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Abstract We show that if n X G -»£ H is a bounded-to-1 factor map from an
irreducible shift of finite type 2 G with period pG to a shift of finite type 1H with
period pH, then there is a factor map TT X G - » 2 H that is (/>G//;H)-to-l almost
everywhere Moreover, if TT IS right closing, then TT may be taken to be right closing
also

1 Introduction
We prove the following result

THEOREM 11 If n S G - » 2 H is a bounded-to-l factor map from an irreducible shift
of finite type S G with period pG to a shift of finite type ~LH with period pH, then there
is a factor map -rr £ O H > £ H that is ( P G / P H ) - ' ° - 1 almost everywhere Moreover, if n
is right closing, then TT may be taken to be right closing also

In particular, if S G is aperiodic, then n S G - » 2 H is 1-to-l almost everywhere It
is easy to show that PG/PH IS the smallest possible degree of a factor map from a
shift of period pa to a shift of period pH

This result generalizes a result in [AGW] where the range shift is the full M-shift
As was pointed out to me by Bruce Kitchens and Brian Marcus, this result

simplifies the proof of the main theorem in [AM] that topological entropy and
period are a complete set of invariants for almost topological conjugacy

2 Background
We assume some familiarity with shifts of finite type § 3 of [AM] and § 2 of [BMT]
are good introductions We make some definitions here in order to establish notation

Given a strongly connected directed graph G with a finite set of states Sf and at
most one edge from any state to any other, we define the shift of finite type S G by

S G = {s e yz s,s,+ l is an edge in G for i € Z}

This definition follows [AM] rather than [BMT] In [BMT] the defining graph G
may have many parallel edges from one state to another, and the symbols in the
shift 2 G are the edges of G, not the states of G The definitions are equivalent up
to conjugacy
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The set 2 G is topologized by the product of the discrete topologies on its coordinate
spaces

The shift map er 2 G -» 2 G defined by

(trx),=x,+1

is a homeomorphism
The period of 2 G is the greatest common divisor of all cycle lengths in the graph G
Given a finite path of states s,s2 sk in the graph G, we denote

This set called a k-block of XG

Given y e 2 G , we denote the finite path y,y,+i y} in G by ,(>0j
A k-block map TT 2 G - » £ H IS a shift-commuting map such that there is some /

for which

In the 1-block case we require merely for notational convenience that / = 0 In the
1-block case we have

if yo = y'o

Thus n is defined by a map from single states of G to single states of H that we
again call IT In this case we say that a path of states s}s2 sk in G is ir-labelled
by 7r(s,)w(s2) 7r(st) = 7r(s,s2 •**)

A bounded-to-l factor map v XG-»XH is a fc-block map such that the set of
positive integers {#ir~\y) ye1H} is bounded from above

A 1-block map n 2G-»XH is right-closing if it never identifies two distinct left
asymptotic points if s, s'e1G have an /oeZ such that s, = sj for all /</ 0 and
TT(S) = TT(S') then s = s'

A 1-block map ir SG-»SH is right-resolving if for every path txt2 of length 2 in
H, and for every state 5, of G with TT(SX) = f,, there is a unique state s2 such that
sts2 is an edge of G and 77(s2)

 = h

3 Resolving blocks
If 7T 2 G -»2 H is bounded-to-l, then the minimum d of {#ir'1(y) y^H) is the
generic degree of IT except for a set of measure zero in 1O (with respect to the
measure of maximal entropy) TT IS a d-to-1 map [KMT] We call d the degree of
7r after [B]

The degree of a 1-block factor map IT X G - » 2 H IS the smallest integer d such
that there is a path m1m2 mk in the graph H, an integer /, 1 < /< /c, and a set
{r1, r2, , rd) of d states in the graph G such that every path sts2 sk in G with
7T(S,S2 -.$*) = m,m2 •• mk has «/€{/•', r2, , rd} [KMT] The path m,m2 mk

is a resolving block for the map ir We use the following construction from [KMT]
to reduce to a convenient special case of Theorem 1 1

Given a shift of finite type 2 H define the k-block presentation of 1.H to be the
shift of finite type 2[H] whose symbols are the paths of length k in H, with a transition
from symbol sts2 sk to symbol f, t2 tkifts2s3 sk = tlt2 Jk_, The/c-block
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Bounded-to-l factors of an aperiodic shift 617

map tj/k 2 H - » 2 [ H ] defined by mapping the path s,s2 sk in H to the symbol
sxs2 sk in S[H] is a conjugacy

Given a 1-block map IT ~La ~* S H and integers k and / with 1 s / < k, define the
shift of finite type Sj-'as follows The symbols to 2 c are the equivalence classes of
paths of length k in G where path sts2 sk is equivalent to s[s'2 s'k iff

(l) 7r(s,s2 sk) = ir(s\s'2 s'k)

and

(n) s, = s',

There is a transition in £ G ' from equivalence class s to equivalence class t iff there
is a path s,52 SJA+I in G such that s,52 sfc € s and s2s3 sfc+1 e / The fc-block
map (p^i £ G -» So' taking a path of length /c in G to the equivalence class containing
it is a conjugacy

Define the 1-block map irKI E G ' - > 2 [ H 3 by taking a symbol of £ G ' (which is an
equivalence class of paths of length k in G) to the common 7r-label of its elements

THEOREM 3 1 ([KMT]) The diagram

commutes Moreover, if mxm2 mk is a path in H that is a resolving block for IT,
and I, l < / < f c , is as in the definition of a resolving block, then mlm2 mk is a
resolving symbol for irkl

We also use the following lemma essentially contained in [KMT] regarding
bounded-to-l factor maps

PERMUTATION LEMMA 3 2 Let v 2 G - » S H be a degree d 1-block map with resolving
symbol m Let m\ m2, , md be the states in G with Tt(m') = m, 1 < i < d For each
path of the form mum in H, there are paths « ' , u2, ,ua in G and a permutation ru

of {1,2, , d} such that the paths of G Tr-labelled by mum are exactly m'u'mT"U),

4 Proof of the mam theorem
In case the entropy of 2 G is zero, 2 O and 1H each consist of a single finite orbit
and Theorem 1 1 holds trivially The rest of this section treats the positive entropy
case

We first reduce to a special case Suppose the given map TT 2 G -* 1H is a fc-block
map

As composition (on either side) with conjugacies preserves both degree and the
property of being right-closing, we can reduce to the case where IT 2 G - » 2 H

 JS a
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1-block map by replacing TT with ip ° it where

is the 1-block conjugacy mapping the word sls2 sk in 2 C to the symbol sk

Using Theorem 3 1, we further reduce to the case that IT J.C->1H IS a 1-block
map with a resolving symbol m We may assume, by increasing k in Theorem 3 1
if necessary, that the resolving symbol m in H has at least two incoming edges and
at least two outgoing edges in H The motive here will not become apparent until later

Assuming IT 2o-> 1H has degree exceeding PO/PH, we will construct a bounded-
to-1 factor map TT Z G - » 2 H that has lower degree than n Moreover if will be
right-closing if IT IS Since any factor map from 2 G to ~LH has degree at least PO/PH,

this will prove that there is a factor map from £ G to 1H with degree exactly PG/PH

First we construct TT and then show that it has the desired properties
If the graph G has period pa, then the states of G are partitioned into pG

equivalence classes ^ 0 , ^1, , ^Pc-i' w n e r e a state s is equivalent to a state t iff
there is a path sut in G with |u/| a multiple of pa

Let m1, m2, , md be the symbols in G with Tr(m') = m , l < i < d Since ~LH has
period pH, any cycle based at m has length a multiple of pH So we may assume
that all the symbols m\ m2, , md occur in the equivalence classes

Thus d objects are placed in PG/PH pigeon holes If we assume d> pG/PH, then
two of m1, m2, , md he in the same equivalence class We may assume these two
are m1 and m2 and that ml,m2e ^ 0

Fix No>0 such that for any 0<i,j<pa, any state s in <€, and any state t in %,
there is a path of length (j-i) + NopG from state 5 to state t

Let e2
e3 eL be a (possible empty) path in H such that me2e3 eL is a simple

cycle in H Denote m = e, Recall that m has at least two incoming and at least two
outgoing edges Choose states / and h in H so that mf and hm are edges of H not
occurring on the cycle exe2 eL

Choose an integer p such that pL+1 >/>G + 7V0/»G +1
By the Permutation Lemma 3 2 there is a path c,c2 cpL+|S0= « 0

 i n ^ W l t n

c, = m1 and with 7r-label (ele2 eL)peif Again by the permutation Lemma 3 2,
there is a state sN of G such that 5Nm' is an edge of G and TT(SN) = /i Similarly,
there is a state sN of G such that sNm2 is an edge of G and ir(sN) = h

Now SOG ^pt+i a n d sN, sN ec€-l (indices are modpG) Fix 70 with
70= - l - ( p L + l ) modpc and 0<Io<pa Set N = IO+N0po We may choose a
path so*i ' *N-I*N from state s0 to state sN and a path soi, 5N_,5N from state
s0 to state sN Denote s0 = *o By the choice of p, we have

pL+1 > p G + NopG +1 a /o+ NopG + 2 =

an inequality we will use in the proof of Lemma 4 1 below
Denote M = pL +1 + N + 2 and
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and

i=fj2 tM = (clc2 cft+i)(sos, sN)m2

Denote 7r(s,s2 sN_,) = g, 7J-(s,s2 sN_,) = g, and (e,e2 eL)pex = e Note that
ir{t) = efghm and v(t) = efghm Thus g ̂  g by Lemma 3 2

The paths t and F in G were chosen in part to make the following lemma true

LEMMA 4 1 The two paths v(t) = mvm = efghm and tr{t) = mvm = efghm in H non-
tnvially overlap each other or themselves only at their end symbols, m

Proof Say path u encroaches upon path w by n if u = u's, w = sw' and \s\ = n Since
the edge hm does not occur in the path e = (exe2 eL)pm, neither efghm nor efghm
can encroach upon itself or the other by any n with 2< n </>L+1 If />L + 2< n <
M - 1 , and one of efghm or efghm encroached upon the other by n, then the edge
mf would occur in the path e for the following reason Since \ghm\ = \ghm\ = N+1,
the edge mf would occur ending at position n — (N + l) in the encroached-upon
path But

which puts the edge mf m the path e Thus neither efghm nor efghm can encroach
upon itself or the other by any n with 2 s n < M - 1 Now efghm ^ efghm, so
neither can encroach upon the other by M Since \efghm\ = M, this proves the
lemma •

We define n 1G^1H as follows Let xe1a

If the block t occurs in x, say ,-M+i(x), — t, then

,_M+1(T?(X)), = ir(t) = mvm,

if the block t occurs in x, say ,_M+i(x)i = ', then

,_M+l(TT(x)), = TT(t) = mvm,

and for any coordinate x, of x not occurring in a block / or t, set

(•7r(x)), = ir(xI)

By Lemma 4 1, the strings mum and mvm in H nontnvially overlap themselves or
each other only at their end symbols Thus the strings t and t can overlap each
other or themselves in at most that many ways (in fact fewer ways), so TT IS
well-defined as a (2M-l)-block map n 1a^1H

Define functions / and / with domain and range {1, 2, , d} by

if 1 = 1,

and

rrB(i) i f i * l ,

Note that TV{1)= 1, so 1 is not in the range off Similarly, TC(1) = 2, SO 2 is not in
the range of/

https://doi.org/10.1017/S0143385700005800 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005800


620 / Ashley

Let m'v'mT°u\ 1 < i < d, be the paths in G given by Lemma 3 2 that are vr-labelled
by mvm Similarly, let m'v'm*^ be the paths in G that are 7r-labelled by mvm

We may denote

m v m n - \ _ i i 2 -
l ^ m ' t j ' m 2 if i = 1,

and

For a stnng w, denote 0[w] = „[

LEMMA 4 2

••{l) _ } . n ' v ' m T ' { l ) i f I T * 1 ,

l/=m1t)1m1 ifi = l

it 1(0[mvm])=\^J 0[m'v'mf(l)]
I = 1

Proof The 2d paths m'v'mT"U) and fn'ulmT|)(l), 1 < i < d in the graph G are ir-labelled
by mum or mvm, so by Lemma 4 1 each of these paths non-tnvially overlaps another
or itself at most by one symbol (some m') In particular, each non-tnvially overlaps
f and t by at most one symbol Thus, for 2 < i < d,

•""loL"' v m v })± •"AOL"' v m " ])= oimvmj,

and

77-(0[wi S /n ] )C O [ /MDW]

so

On the other hand, if 0(^(^))|mi;rn|-i = mum then either 0(x)\mvm\-i = i= mlvlm2 or
o(x)\mvm\-\ overlaps t and i by at most one symbol, in which case n agrees with n
on o(*)|mnm|-i, giving that 0{x)lmvml-l = m'v'm^{'\ where 2sisd This shows

The barred version is proved similarly •
Lemma 4 2 is the base case for an induction used to prove Lemma 4 3 below
Let w be any path in the graph H beginning and ending with the strings mvm

or mvm We can express

w = m(w,m)(w2m) (wkm)vm,
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where
(1) v = v or v = v,
(2) each vv,m begins with vm or vm,
(3) the strings mvm and mvm do not occur in any w}m, 1 <j < fc.
Note that k = 0 if w = mvm or mww There is a unique decomposition satisfying (1),
(2), and (3) because mvm and mvm non-tnvially overlap each other and themselves
only in a single symbol (m)

LEMMA 4 3 Let w be any path in H beginning and ending with mvm or mvm Let

w=m(w1m)(iv2m)' (wkm)vm

be the decomposition defined above Then for 1 < i < d,

o[m']nif~1ol>]

where wj, 1 <y < k, and v' are paths in G and
f ifWjm = vm

f \ f ifw,m = vm
JJ ~ f f _

TU° f ifw}m = vmum

and

h = <%

Proof The proof is by induction on k. If k = 0, then w = mvm or w = mvm and this
case follows from the equality

or

1 = 1

given by Lemma 4 2 Now suppose the lemma is true for all 0 < k < I and that

w = m(w\m)(w2m) {w,m)vm

Suppose that w,m begins with vm (The argument for vm is similar) Set

u = m{wlm)(w2m) (wt-lm)vm

Then u satisfies the inductive hypothesis, so

0[«i'] n ir-'otii] = otm1 m*( lVm^0 1],

where g =/_i ° °f\ There are two cases to consider
(1) w,m = vm,
(2) w,m = vmum, where neither mvm nor mvm occurs in mum
In case (1),
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so /; = / in this case In case (2),

otm'lnr'otw]

= 0[m' mg{l)v'mf°g{l)]luhlna--}uMmvm^-

— o\_m m vm J|u|-i
n|u|-|mum|L'w v m u m <• v m j ,

so // = TU ° f in this case D

COROLLARY 4 4 The map ir 1G -* S H is onto

Proof By Lemma 4 3, each path of the form (mvm)u(mvm) in H is the image by
TT of a path (m'i;'m/('))u'(mg(')tJ"m/°g(l)) in G Thus, by the irreducibility of H, any
finite path in H is the image by ir of some path in G It follows that the
image of ir in S H is dense, and by the compactness of 2 G , that the image of ir IS all
of £„ •

COROLLARY 4 5 77ie map TT £ G - > 2 H JS bounded-to-l

Proof As 7T X G - » 2 H is bounded-to-l, 2 G and S H have the same entropy [CP] It
follows from this, Corollary 4 4, and [CP] that TT IS bounded-to-l •

COROLLARY 4 6 If TT is right-closing, then so is ir

Proof Let x, x'e1G be left asymptotic points with TT(X) = TT(X') We must show
x = x' We may assume x, = x[ for i < 0 We may also assume (by replacing _ocMo
by some other past and shifting if necessary) that -|mUm|+i(''''(^))o= rnvm If words
from {mvm, mvm} occur infinitely often in 0(7r(x))co then x = x' b an induction
and Lemma 4 3 If words from {mvm, mvm} occur a finite number of times in
o(w(x))oo, let k-\mvm\+i(ir(x))k be the final occurrence Then x, = x\ for i</c by
Lemma 4 3 Now ic(7r(x))co = /t(77(x))oc by the definition of TT off the blocks / and
t Similarly, (,(TT(X'))OC = k(Tr{x'))x So ̂ (7r(x'))cc = i(7r(x))oo, SO X = X' because TT IS

right-closing •

COROLLARY 4 7 The map Tt S G -> S H has lower degree than TT has

Proof Because the map TT IS not a 1-block map, we cannot apply verbatim the
characterization of degree we gave in terms of the pre-image of a resolving block
in H However, we may choose an integer q so that \(mv)qm\ > 2M and observe that

the last set being a disjoint union of at most d-\ Kmt^'ml-blocks Thus we may
apply the criterion directly to the 1-block map

to conclude that the degree of TT IS at most d -1 •
From the assumption that the bounded-to-l factor map TT 2 C - > 2 H has degree

exceeding pc/'pH, we have constructed a bounded-to-l factor map ir 2.G -» £ H with
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degree less than the degree of IT Since the smallest possible degree of a factor map
•n' = 1C-*1H is PG/PH, this shows that one could iterate the construction to get a
factor map degree exactly PG/PH, proving Theorem 1 1

5 The sofic case
A sofic system is a symbolic system that is a factor of a shift of finite type In fact
any sofic system is a factor by a 1-to-l almost everywhere map of a shift of finite
type [F]

Theorem 1 1 can be generalized to the case of sofic domain and range

THEOREM 51 If TT S^T is a bounded-to-l factor map from an irreducible sofic
system S with period ps to an irreducible sofic system T with period pT, then there is a
factor map TT S-* T that is (ps/'pT)-to-\ almost everywhere Moreover, if IT IS right
closing, then ir may be taken to be right closing also

Here, the period of a sofic system is the period of any 1-to-l almost everywhere
finite type extension

The proof of Theorem 5 1 is largely the same as the proof of Theorem 1 1 The
only real change is that we replace resolving blocks by their appropriate generali-
zation in the sofic setting markov magic words [B]

We follow [B] in the following two definitions
Given a sofic system T, a markov word for T is an allowable word w such that

if uw and wv are allowable words in T, then so is uwv
Given a bounded-to-l 1-block factor map TT S->T from an irreducible sofic

system S to an irreducible sofic system T, define W to be the set of allowable words
w in T for which
(I) w is a markov word for T,

(n) TT~l
0[w~\c:U''i = ij[w']k, where k>j and w1, w2, , wd are markov words for S

In [B] it is shown that °W is non-empty Any w e W for which d in (n) is minimal
is called a markov magic word for TT S^>T The minimal d is the degree of the
factor map TT S -* T [B]

We may use [B, Proposition 1 4] and a construction similar to that of § 3 above
(from [KMT]) to reduce to the case where TT S-» T has a markov magic symbol m
Then [B, Proposition 1 4] gives the following generalization of the permutation
Lemma 2 2

LEMMA 5 2 Let TT S-> T be a degree d I-block map with markov magic symbol m
Letm\ m2, , mdbe the symbols in S with Trl

0[m] = [Jd^^ ot™'] For each allowable
word of the form mum in T, there are d words u\ u2, ,ud in S and a permutation
TU of {1,2, , d} such that

d

Tr~'0[mum] = t j oO'"'mT"l l )]

As in the shift of finite type case, we may assume that the symbol m in T has at
least two predecessors and two successors
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The penod of T is

gcd{\mum\-\ mum is a word in T}

and the penod of S is

gcd{\m1um*\ — l m'wm1 is a word in S}

The construction of if S^T using Lemma 5 2 follows much the same lines as the
shift of finite type case

6 The Markov chain case
If the irreducible shift of finite type (2G, cr) is given a Markov measure fic denned
by a stochastic matnx P 5* 0 via

then (1O, cr, fia) is called a Markov chain
Following [PS], define the weight of a cycle sos, sp_, in the graph G as

and the multiplicative subgroup AG of U+ by

AG = i I I , ° , n s, s' are cycles in G with |s| = \s'\ \

In [PS] it is shown that if

is measure-preserving, then A c c A H , moreover, if IT IS 1-to-l almost everywhere,
then AG = AH

As was pointed out to me by Brian Marcus, the construction of TT used in the
proof of Theorem 1 1 can be adapted to work in the category of Markov measure-
preserving block maps to give a partial converse to the [PS] result

THEOREM 6 1 If IT ( 2 G , cr, fia)~*(J.H, cr, fiH) is a measure-preserving factor map
from the Markov chain 1a with period pa to a Markov chain SH with equal period
Pn—Pa, and if AG = AH, then there is a measure-preserving factor map
TT (La, &, Mo)"* (2«, cr, IJLH) that is 1-fo-l almost everywhere
Sketch of proof In the proof of Theorem 1 1, we construct paths t and t in the graph
G such that their images Tr(t) = mvm and v(t) = mvm in the graph H overlap by
at most one symbol The map TT 1O -> SH is defined by "switching the images" of
t and t

Now vm and vm are both cycles in the graph H If wH(vm) = wH{vm) then 77,
like IT, will be measure-preserving Otherwise the ratio

wH(vm) _

wH(vm)

is equal to a ratio
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where r = s0r1r2 rk and f = sorlr2 fk are cycles in the graph G based at the
state s0 of G defined in the proof of Theorem 1 1

Now interpolate the cycle f into the path t at state s0, and interpolate the cycle
r into the path t at state s0,

 arjd extend the common prefix cxc2 cpL+1 of t and
t (by choosing a larger L if necessary) to ensure that the two modified paths t' and
f, like t and t, non-tnvially overlap themselves or each other only by one symbol
Denote ir(t') = mv'm and ir(t') = mv'm

Now

and

wH(ir(r)) = wG(r),

so

wH(v'm) _ wH(vm)wa(r) _ ^
wH(v'm) wH(vm)wa(r)

by the choice of the cycles r and f Hence if we define TT S G -»2H by 'switch-
ing the images' of t' and F (which we can do since t' and V non-tnvially overlap
each other or themselves by at most one symbol), then IT, like TT, will be
measure-preserving As in the proof of Theorem 1 1, n will have lower degree
than 77 •
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