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Abstract

Rhabdias are lung-dwelling parasites of anurans and some reptiles. Currently, 93 species are
known to exist worldwide. The identification of Rhabdias species is based mainly on morpho-
logical traits of hermaphroditic females that generally have a very conserved morphology.
However, different approaches, such as the combination of morphological, molecular, and
ecological data, have provided advances in identifying and delimiting rhabdiasid species. Here,
we describe a new species of Rhabdias from the south of Brazil, with morphological and
molecular data. The new species is distinguished from its congeners by having an elongated
body, evident cephalic dilation, larger buccal capsule, and large esophagus. In addition to
morphological characteristics, we observed significant genetic divergence among the cyto-
chrome oxidase subunit I (COI) sequence of the new species and the closest available sequence,
Rhabdias fuelleborni (10.24%–10.87%). Furthermore, phylogenetic reconstructions based on the
COI gene indicated that the new species represents a different lineage, constituting an outgroup
of the species complexes Rhabdias cf. stenocephala and Rhabdias fuelleborniwith Rhabdias sp. 4.
Thus, Rhabdias megacephala is the 24th nominal species of the Neotropical region, the 14th
Brazilian, and the fourth species described from south of Brazil.

Introduction

Rhabdias Stiles and Hassall, 1905 are lung-dwelling parasites of amphibians and some reptiles
(Kuzmin et al. 2007, 2016), distributed worldwide, except for Antarctica (Kuzmin et al. 2003,
2022). The genus is composed of 93 species, with 23 found parasitising Neotropical hosts
(Marcaida et al. 2022; Müller et al. 2023; Alcantara et al. 2023). In Brazil, 13 species of Rhabdias
have been reported (da Silva et al. 2013; Alcantara et al. 2023), which is a low number when
compared with the diversity of known anurans for the region (Santos-Pereira et al. 2018).

Rhabdias species are very similar morphologically, and most species’ descriptions are based
mainly on morphological characteristics. Thus, the current identification and delimitation of
species is still an issue, making taxonomic resolution difficult in most species inventories and
ecological studies (Kuzmin 2013; Tavares-Costa et al. 2022). However, different approaches,
combining morphological and molecular analyses, have contributed to the recognition and
identification of new species (Langford & Janovy 2013; Tkach et al. 2014; Müller et al. 2018).
These studies point to the taxonomy of Rhabdias lungworms as a rising venue for research that
may preclude understanding of the diversification and phylogeography of such a fascinating
group of organisms.

Proceratophrys boiei Wied-Neuwied, 1824 is a medium-sized, nocturnal, and terrestrial
anuran, found in the leaf litter of primary and secondary forests and also in degraded areas
(Prado & Pombal Jr. 2008). This species is endemic in the Brazilian Atlantic Forest, occurring
from southern Espírito Santo, southern and western Rio de Janeiro state into south São Paulo,
and eastern Paraná to eastern Santa Catarina (Frost 2024). Until now, six species of helminth
parasites are known for Proceratophrys boiei: Aplectana delirae (Fabio, 1971); Cosmocerca parva
Travassos 1925; Oxyascaris oxyascaris Travassos, 1920; Physaloptera sp.; Centrorhynchidae gen.
sp.; and Physalopteridae gen. sp.1 (Klaion et al. 2011; Campião et al. 2014; Euclydes et al. 2022).

Euclydes et al. (2021) reported a species of Rhabdias parasitising P. boiei that did not
correspond to any known congeneric species. Thus, based on this material, we describe a new
species of Rhabdias found in Proceratophrys boiei based on morphological, molecular, and
phylogenetic data using the cytochrome oxidase subunit I (COI) DNA sequences of the
mitochondrial DNA.
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Material and methods

Host sampling, parasite collection, and identification

Between October 2018 and January 2019, 27 individuals of
Proceratophrys boiei were collected in Marumbi State Park,
municipality of Piraquara, Paraná State, Brazil (Mananciais da
Serra - 25°30’22 “S; 45°01’41”W) (Euclydes et al. 2021). The Mar-
umbi State Park features a subtropical climate composed of forests
with typical Atlantic Forest formations, consisting mainly of Arau-
caria angustifolia, the dominant tree species that characterises this
type of forest (Reginato & Goldenberg 2007; Bergamini & Thomas
2011). The anurans were euthanised with lidocaine (4%) topically
applied, and then the specimens were necropsied by a longitudinal
incision in the anteroposterior axis on the ventral region of
the body.

The hosts’ lungs were examined, and nematodes found were
rinsed in saline solution, heat-killed, and stored in 70% alcohol for
morphological identification. Some specimens were preserved
in 100% alcohol for molecular analysis. For morphological analysis,
the nematodes were rehydrated in distilled water, cleared in lacto-
phenol, mounted on temporary slides, and examined under an
Olympus BX41 microscope coupled with a drawing tube. We also
analysed themorphology of the apical region of the anterior end, by
manual sections using a razor blade, and posterior end face obser-
vations. Taxonomic illustrations were made using line drawings
handmade and posteriorly prepared in CorelDraw 2018 (Corel
Corporation, Ottawa, Ontario, Canada) and processed with Photo-
shop Version 21.0.2 (Adobe Systems Incorporated, San Jose, Cali-
fornia, USA).

Specimen measurements are presented as the values of the
holotype followed by the mean and range for the entire type series,
with both values in parentheses (reported in micrometers unless
otherwise indicated). We deposited the type series of the new
species in the invertebrate collection of the Federal University of
Paraná (Accession numbers: DZUP 541909–541913).

Molecular and phylogenetic analysis

The specimens preserved in absolute alcohol were sectioned in the
anterior end (close to the esophagus–intestinal junction) and just
after the posterior portion of the female reproductive system. The
anterior and posterior parts were stored in absolute alcohol and
deposited as the hologenophore (see Pleijel et al. 2008) in the
parasitological section of the invertebrate collection of the Federal
University of Paraná.

We performed DNA extraction from the middle part of the
parasite body using the Wizard® Genomic DNA extraction kit
(Promega, Madison, Wisconsin, USA), following the manufactur-
er’s instructions. Then, the extracted DNA was submitted to a
conventional polymer chain reaction (PCR) with previously
designed primers (LCO1490/Foward - 5’ GGTCAACAAATCA-
TAAAGATATTGG 3’ and HC02198/Reverse - 5’ TAAACTT-
CAGGGTGACCAAAA 3’) (described by Folmer et al. 1994), and
analysis of these amplified fragments was performed using 0.75%
agarose gel electrophoresis. The fragments were visualised with
ultraviolet light, and the corresponding fragments were cut and
purified with the PureLink™ Quick Gel Extraction and PCR Puri-
fication Combo Kit (Thermofisher, Waltham, Massachusetts,
USA). After purification, the samples were submitted to PCR for
sequencing, using BigDye™ Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems, Warrington, UK). These samples were

analysed by an ABI PRISM 3500 Genetic Analyser sequencer
(Thermo Fisher Scientific [Applied Biosystems], Waltham, Massa-
chusetts, USA).

The obtained sequences were analysed and assembled in
FinchTV Version 1.4.0 software (Geospiza [agora parte da Perki-
nElmer], Waltham, Massachusetts, USA). A search was carried out
in Nucleotide Basic Local Alignment Search Tool (BLASTn) using
the sequence obtained to investigate the existence of similar
sequences in the National Center for Biotechnology Information
(NCBI) database, considering only sequences with more than 90%
similarity. Using the default parameters, we aligned the sequences
inMAFFT v. 7 (Katoh& Standley 2013).We cut the alignment ends
and checked the stop codons in Geneious V.4.7 (Biomatters Ltd.
[agora parte da Dotmatics], Auckland, New Zealand). We evalu-
ated the substitution saturation with the Iss index by testing the
alignment data in DAMBE 7.3.32 software (Xia 2018). We calcu-
lated the number of base substitutions between sequences. For
analyses calculating estimates and standard errors, we used the
Kimura 2-parameter model with the MEGA 11 software package
(Kimura 1980; Tamura et al. 2021).

For phylogenetic analysis, we ran our aligned matrix using
jModelTest 2.1.10 software (Posada 2008). The evolution model
selected was GTR + I + G according to the Akaike information
criterion (AIC). We performed phylogenetic reconstructions
using maximum likelihood (ML) in IQ-Tree software (Minh
et al. 2020) and Bayesian inference (BI) using MrBayes 3.2.7
(Ronquist et al. 2003).

The ML inference used support values of 1000 repetitions
(bootstrap), and only nodes with bootstrap values greater than 70%
were considered supported. BI was performed using the Markov
chainMonte Carlo (MCMC) search, with the following parameters:
lset nst = 6, rate = invgamma, ngammacat = 4. Chains with
50,000,000 generations were executed, saving only 1,000 gener-
ations. On the burn-in of the first 25% of the generations, only
nodes with posterior probability greater than 90% were considered
well supported. As an outgroup, we chose Serpentirhabdias viper-
idicus Morais, Aguiar, Muller, Narciso, Silva and Silva, 2017
(KX350054), as has been used in other studies (Müller et al. 2018;
Willkens et al. 2020; Alcantara et al. 2023). We used FigTree v1.4.4
(Rambaut 2009) and Adobe Illustrator (Adobe Systems Incorpor-
ated) to visualise and edit the trees.

Results

Systematics

Family: Rhabdiasidae Railliet, 1915
Genus: Rhabdias Stiles and Hassall, 1905
Species: Rhabdias megacephala n. sp. Euclydes, Melo & Cam-

pião, 2024

Taxonomic Summary

Type host: Proceratophrys boiei (Wied-Neuwied, 1824) (Amphibia:
Odontophrynidae).

Type locality: Pico Marumbi State Park (Mananciais da Serra),
Piraquara, Paraná, Brazil (25°29’23” S; 48°58’37” W).

Site of infection: Lungs
Numbers of specimens/hosts, prevalence, mean infection inten-

sity and range: 87 nematodes were found in 27 frogs, P = 66.6%; 3.2
(1–14).
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Type material: Holotype (DZUP: 541909) and seven paratypes
(DZUP: 541910-541913) were deposited in the invertebrate collec-
tion of the Federal University of Paraná.

GenBank, accession numbers: PP291576
ZooBank Registration: The Life Science Identifier for

R. megacephala n. sp. is urn:lsid:zoobank.org:pub:C18FED99-
0255-412A-AE0C-4A308282D919.

Etymology

The specific name megacephala refers to the new species’ highly
distinguishing morphological feature, namely the prominent
cuticular inflation around the cephalic end.

Description

See Figure 1 and Figure 2 (based on holotype and seven paratypes,
all gravid hermaphrodites). Body slender, long, 9.7 (9.1; 8.1–9.9)
mm in length. Body surface covered by apparent cuticular inflation
in anterior and posterior regions, discrete along entire body. Very
prominent cuticular inflation in cephalic region 503 (508; 466–570)
in width. Cephalic inflation rounded, terminating at its connection

to body wall at level of shoulder-like broadening of the body.
Cuticular inflation close to shoulder-like broadening with two to
three cuticular folds. Lateral pores arranged in two lines along
cuticular inflation, connected by ducts with body wall. Cuticular
inflation of tail prominent, with one large fold posterior to anus
aperture, with second large fold reaching mid-length of tail and
followed by minor folds decreasing in size. Body width at vulva
502 (513.8; 416–623), at esophagus–intestine junction 355 (359.8;
280–465). Oral opening with four enlarged and equidistant lips,
situated very close to oral opening; each lip with terminal papilla on
its inner edge; two amphids located laterally at some distance from
oral opening. Vestibule circular in apical view, with narrow lumen.
Buccal capsule cup-shaped 23 (15.2; 11–23) deep and 22 (26.3; 22–
34) wide, with 1.04 (0.58; 0.46–1.04) depth/width ratio. Buccal
capsule walls consisting of anterior part, with irregular internal
surface and posterior one with smooth internal wall. Buccal capsule
close to entrance of esophageal lumen with serrated surface.
Entrance of esophagus lumen triangular, with serrated edges and
esophageal gland located in dorsal region. Esophagus length
683 (722; 630–799), representing 7% (7.9%; 7–9%) of total body
length; claviform, rounded apex, and dilation at anterior muscular
region. Width of anterior end of esophagus 78 (73.7; 60–88), width

Figure 1. Line drawings of Rhabdiasmegacephala n. sp. from Proceratophrys boiei. A) Entire body, lateral view; B) Anterior end of the body, lateral view; C) Vulva region, lateral view;
D) Caudal end, lateral view.
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of anterior dilatation of esophagus 75 (75.7; 60–91), width posterior
dilation of the esophagus 98 (98; 83–112), width of bulb 162 (154.8;
124–176). Nerve ring around esophagus after anterior dilatation at
152 (297.7; 152–503) from anterior region. Excretory pore not
observed. Intestine thick-walled. Rectum short, funnel-shaped,
lined with cuticle. Contents of intestine brown throughout length.
Genital system amphidelphic, transverse vagina, slightly pos-
equatorial vulva located 5.1 (4.7; 4.2–5.2) mm from anterior end,
representing 52.2% (51.2%; 45.2–53.6%) of total body length. Uteri
with thin walls and numerous eggs (>100), with larvated eggs close
to the vulva. Egg size 103 (104.2; 86–114) x 51 (52.8; 40–61) (total of
24 eggs; three eggs measured in each holotype and paratypes). Tail
293 (287.6; 244–338), representing 3% (3.1%; 2.6–3.8%) of body.
Phasmid were not observed.

Remarks

Rhabdias megacephala n. sp. belongs to the genusRhabdias because
it has the following morphological characteristics: buccal capsule,
inflated external cuticle, amphidelphic genital system, conical tail,
and it is a parasite of the lungs of an anuran (Kuzmin et al. 2007;
Müller et al. 2018; Tavares-Costa et al. 2022). Rhabdias megace-
phala n. sp. has a unique set of morphological characters: a prom-
inent cephalic cuticular dilatation, distinct from the other species,
position of the nerve ring located at the anterior end of the esopha-
gus, depth and diameter of the buccal capsule, and length of the
esophagus.

The morphology of the apical region of Rhabdias spp. and the
host biogeographical distribution are helpful in species differen-
tiation. Rhabdias megacephala presents an oral opening sur-
rounded by four lips, similar to Rhabdias leonae Martínez-
Salazar, 2006 and Rhabdias savagei Bursey & Goldberg, 2005
found in the Neotropical region. Rhabdias leonae is found in the
lizard Anolis megapholidotus Smyth, 1933 from Mexico and dif-
fers from R. megacephala n. sp. by having a deeper buccal capsule
(R. leonae 23–34 vs. R. megacephala n. sp. 11–23) and smaller
width (R. leonae 11–19 vs. R. megacephala n. sp. 22–34)
(Martínez-Salazar 2006).

Rhabdias savagei described in Rana cf. forreri collected in Costa
Rica (Boulenger, 1883), despite having four lips like R. megacephala
n. sp., differs by having amuch smaller body (R. savagei 4.2–5.3mm
vs. R. megacephala n. sp. 8.1–9.9 mm). Additionally, its buccal
capsule is also smaller (R. savagei 18–24 x 12–18 vs.
R. megacephala n. sp. 22–34 x 11–23) (Bursey & Goldberg 2005).

Rhabdias hermaphrodita Kloss, 1971, is a Neotropical species
that has no information regarding its oral structures arrangement,
with scarce morphological information, mainly concerning the
presence/absence and arrangement of lips or pseudolabia.Rhabdias
hermaphrodita was described in Rhinella crucifer (Wied-Neuwied,
1821). Some morphological measurements can be compared to
differentiate it from R. megacephala n. sp. For example, the body

can measure up to 12 mm, which is larger than that of
R. megacephala n. sp. (8.1–9.9 mm). The tail of R. hermaphrodita
is also larger, measuring up to 524, whereas R. megacephala n. sp. is
between 244–338. Rhabdias hermaphrodita has no evident dilata-
tion like R. megacephala n. sp. (Kloss 1971).

The most important characteristic of R. megacephala regarding
its prominent cephalic expansion is similar to R. androgyna
(R. megacephala n. sp. 466–570 vs. R. androgyna 273–706). Rhab-
dias androgyna Kloss, 1971 described in Rhinella gr. margaritifera
(Laurenti, 1768) is similar to R. megacephala n. sp. in the shape of
the cuticle dilation around the cephalic region. However,
R. androgyna differs fromR.megacephala n. sp. in having a cephalic
dilation that divides into outer and inner layers, whereas
R. megacephala n. sp. lacks this division and is formed by a single
layer. Additionally, R. androgyna exhibits a cephalic dilation more
oriented towards the apical region, while R. megacephala n. sp.
presents a distinctly rounded cephalic dilation. Moreover, for spe-
cies differentiation, we considered molecular data to make the
distinction more integrative, given the well-conserved morphology
of Rhabdias. (Kloss 1971).

Molecular analysis and phylogenetic study

We obtained a sequence of 630 base pairs from the COI of
R. megacephala n. sp. After comparing the new sequence with that
previously deposited in GenBank using BLASTn (available at
NCBI), we found no other sequence with 100% similarity. Genetic
distances indicated that R. megacephala n. sp. is closest to the
species Rhabdias fuelleborni (OP651882, OP651884) from Rhinella
diptycha and Rhinella icterica, Paraty, Brazil (Müller et al. 2023),
with a genetic divergence of 10.24% (see Supplementary Table S1).

After aligning our sequence and GenBank sequences, we
obtained a database with 52 sequences of 380 base pairs in length
(supplementary material). The Iss index indicated no saturation in
transitions or transversions and Iss.c values were greater than Iss
values. The phylogenetic inferences of maximum likelihood and
Bayesian inference showed similar topologies, as did the bootstrap
support values (B) and posterior probability (PP). The
R. megacephala n. sp. sequence is grouped with species complex
Rhabdias cf. stenocephala (MH548271–MH548277) and the species
complex formed by R. fuelleborni (OP651882–OP651884,
OP654198) and Rhabdias sp. 4 (MH548291–MH548292), repre-
senting an outgroup of this clade formed by the two species com-
plex (supplementary Figure S1). The phylogenetic position of
R. megacephala n. sp. was not well supported by the values of B
(58) and PP (56). However, we found otherwell-supported lineages:
R. matogrossensis + R. breviensis species complex, R. fuelleborni +
Rhabdias sp. 4, R. waiapi + Rhabdias sp. 5 and t
R. pseudosphaerocephala species complex, which indicates that
more data are needed for a robust phylogenetic hypothesis.

Figure 2. Line drawings of cross sections of anterior end and face view of Rhabdias megacephala n. sp. from Proceratophrys boiei. A) Anterior extremity end face view; B) Optical
section through anterior part of buccal capsule; C) Optical section through posterior part of buccal capsule.
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Discussion

Rhabdias megacephala n. sp. is the 24th species of Rhabdias from
the Neotropical region. The new species is distinguished mainly by
evident cephalic dilatation and size of the buccal capsule. Charac-
teristics of apical structures arrangement ofRhabdias are important
for species differentiation, such as the presence/absence of lips or
pseudolabia, as well as the arrangement of these structures
(Travassos 1930; Kuzmin et al. 2007; Tkach et al. 2014). Species
from the Neotropical region can be split into three different groups
based on the arrangement of apical structures: without lips or
pseudolabia, with four submedial lips and two lateral pseudolabia,
and with six lips (Tkach et al. 2014; Müller et al. 2018).

Bursey and Goldberg (2005) identified a group of Rhabdias
characterised by having four lips, of which only two species, Rhab-
dias leonae and Rhabdias savagei, have been described in the
Neotropical region. Rhabdias megacephala n. sp. shares this dis-
tinctive feature, marking the third Neotropical species exhibiting
the presence of these four lips. However, it differs in having a
circular shaped vestibule in apical view, which does not have
papillae around the oral opening. Another feature used in distin-
guishing species of the genus is the external cuticular inflation
(Müller et al. 2023).

The sequence of R. megacephala n. sp. showed a high degree of
divergence at 13.09% (11.9%) compared with the most divergent
species,R. cf. stenocephala, and comparedwith the other 52 sequences
(12 species) analysed (see Supplementary Table S1). Available phy-
logenies of Rhabdias have been proposed based on short sequences of
the COI gene, and in this paper, we used a similar analysis.
(Supplementary Figure S1) (Morais et al. 2020; Tavares-Costa et al.
2022). In fact, in phylogenetic inferences, R. megacephala n. sp.
remained, with low support, as an outgroup of two clades formed
by the species complex Rhabdias cf. stenocephala and the species
R. fuelleborni andRhabdias sp. 4. This low supportmight be related to
the geographic distance between Rhabdias species and could also be a
consequence of using short COI sequences.

Willkens et al. (2020) pointed out that for species from Brazil,
more than geographical distance is needed to explain the high
divergence in the sequences and, consequently, in the absence of
phylogenetic support. However, one hypothesis for the high diver-
gence of R. megacephala n. sp. from the other species from Brazil is
the fragmentation of the Pan-Amazonian area in the early Pleisto-
cene (Hoorn et al. 2010; Sobral-Souza et al. 2015; Tavares-Costa
et al. 2022). Pan-Amazonian fragmentation may have caused spe-
cies to suffer different selective pressures according to the biome
they were exposed to, with enough time to distance Rhabdias
species, thereby forming a phylogenetic gap. Additional molecular
sequences are necessary for more robust phylogenetic hypotheses,
ideally with a larger number of base pairs. Furthermore, increased
specimen collections from a broader range of locations are also
essential.

The differentiation of species, as observed in Rhabdias, is a
complex phenomenon that can occur through various processes.
These processes involve intrinsic characteristics of the species itself
or factors related to the hosts. Numerous studies have been dedi-
cated to investigating these mechanisms, including morphological
traits, genetic divergence, ecological adaptations, and functional
characteristics of the parasite, providing a comprehensive under-
standing of parasite diversity and the elements influencing it
(Poulin 2011; Kamiya et al. 2014). This pursuit is particularly
crucial in the context of species descriptions, wherein unraveling

the intricacies of differentiation processes contributes to the
broader scientific knowledge of parasitology.

Rhabdias species occur onmost continents, except Antarctica,
and the distribution of these parasites is limited by the distribu-
tion of the hosts, both anurans and reptiles (Tkach et al. 2014;
Kuzmin et al. 2015). In South America, Rhabdias species are
known for more than 22 host species (Campião et al. 2014;
Alcantara et al. 2023; Müller et al. 2023). Among the diversity
of anuran parasites, 13 nominal species of the family Rhabdiasi-
dae are known in Brazil (Alcantara et al. 2023; Müller et al. 2023).
However, when we consider the diversity of Proceratophrys spe-
cies (43 species) and of anurans known in Brazil (1,252 species),
the diversity of Rhabdias is still poorly understood (Frost 2024),
for P. boiei, in addition to the record of R. megacephala n. sp., had
been reported as host to an unidentified species of Rhabdias
(Rhabdias sp.) (Aguiar et al. 2018).

Rhabdias species are also known in other species of Procera-
tophrys: R. androgyna has been reported for Proceratophrys tupi-
namba (Boquimpani-Freitas et al. 2001; Prado & Pombal Jr. 2008).
Other unidentified Rhabdias spp. have been reported in Procera-
tophrys aridus and Proceratophrys mantiqueira (Almeida-Santos
2017; Teles et al. 2017; Müller et al. 2018). Given the description of
R. megacephala n. sp., in comparison with other as yet undescribed
species, there arises curiosity in understanding its distribution.
Could R. megacephala n. sp. be endemic, or might the undescribed
species actually be R. megacephala n. sp.? Aspects such as pheno-
typic similarities, habitat sharing, exposure to the same infective
stages, and phylogenetically conserved resources among hosts may
influence the exchange or sharing of different hosts (Fecchio et al.
2019; D’Bastiani et al. 2020; Euclydes et al. 2022).

Knowledge of Rhabdias species diversity has increased, espe-
cially in recent years with species description, phylogenetic, and
geographic studies (Müller et al. 2018; Tavares-Costa et al. 2022;
Alcantara et al. 2023). Most species have been observed in the
North and Midwest regions of Brazil, mainly in the Amazon
region (seven species) (Willkens et al. 2020; Tavares-Costa et al.
2022; Müller et al. 2023;). Knowledge of this group of parasites in
these localities may be due to a greater study effort. In the Atlantic
Forest, studies show how significant the parasitic diversity of
anurans is, but knowledge of the diversity of Rhabdias species is
still underestimated (Martins-Sobrinho et al. 2017; Euclydes et al.
2021). We describe the 24th species of Rhabdias, the first species
documented in Paraná. Rhabdias megacephala n. sp. is also the
first described species in P. boiei. Discovering parasites such as
Rhabdias is fundamental to unveiling ecosystem diversity, species
evolution, and host–parasite relationships to understand more
about the evolutionary history of this cosmopolitan group preva-
lent among anurans.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0022149X24000385.
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