a,b)).

Step 1. Start from θP = θw, set xQ = xI , yQ = yI , θQ = θP, MP = M1, pP = p1, ρP = ρ1
and μP = μQ = arcsin(1/M1).

Step 2. For any θP = θP + dθP, first solve the isentropic Mach wave relations for MP, pP
and μP (and thus dμP), then use (A5) for xP and yP.

Step 3. Solve (A6) and (A7) for θQ, pQ and βQ and use shock relations for ρQ and MQ.
Step 4. Solve dxQ = ZQ and dyQ = −ZQ tan βQ for dxQ and dyQ, and set xQ = xQ + dxQ

and yQ = yQ + dyQ.

A.3. Method to find the upstream conditions of the reflected shock wave
Consider the upstream conditions of any point f on the reflected shock (see figure 13
for notation). The superscript (u) is used to denote flow parameters just upstream of the
reflected shock.
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Incident shock–wedge TE expansion fan interaction

The upstream conditions are first linked to the conditions at point S through the
compatibility relation along the characteristic line Sf (which belongs to C−), with S = e if
f is on the left of F and S = R if f is on the right of F. Like (A6), the compatibility relation
for Sf is approximated as

θ
(u)
f − θS = ΦSf ( pS − p(u)

f ), (A10)

which defines one relation for θ
(u)
f and p(u)

f . The upstream conditions are then linked to
the conditions at point Q on the incident shock, through the two compatibility relations
(A2a,b) along the streamline Qf (which belongs to C0), and these two relations can be
solved to give one relation for M(u)

f and p(u)
f :

ϑ(M(u)
f )γ /(γ−1)p(u)

f = ϑ(MQ)γ /(γ−1)pQ. (A11)

Though pQ and MQ are known from the solution of the shape of the incident shock
(Appendix A.2), a connection between the positions of point f and point Q is needed
in order to apply (A11). Now we provide a simple way to make this connection. In an
unperturbed expansion fan, the mass flux q(θz) in a tube bounded by a streamline and the
expansion corner is obviously constant. At any point z, with a distance rz to this corner,
this mass flux is

q(θz) = ρzVzrz sin μz, (A12)

where ρz, Vz and μz are functions of θ = θz according to the well-known Prandtl–Meyer
relation.

Now, in the rotational flow region IFT shown in figure 13, the expansion fan is perturbed
by the entropy layers and reflected waves from the segment IT of the incident shock, so that
(A12) no longer holds exactly. However, just to obtain a connection between points f and
Q, (A12) may be used as an approximation. The positions of points f and Q, in terms of θ ,
can then be connected through q(θQ) = q(θ

(u)
f ), where q(θ

(u)
f ) = ρRVRrf sin μR. The value

of q(θQ) at any point Q is then determined by q(θQ) = q(θ
(u)
f ). Since the values of ρQ, pQ,

MQ, μQ and rQ at any point θQ have been solved in the algorithm for the shape of the
incident shock, the value θQ can then be solved from ρQVQrQ sin μQ = q(θQ) = q(θ

(u)
f ).

Now we have just two expressions (A10) and (A11) for the three unknowns M(u)
f , p(u)

f

and θ
(u)
f . If S is R, then we set pS = pR and θS = θR and use (A11) for M(u)

f . For the case
where S is e, one may expect to use the compatibility relation −dθ + Φ( p, M)dp = 0
along Q′f (which belongs to C+) to have an additional relation for θ

(u)
f and p(u)

f . However,
both θ and p vary significantly along C+, so that an approximation like (A10) does not
hold. However, since upstream of the reflected shock both θ and p change very little along
C− (see § 3.1), we may simply use p(u)

f ≈ pS and θ
(u)
f ≈ θS. The expression (A11) is then

used for M(u)
f .

A.4. Model for the reflected shock, transmitted expansion waves and shape of the slipline
We use superscript (d) to denote flow parameters downstream of the reflected shock. At
any point f on the reflected shock (see figure 13 for notation), the upstream flow parameters
(dM(u)

f , dp(u)
f and dθ

(u)
f ) are obtained using the algorithm in Appendix A.3.
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C.-Y. Bai

Across the transmitted Mach wave of an upstream discrete Mach wave, the pressure
increment dp(d)

f is related to the flow angle increment dθ
(d)
f by the isentropic Mach wave

relation for pressure. Across the reflected shock, we have the same increments dp(d)
f and

dθ
(d)
f due to pressure balance and flow stream parallelism in type I interaction. The shock

relations θ
(u)
f − θ

(d)
f = fβ(M(u)

f , βf ) and p(d)
f = p(u)

f (M(u)
f , βf ), after differentiation, thus

provide another relation for dp(d)
f and dθ

(d)
f . Combining these two relations for dp(d)

f and

dθ
(d)
f gives dp(d)

f and dθ
(d)
f , and using θ

(u)
f − θ

(d)
f = fβ(M(u)

f , βf ) again gives an expression
for dβf . The coordinates of f then follow from dyf /dxf = tan βf and yf − ye = (xf −
xe)Λ(δ1, δ2), where Λ is defined by (A4) and δ1 = −θe − μe and δ2 = −θ

(u)
f − μ

(u)
f . The

resulting expressions for the shape and flow parameters of the reflected shock thus obtained
are the same as in Bai & Wu (2017) for free Mach reflection and thus not provided here.

Like (A8), for the transmitted Mach wave fc (see figure 13 for notation) we use

yc − yf = (xc − xf )Λ(δ1, δ2) (A13)

with δ1 = −(θ
(d)
f + μ

(d)
f ) and δ2 = −(θc + μc). Here θ

(d)
f and μ

(d)
f are already known

from the algorithm for the shape of the reflected shock, and θc and μc are to be determined
from the shape expression of the slipline, to be discussed below.

Like (A6), the compatibility relation along fc (which belongs to C−) is approximated by

θ
(d)
f − θc = Φfc(pc − p(d)

f ). (A14)

As previously, the pressure pc is assumed to be balanced with the averaged pressure of the
quasi-one-dimensional flow duct below the slipline (Bai & Wu 2017), so

yc

HT
= Mm

Ms

(
ϑ(Ms)

ϑ(Mm)

)(γ+1)/2(γ−1)

and
pc

pm
=

(
ϑ(Mm)

ϑ(Ms)

)γ /(γ−1)

(A15a,b)

if the isentropic quasi-one-dimensional flow model is assumed. Here, Ms is the averaged
Mach number of the duct, and the subscript m denotes the value just downstream of the
Mach stem (see Li & Ben-Dor (1997) for an evaluation of these initial values).

The Mach number Mc required to evaluate μc (which is needed in computing δ2 in
(A13)) is given by applying the compatibility relation (A11) along the streamline (which
belongs to C0):

ϑ(Mc)
γ /(γ−1)pc = ϑ(M(T)

2 )γ /(γ−1)p(T)
2 . (A16)

We thus have the five expressions (A13)–(A16), for the six unknowns Mc, pc, θc, Ms, xc
and yc. The remaining expression is dyc = − tan θc dxc. Note that the algorithm here also
provides the Mach numbers below and above the slipline, which are needed in the global
solution algorithm presented below.

A.5. Global solution procedure for the Mach stem height
The parameters M0, θw and g are given as input. Without loss of generality, we set HA = 1,
p0 = 1 and ρ0 = 1. Like in the algorithm for point Q (see Appendix A.2), use h = gHA =
g for h, use h = HA − w sin θw for w, use xR = w cos θw and yR = h for xR and yR, use the
oblique shock-wave relations to get β01, M1, p1 and ρ1 (flow parameters in the unperturbed
region (1)), put μ1 = arcsin(1/M1) and compute xI and yI by (2.1a,b).
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Incident shock–wedge TE expansion fan interaction

Step 1. Set an initial guess θD = θw (θD is the flow deflection angle at DT shown in
figure 11).

Step 2. The algorithm for the shape of the incident shock given in Appendix A.2 is
solved for xQ, yQ, θQ and βQ up to θP = θD. Set xT = xQ and yT = yQ.

Step 3. Solve the triple-point relations to get θ
(T)
s , β

(T)
12 , θ

(T)
2 , θ

(T)
s , M(T)

k , p(T)
k and ρ

(T)
k

(k = 1, 2, 3), using β
(T)
01 = βQ or θ

(T)
01 = θQ.

Step 4. Solve the algorithm presented in Appendix A.3 for the upstream flow conditions
of the reflected shock.

Step 5. Solve the algorithm presented in Appendix A.4 for the shape of the reflected
shock, transmitted expansion waves and slipline. This gives xf , yf , θ

(d)
f , p(d)

f , M(d)
f , xc, yc,

θc, pc and Mc at any θ = θ
(u)
f .

Step 6. Record the sonic throat location xc at which Ms = M∗
s = 1. At this xc, if θc(x) =

0, then the sonic throat compatibility condition (Bai & Wu 2017) is met and the choice
of θD is correct; if θc(x) /= 0, then the value of θD should be updated by θD = θD + dθD
(using for instance bisection) and go back to step 2.

Once the solution is converged, the Mach stem height is set to be HT = yT .
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