Bounded-to-1 factors of an aperiodic shift of finite type are $\mathbf{1 - t o}-1$ almost everywhere factors also

JONATHAN ASHLEY
Department of Mathematıcal Sciences, IBM Thomas J Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA

(Recelved 18 October 1988)

Abstract

We show that if $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is a bounded-to-1 factor map from an irreducible shift of finite type Σ_{G} with period p_{G} to a shift of finite type Σ_{H} with period p_{H}, then there is a factor map $\hat{\pi} \Sigma_{G} \rightarrow \Sigma_{H}$ that is $\left(p_{G} / p_{H}\right)$-to-1 almost everywhere Moreover, if π is right closing, then $\hat{\pi}$ may be taken to be right closing also

1 Introduction

We prove the following result
Theorem 11 If $\pi \quad \Sigma_{G} \rightarrow \Sigma_{H}$ is a bounded-to-1 factor map from an irreducible shift of finite type Σ_{G} with period p_{G} to a shift of finte type Σ_{H} with period p_{H}, then there is a factor map $\hat{\pi} \Sigma_{G} \rightarrow \Sigma_{H}$ that is $\left(p_{G} / p_{H}\right)$-to-1 almost everywhere Moreover, if π is right closing, then $\hat{\pi}$ may be taken to be right closing also

In particular, if Σ_{G} is aperiodic, then $\hat{\boldsymbol{\pi}} \Sigma_{G} \rightarrow \Sigma_{H}$ is 1-to-1 almost everywhere It is easy to show that p_{G} / p_{H} is the smallest possible degree of a factor map from a shift of period p_{G} to a shift of period p_{H}

This result generalizes a result in [AGW] where the range shift is the full n-shift
As was pointed out to me by Bruce Kitchens and Brian Marcus, this result simplifies the proof of the main theorem in [AM] that topological entropy and period are a complete set of invariants for almost topological conjugacy

2 Background

We assume some famulianty with shıfts of finite type $\S 3$ of [AM] and $\S 2$ of [BMT] are good introductions We make some definitions here in order to establish notation

Given a strongly connected directed graph G with a finite set of states \mathscr{S} and at most one edge from any state to any other, we define the shift of finite type Σ_{G} by

$$
\Sigma_{G}=\left\{s \in \mathscr{S}^{\mathbb{Z}} \quad s_{t} s_{t+1} \text { is an edge in } G \text { for } t \in \mathbb{Z}\right\}
$$

This definition follows [AM] rather than [BMT] In [BMT] the defining graph G may have many parallel edges from one state to another, and the symbols in the shift Σ_{G} are the edges of G, not the states of G The definitions are equivalent up to conjugacy

The set Σ_{G} is topologized by the product of the discrete topologies on its coordinate spaces

The shift map $\sigma \quad \Sigma_{G} \rightarrow \Sigma_{G}$ defined by

$$
(\sigma x)_{t}=x_{t+1}
$$

is a homeomorphism
The period of Σ_{G} is the greatest common divisor of all cycle lengths in the graph G Given a finite path of states $s_{1} s_{2} \quad s_{k}$ in the graph G, we denote

$$
{ }_{n}\left[s_{1} s_{2} \quad s_{k}\right]_{n+k-1}=\left\{x \in \Sigma_{G} \quad x_{n+\imath-1}=s_{t}, 1 \leq t \leq k\right\}
$$

This set called a k-block of Σ_{G}
Given $y \in \Sigma_{G}$, we denote the finte path $y_{t} y_{i+1} \quad y_{j}$ in G by (y),
A k-block map $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is a shift-commuting map such that there is some l for which

$$
(\pi y)_{0}=\left(\pi y^{\prime}\right)_{0} \quad \text { if } i_{l-k+1}(y)_{I}={ }_{l-k+1}\left(y^{\prime}\right)_{l}
$$

In the 1 -block case we require merely for notational convenience that $l=0$ In the 1-block case we have

$$
(\pi y)_{0}=\left(\pi y^{\prime}\right)_{0} \quad \text { if } y_{0}=y_{0}^{\prime}
$$

Thus π is defined by a map from single states of G to single states of H that we again call π In this case we say that a path of states $s_{1} s_{2} \quad s_{k}$ in G is π-labelled by $\pi\left(s_{1}\right) \pi\left(s_{2}\right) \quad \pi\left(s_{k}\right)=\pi\left(s_{1} s_{2} \quad s_{k}\right)$

A bounded-to- 1 factor map $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is a k-block map such that the set of positive integers $\left\{\# \pi^{-1}(y) y \in \Sigma_{H}\right\}$ is bounded from above

A 1-block map $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is right-closing if it never identifies two distinct left asymptotic points if $s, s^{\prime} \in \Sigma_{G}$ have an $l_{0} \in \mathbb{Z}$ such that $s_{l}=s_{l}^{\prime}$ for all $l \leq l_{0}$ and $\pi(s)=\pi\left(s^{\prime}\right)$ then $s=s^{\prime}$

A 1-block map $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is right-resolving if for every path $t_{1} t_{2}$ of length 2 in H, and for every state s_{1} of G with $\pi\left(s_{1}\right)=t_{1}$, there is a unique state s_{2} such that $s_{1} s_{2}$ is an edge of G and $\pi\left(s_{2}\right)=t_{2}$

3 Resolving blocks

If $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is bounded-to-1, then the minimum d of $\left\{\# \pi^{-1}(y) y \in H\right\}$ is the generic degree of π except for a set of measure zero in Σ_{G} (with respect to the measure of maximal entropy) π is a d-to- 1 map [KMT] We call d the degree of π after [B]

The degree of a 1-block factor map $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is the smallest integer d such that there is a path $m_{1} m_{2} \quad m_{k}$ in the graph H, an integer $l, 1 \leq l \leq k$, and a set $\left\{r^{1}, r^{2}, \quad, r^{d}\right\}$ of d states in the graph G such that every path $s_{1} s_{2} \quad s_{k}$ in G with $\pi\left(s_{1} s_{2} \cdot s_{k}\right)=m_{1} m_{2} \cdots m_{k}$ has $s_{l} \in\left\{r^{1}, r^{2}, \quad, r^{d}\right\}[K M T]$ The path $m_{1} m_{2} \quad m_{k}$ is a resolving block for the map π We use the following construction from [KMT] to reduce to a convenient special case of Theorem 11

Given a shift of finte type Σ_{H} define the k-block presentation of Σ_{H} to be the shift of finite type $\Sigma_{H}^{[k]}$ whose symbols are the paths of length k in H, with a transition from symbol $s_{1} s_{2} \quad s_{k}$ to symbol $t_{1} t_{2} \quad t_{k}$ Iff $s_{2} s_{3} \quad s_{k}=t_{1} t_{2} \quad t_{k-1}$ The k-block
map $\psi_{k} \Sigma_{H} \rightarrow \Sigma_{H}^{[k]}$ defined by mapping the path $s_{1} s_{2} \quad s_{k}$ in H to the symbol $s_{1} s_{2} \quad s_{k}$ in $\sum_{H}^{[k]}$ is a conjugacy

Given a 1-block map $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ and integers k and l with $1 \leq l \leq k$, define the shift of finite type $\Sigma_{\mathrm{S}}^{k_{\mathrm{G}}!}$ as follows The symbols to $\Sigma_{\mathrm{C}}^{k \prime}$ are the equivalence classes of paths of length k in G where path $s_{1} s_{2} \quad s_{k}$ is equivalent to $s_{1}^{\prime} s_{2}^{\prime} \quad s_{k}^{\prime}$ iff

$$
\begin{equation*}
\pi\left(s_{1} s_{2} \quad s_{k}\right)=\pi\left(s_{1}^{\prime} s_{2}^{\prime} \quad s_{k}^{\prime}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{l}=s_{l}^{\prime} \tag{11}
\end{equation*}
$$

There is a transition in $\Sigma_{G}^{k l}$ from equivalence class s to equivalence class t iff there is a path $s_{1} s_{2} \quad s_{k} s_{k+1}$ in G such that $s_{1} s_{2} \quad s_{k} \in s$ and $s_{2} s_{3} \quad s_{k+1} \in t$ The k-block $\operatorname{map} \varphi_{k, l} \Sigma_{G} \rightarrow \Sigma_{G}^{k l}$ taking a path of length k in G to the equivalence class containing it is a conjugacy

Define the 1-block map $\pi_{k, l} \Sigma_{G}^{k, l} \rightarrow \Sigma_{H}^{[k]}$ by taking a symbol of $\Sigma_{G}^{k, l}$ (which is an equivalence class of paths of length k in G) to the common π-label of its elements

Theorem 31 ([KMT]) The diagram

$$
\begin{aligned}
& \Sigma_{G} \xrightarrow{\varphi_{k \prime}} \\
& \pi \\
& \downarrow \\
& \Sigma_{G}^{k, l} \\
& \Sigma_{H} \xrightarrow{\pi_{k \prime}} \\
& \psi_{k} \\
& \Sigma_{H}^{[k]}
\end{aligned}
$$

commutes Moreover, if $m_{1} m_{2} \quad m_{k}$ is a path in H that is a resolving block for π, and $l, 1 \leq l \leq k$, is as in the definition of a resolving block, then $m_{1} m_{2} \quad m_{k}$ is a resolving symbol for $\pi_{k, l}$

We also use the following lemma essentially contained in [KMT] regarding bounded-to- 1 factor maps

Permutation Lemma 32 Let $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ be a degree d 1-block map with resolving symbol m Let $m^{1}, m^{2}, \quad, m^{d}$ be the states in G with $\pi\left(m^{\prime}\right)=m, 1 \leq 1 \leq d$ For each path of the form mum in H, there are paths $u^{1}, u^{2}, \quad, u^{d}$ in G and a permutation τ_{u} of $\{1,2, \quad, d\}$ such that the paths of $G \pi$-labelled by mum are exactly $m^{\prime} u^{\prime} m^{\tau_{u}(t)}$, $1 \leq 1 \leq d$

4 Proof of the main theorem

In case the entropy of Σ_{G} is zero, Σ_{G} and Σ_{H} each consist of a single finite orbit and Theorem 11 holds trivially The rest of this section treats the positive entropy case

We first reduce to a special case Suppose the given map $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is a k-block map

As composition (on either side) with conjugacies preserves both degree and the property of being right-closing, we can reduce to the case where $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is a

1-block map by replacing π with $\varphi \circ \pi$ where

$$
\varphi \Sigma_{G}^{[k]} \rightarrow \Sigma_{G}
$$

is the 1-block conjugacy mapping the word $s_{1} s_{2} \quad s_{k}$ in Σ_{G} to the symbol s_{k}
Using Theorem 31 , we further reduce to the case that $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is a 1-block map with a resolving symbol m We may assume, by increasing k in Theorem 31 if necessary, that the resolving symbol m in H has at least two incoming edges and at least two outgoing edges in H The motive here will not become apparent until later

Assuming $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ has degree exceeding p_{G} / p_{H}, we will construct a bounded-to-1 factor map $\hat{\boldsymbol{\pi}} \Sigma_{G} \rightarrow \Sigma_{H}$ that has lower degree than π Moreover $\hat{\pi}$ will be rıght-closing if π is Since any factor map from Σ_{G} to Σ_{H} has degree at least p_{G} / p_{H}, this will prove that there is a factor map from Σ_{G} to Σ_{H} with degree exactly p_{G} / p_{H}

First we construct $\hat{\pi}$ and then show that it has the desired properties
If the graph G has period p_{G}, then the states of G are partitioned into p_{G} equivalence classes $\mathscr{C}_{0}, \mathscr{C}_{1}, \quad, \mathscr{C}_{P_{G}-1}$, where a state s is equivalent to a state t iff there is a path sut in G with $|u t|$ a multiple of p_{G}

Let $m^{1}, m^{2}, \quad, m^{d}$ be the symbols in G with $\pi\left(m^{\prime}\right)=m, 1 \leq i \leq d$ Since Σ_{H} has period p_{H}, any cycle based at m has length a multıple of p_{H} So we may assume that all the symbols $m^{1}, m^{2}, \quad, m^{d}$ occur in the equivalence classes

$$
\mathscr{C}_{0}, \mathscr{C}_{p_{H}}, \mathscr{C}_{2 p_{H}}, \quad, \mathscr{C}_{\left(p_{G} / p_{H}-1\right) p_{H}}
$$

Thus d objects are placed in p_{G} / p_{H} pigeon holes If we assume $d>p_{G} / p_{H}$, then two of $m^{1}, m^{2}, \quad, m^{d}$ he in the same equivalence class We may assume these two are m^{1} and m^{2} and that $m^{1}, m^{2} \in \mathscr{C}_{0}$

Fix $N_{0}>0$ such that for any $0 \leq 1, j<p_{G}$, any state s in \mathscr{C}_{I} and any state t in \mathscr{C}_{J}, there is a path of length $(J-i)+N_{0} p_{G}$ from state s to state t

Let $e_{2} e_{3} \quad e_{L}$ be a (possible empty) path in H such that $m e_{2} e_{3} \quad e_{L}$ is a simple cycle in H Denote $m=e_{1}$ Recall that m has at least two incoming and at least two outgoing edges Choose states f and h in H so that $m f$ and $h m$ are edges of H not occurring on the cycle $e_{1} e_{2} \quad e_{L}$

Choose an integer p such that $p L+1 \geq p_{G}+N_{0} p_{G}+1$
By the Permutation Lemma 32 there is a path $c_{1} c_{2} \quad c_{p L+1} s_{0}=c s_{0}$ in G with $c_{1}=m^{1}$ and with π-label $\left(e_{1} e_{2} \quad e_{L}\right)^{p} e_{1} f$ Again by the permutation Lemma 32 , there is a state s_{N} of G such that $s_{N} m^{1}$ is an edge of G and $\pi\left(s_{N}\right)=h$ Similarly, there is a state \bar{s}_{N} of G such that $\bar{s}_{N} m^{2}$ is an edge of G and $\pi\left(\bar{s}_{N}\right)=h$

Now $s_{0} \in \mathscr{C}_{p L+1}$ and $s_{N}, \bar{s}_{N} \in \mathscr{C}_{-1}$ (indices are $\bmod p_{G}$) Fix I_{0} with $I_{0} \equiv-1-(p L+1) \bmod p_{G}$ and $0 \leq I_{0}<p_{G}$ Set $N=I_{0}+N_{0} p_{G}$ We may choose a path $s_{0} s_{1} \cdot s_{N-1} s_{N}$ from state s_{0} to state s_{N} and a path $s_{0} \bar{s}_{1} \quad \bar{s}_{N-1} \bar{s}_{N}$ from state s_{0} to state \bar{s}_{N} Denote $s_{0}=\bar{s}_{0}$ By the choice of p, we have

$$
p L+1 \geq p_{G}+N_{0} p_{G}+1 \geq I_{0}+N_{0} p_{G}+2=N+2
$$

an inequality we will use in the proof of Lemma 41 below
Denote $M=p L+1+N+2$ and

$$
t=t_{1} t_{2} \quad t_{M}=\left(\begin{array}{lll}
c_{1} c_{2} & c_{p L+1}
\end{array}\right)\left(s_{0} s_{1} \quad s_{N}\right) m^{1}
$$

and

$$
\bar{t}=\bar{t}_{1} \bar{t}_{2} \quad \bar{t}_{M}=\left(\begin{array}{lll}
c_{1} c_{2} & c_{p L+1}
\end{array}\right)\left(\bar{s}_{0} \bar{s}_{1} \quad \bar{s}_{N}\right) m^{2}
$$

Denote $\pi\left(s_{1} s_{2} \quad s_{N-1}\right)=g, \pi\left(\bar{s}_{1} \bar{s}_{2} \quad \bar{s}_{N-1}\right)=\bar{g}$, and $\left(e_{1} e_{2} \quad e_{L}\right)^{p} e_{1}=e$ Note that $\pi(t)=e f g h m$ and $\pi(\bar{t})=e f \bar{g} h m$ Thus $g \neq \bar{g}$ by Lemma 32

The paths t and \bar{t} in G were chosen in part to make the following lemma true
Lemma 41 The two paths $\pi(t)=m v m=e f g h m$ and $\pi(\bar{t})=m \bar{v} m=e f \bar{g} h m$ in H nontrivially overlap each other or themselves only at their end symbols, m
Proof Say path u encroaches upon path w by n if $u=u^{\prime} s, w=s w^{\prime}$ and $|s|=n$ Since the edge hm does not occur in the path $e=\left(e_{1} e_{2} \quad e_{L}\right)^{p} m$, neither efghm nor ef $\bar{g} h m$ can encroach upon itself or the other by any n with $2 \leq n \leq p L+1$ If $p L+2 \leq n \leq$ $M-1$, and one of efghm or ef $\bar{g} h m$ encroached upon the other by n, then the edge $m f$ would occur in the path e for the following reason Since $|g h m|=|\bar{g} h m|=N+1$, the edge $m f$ would occur ending at position $n-(N+1)$ in the encroached-upon path But

$$
2 \leq(p L+2)-(N+1) \leq n-(N+1) \leq(M-1)-(N+1)=p L+1,
$$

which puts the edge $m f$ in the path e Thus nether efghm nor ef $\bar{g} h m$ can encroach upon itself or the other by any n with $2 \leq n \leq M-1$ Now efghm $\neq e f \bar{g} h m$, so nether can encroach upon the other by M Since $|e f g h m|=M$, this proves the lemma

We define $\hat{\pi} \quad \Sigma_{G} \rightarrow \Sigma_{H}$ as follows Let $x \in \Sigma_{G}$
If the block t occurs in x, say ${ }_{t-M+1}(x)_{t}=t$, then

$$
t-M+1(\hat{\pi}(x))_{t}=\pi(\bar{t})=m \bar{v} m
$$

If the block \bar{t} occurs in x, say,$-M+1(x)_{t}=\bar{t}$, then

$$
{ }_{1-M+1}(\hat{\pi}(x))_{i}=\pi(t)=m v m
$$

and for any coordinate x_{l} of x not occurring in a block t or \bar{t}, set

$$
(\hat{\pi}(x))_{1}=\pi\left(x_{t}\right)
$$

By Lemma 41 , the strings $m v m$ and $m \bar{v} m$ in H nontrivially overlap themselves or each other only at their end symbols Thus the strings t and \bar{t} can overlap each other or themselves in at most that many ways (in fact fewer ways), so $\hat{\pi}$ is well-defined as a $(2 M-1)$-block map $\hat{\boldsymbol{\pi}} \quad \Sigma_{G} \rightarrow \Sigma_{H}$

Define functions f and \bar{f} with domain and range $\{1,2, \quad, d\}$ by

$$
f(\imath)= \begin{cases}\tau_{v}(\imath) & \text { if } \iota \neq 1 \\ 2 & \text { if } \iota=1\end{cases}
$$

and

$$
\bar{f}(t)= \begin{cases}\tau_{\bar{u}}(t) & \text { if } l \neq 1, \\ 1 & \text { if } t=1\end{cases}
$$

Note that $\tau_{v}(1)=1$, so 1 is not in the range of f Similarly, $\tau_{i}(1)=2$, so 2 is not in the range of \bar{f}

Let $m^{\prime} v^{\prime} m^{\tau_{v}(t)}, 1 \leq i \leq d$, be the paths in G given by Lemma 32 that are π-labelled by mvm Similarly, let $m^{\prime} \bar{v}^{\prime} m^{\tau_{\dot{v}}(1)}$ be the paths in G that are π-labelled by $m \bar{v} m$

We may denote

$$
m^{\prime} \hat{v}^{\prime} m^{f(t)}= \begin{cases}m v^{\prime} m^{\tau_{v}(t)} & \text { if } l \neq 1, \\ \bar{t}=m^{1} \bar{v}^{1} m^{2} & \text { if } l=1\end{cases}
$$

and

$$
m^{\prime} \hat{\bar{v}}^{\prime} m^{\bar{f}(t)}= \begin{cases}m^{\prime} \bar{v}^{-} m^{\tau_{v}(t)} & \text { if } t \neq 1, \\ t=m^{1} v^{1} m^{1} & \text { if } t=1\end{cases}
$$

For a string w, denote ${ }_{o}[w]={ }_{0}[w]_{|w|-1}$
Lemma 42

$$
\hat{\pi}^{-1}\left({ }_{0}[m v m]\right)=\bigcup_{t=1}^{d} 0\left[m^{\prime} \hat{v}^{\prime} m^{f(t)}\right]
$$

and

$$
\hat{\pi}^{-1}\left({ }_{0}[m \bar{v} m]\right)=\bigcup_{i=1}^{d}{ }_{0}\left[m^{i} \hat{\bar{v}}^{\prime} m^{f(i)}\right]
$$

Proof The $2 d$ paths $m^{\prime} v^{\prime} m^{\tau_{v}(t)}$ and $m^{i} \boldsymbol{v}^{1} m^{\tau_{0}(t)}, 1 \leq t \leq d$ in the graph G are π-labelled by $m v m$ or $m \bar{v} m$, so by Lemma 41 each of these paths non-trivially overlaps another or itself at most by one symbol (some m^{\prime}) In particular, each non-trivially overlaps t and \bar{t} by at most one symbol Thus, for $2 \leq t \leq d$,

$$
\hat{\pi}\left({ }_{0}\left[m^{\prime} v^{\prime} m^{\tau_{v}(t)}\right]\right) \subseteq \pi\left({ }_{0}\left[m^{\prime} v^{\prime} m^{\tau_{0}(t)}\right]\right)={ }_{0}[m v m]
$$

and

$$
\hat{\pi}\left({ }_{0}\left[m^{1} \bar{v}^{1} m^{2}\right]\right) \subseteq{ }_{0}[m v m]
$$

so

$$
\bigcup_{i=1}^{d} o_{0}\left[m^{\prime} \hat{v}^{\prime} m^{f(i)}\right] \subseteq \hat{\pi}^{-1}(o[m v m])
$$

On the other hand, if ${ }_{0}(\hat{\pi}(x))_{|m u m|-1}=m v m$ then either ${ }_{0}(x)_{|m u m|-1}=\bar{t}=m^{1} \bar{v}^{1} m^{2}$ or ${ }_{0}(x)_{|m u m|-1}$ overlaps t and \bar{t} by at most one symbol, in which case $\hat{\pi}$ agrees with π on ${ }_{0}(x)_{|m u m|-1}$, giving that ${ }_{0}(x)_{|m u m|-1}=m^{\prime} v^{\prime} m^{\tau_{\mathrm{l}}(t)}$, where $2 \leq t \leq d$ This shows

$$
\hat{\pi}^{-1}\left({ }_{0}[m v m]\right) \subseteq \bigcup_{t=1}^{d}{ }_{0}\left[m^{\prime} \hat{v}^{\prime} m^{f(1)}\right]
$$

The barred version is proved similarly
Lemma 42 is the base case for an induction used to prove Lemma 43 below
Let w be any path in the graph H beginning and ending with the strings mum or $m \bar{v} m$ We can express

$$
w=m\left(w_{1} m\right)\left(w_{2} m\right) \quad\left(w_{k} m\right) \tilde{v} m
$$

where
(1) $\tilde{v}=v$ or $\tilde{v}=\bar{v}$,
(2) each $w_{t} m$ begins with $v m$ or $\bar{v} m$,
(3) the strings mvm and $m \bar{v} m$ do not occur in any $w, m, 1 \leq J \leq k$.

Note that $k=0$ if $w=m v m$ or $m \bar{v} m$ There is a unique decomposition satisfying (1), (2), and (3) because $m u m$ and $m \bar{u} m$ non-trivially overlap each other and themselves only in a single symbol (m)
Lemma 43 Let w be any path in H beginning and ending with mum or mūm Let

$$
w=m\left(w_{1} m\right)\left(w_{2} m\right) \cdot \quad\left(w_{k} m\right) \tilde{v} m
$$

be the decomposition defined above Then for $1 \leq 1 \leq d$,

$$
\begin{aligned}
\mathrm{o}_{\mathrm{o}}\left[m^{\prime}\right] & \cap \hat{\pi}^{-1}{ }_{0}[w] \\
& ={ }_{0}\left[m^{\prime}\left(w_{1}^{\prime} m^{f_{1}(t)}\right)\left(w_{2}^{\prime} m^{f_{2} \circ f_{1}(t)}\right) \cdot \quad\left(w_{k}^{\prime} m^{f_{k} \circ}{ }^{\circ f_{1}(t)}\right) \tilde{v}^{\prime} m^{h \circ f_{k} \circ \circ f_{1}(t)}\right]
\end{aligned}
$$

where $w_{j}^{\prime}, 1 \leq \jmath \leq k$, and \tilde{v}^{\prime} are paths in G and

$$
f_{J}= \begin{cases}f & \text { if } w_{J} m=v m \\ \bar{f} & \text { lf } w_{J} m=\bar{v} m \\ \tau_{u} \circ f & \text { if } w_{J} m=v m u m \\ \tau_{u} \circ \bar{f} & \text { if } w_{J} m=\bar{v} m u m\end{cases}
$$

and

$$
h= \begin{cases}f & \text { if } \tilde{v}=v \\ \bar{f} & \text { if } \tilde{v}=\bar{v}\end{cases}
$$

Proof The proof is by induction on k. If $k=0$, then $w=m v m$ or $w=m \bar{v} m$ and this case follows from the equality

$$
\hat{\pi}^{-1}\left({ }_{0}[m v m]\right)=\bigcup_{t=1}^{d}{ }_{0}\left[m^{\prime} \hat{v}^{\prime} m^{f(i)}\right]
$$

or

$$
\hat{\pi}^{-1}(o[m \bar{v} m])=\bigcup_{i=1}^{d} 0\left[m^{\prime} \hat{\bar{v}}^{\prime} m^{\bar{f}(t)}\right]
$$

given by Lemma 42 Now suppose the lemma is true for all $0 \leq k<l$ and that

$$
w=m\left(w_{1} m\right)\left(w_{2} m\right) \quad\left(w_{1} m\right) \tilde{v} m
$$

Suppose that $w_{i} m$ begins with $v m$ (The argument for $\bar{v} m$ is similar) Set

$$
u=m\left(w_{1} m\right)\left(w_{2} m\right) \quad\left(w_{l-1} m\right) v m
$$

Then u satisfies the inductive hypothesis, so

$$
{ }_{0}\left[m^{\prime}\right] \cap \hat{\pi}^{-1}{ }_{0}[u]={ }_{0}\left[m^{\prime} \quad m^{g(t)} v^{\prime} m^{f \circ g(t)}\right]
$$

where $g=f_{l-1} \circ \quad \circ f_{1}$ There are two cases to consider
(1) $w_{l} m=v m$,
(2) $w_{i} m=v m u m$, where nether $m v m$ nor $m \bar{v} m$ occurs in mum

In case (1),

$$
\begin{aligned}
{ }_{\mathrm{o}}^{[}\left[m^{\prime}\right] \cap \hat{\pi}_{0}^{-1}[w] & ={ }_{0}\left[m^{\prime}\right] \cap \hat{\pi}_{0}^{-1}[u] \cap \sigma^{-|u|+1} \hat{\pi}_{0}^{-1}[m \tilde{v} m] \\
& ={ }_{0}\left[m^{\prime} \quad m^{f \circ g(i)}\right]_{|u|-1} \cap{ }_{|u|-1}\left[m^{f \circ g(t)} \tilde{v}^{\prime} m^{\text {hofog(1) }}\right]
\end{aligned}
$$

so $f_{i}=f$ in this case In case (2),

$$
\begin{aligned}
& { }_{0}\left[m^{\prime}\right] \cap \hat{\pi}^{-1}{ }_{o}[w] \\
& ={ }_{0}\left[\boldsymbol{m}^{\prime} \quad \boldsymbol{m}^{g(t)} \boldsymbol{v}^{\prime} \boldsymbol{m}^{f \circ g(t)}\right]_{|u|-1} \cap \sigma^{-|u|+|m u m|} \hat{\pi}^{-1}{ }_{0}[\text { mvmumum }]
\end{aligned}
$$

so $f_{l}=\tau_{u} \circ f$ in this case
Corollary 44 The map $\hat{\pi} \Sigma_{G} \rightarrow \Sigma_{H}$ is onto
Proof By Lemma 4 3, each path of the form (mvm) $u(m v m)$ in H is the image by $\hat{\pi}$ of a path ($\left.m^{\prime} v^{\prime} m^{f(t)}\right) u^{\prime}\left(m^{g(t)} v^{\prime \prime} m^{f \circ g(t)}\right)$ in G Thus, by the irreducibility of H, any finite path in H is the image by $\hat{\pi}$ of some path in G It follows that the image of $\hat{\pi}$ in Σ_{H} is dense, and by the compactness of Σ_{G}, that the image of $\hat{\pi}$ is all of Σ_{H}

Corollary 45 The map $\hat{\pi} \quad \Sigma_{G} \rightarrow \Sigma_{H}$ is bounded-to- 1
Proof As $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ is bounded-to-1, Σ_{G} and Σ_{H} have the same entropy [CP] It follows from this, Corollary 44, and [CP] that $\hat{\pi}$ is bounded-to-1

Corollary 46 If π is right-closing, then so is $\hat{\pi}$
Proof Let $x, x^{\prime} \in \Sigma_{G}$ be left asymptotic points with $\hat{\pi}(x)=\hat{\pi}\left(x^{\prime}\right)$ We must show $x=x^{\prime}$ We may assume $x_{i}=x_{1}^{\prime}$ for $t \leq 0$ We may also assume (by replacing ${ }_{-x}(x)_{0}$ by some other past and shiftıng if necessary) that ${ }_{-|m v m|+1}(\hat{\pi}(x))_{0}=m v m$ If words from \{mvm, $m \bar{v} m$ \} occur infinitely often in $(\hat{\pi}(x))_{\infty}$ then $x=x^{\prime}$ b an induction and Lemma 43 If words from \{mvm, $m \bar{v} m\}$ occur a finite number of times in ${ }_{0}(\hat{\pi}(x))_{\infty}$, let ${ }_{k-|m u m|+1}(\pi(x))_{k}$ be the final occurrence Then $x_{t}=x_{t}^{\prime}$ for $t \leq k$ by Lemma 43 Now ${ }_{k}(\hat{\pi}(x))_{\infty}={ }_{k}(\pi(x))_{\infty}$ by the defintion of $\hat{\pi}$ off the blocks t and \bar{t} Similarly, ${ }_{k}\left(\hat{\pi}\left(x^{\prime}\right)\right)_{\infty}={ }_{k}\left(\pi\left(x^{\prime}\right)\right)_{\infty}$ So $_{k}\left(\pi\left(x^{\prime}\right)\right)_{\infty}={ }_{k}(\pi(x))_{\infty}$, so $x=x^{\prime}$ because π is right-closing

Corollary 47 The map $\hat{\pi} \quad \Sigma_{G} \rightarrow \Sigma_{H}$ has lower degree than π has
Proof Because the map $\hat{\pi}$ is not a 1-block map, we cannot apply verbatım the characterization of degree we gave in terms of the pre-image of a resolving block in H However, we may choose an integer q so that $\left|(m v)^{q} m\right|>2 M$ and observe that

$$
\begin{array}{rlr}
\hat{\pi}^{-1}\left[m v(m v)^{q} m\right] & =\bigcup_{i=1}^{d}{ }_{0}\left[m^{\prime} v^{\prime} m^{f(t)}\right. & \left.m^{f^{4+1}(i)}\right] \\
& \subseteq \bigcup_{i=1}^{d} \sigma^{-|m v|}\left[m^{\prime(1)}\right. & \left.m^{f^{4+1}(i)}\right]
\end{array}
$$

the last set being a disjoint union of at most $d-1\left|(m v)^{q} m\right|$-blocks Thus we may apply the criterion directly to the 1 -block map

$$
\hat{\pi} \circ \psi_{2 M}^{-1} \quad \Sigma_{G}^{[2 M]} \rightarrow \Sigma_{H},
$$

to conclude that the degree of $\hat{\pi}$ is at most $d-1$
From the assumption that the bounded-to-1 factor map $\pi \Sigma_{G} \rightarrow \Sigma_{H}$ has degree exceeding p_{G} / p_{H}, we have constructed a bounded-to-1 factor map $\hat{\pi} \Sigma_{G} \rightarrow \Sigma_{H}$ with
degree less than the degree of π Since the smallest possible degree of a factor map $\pi^{\prime}=\Sigma_{G} \rightarrow \Sigma_{H}$ is p_{G} / p_{H}, this shows that one could iterate the construction to get a factor map degree exactly p_{G} / p_{H}, proving Theorem 11

5 The sofic case

A sofic system is a symbolic system that is a factor of a shift of finite type In fact any sofic system is a factor by a 1-to-1 almost everywhere map of a shift of finite type [F]

Theorem 11 can be generalized to the case of sofic domain and range
Theorem 51 If $\pi S \rightarrow T$ is a bounded-to-1 factor map from an irreducible sofic system S with period p_{S} to an trreducible sofic system T with period p_{T}, then there is a factor map $\hat{\pi} S \rightarrow T$ that is $\left(p_{S} / p_{T}\right)$-to-1 almost everywhere Moreover, if π is right closing, then $\hat{\pi}$ may be taken to be right closing also

Here, the period of a sofic system is the period of any 1-to-1 almost everywhere finte type extension

The proof of Theorem 51 is largely the same as the proof of Theorem 11 The only real change is that we replace resolving blocks by their appropriate generalızation in the sofic setting markov magic words [B]

We follow [B] in the following two definitions
Given a sofic system T, a markov word for T is an allowable word w such that if $u w$ and $w v$ are allowable words in T, then so is $u w v$

Given a bounded-to-1 1-block factor map $\pi S \rightarrow T$ from an irreducible sofic system S to an arreducible sofic system T, define \mathscr{W} to be the set of allowable words w in T for which
(1) w is a markov word for T,
(11) $\pi^{-1}{ }_{0}[w] \subseteq \bigcup_{i=1}^{d},\left[w^{t}\right]_{k}$, where $k \geq J$ and $w^{1}, w^{2}, \quad, w^{d}$ are markov words for S In [B] it is shown that \mathscr{W} is non-empty Any $w \in \mathscr{W}$ for which d in (i1) is minimal is called a markov magic word for $\pi S \rightarrow T$ The mınımal d is the degree of the factor map $\pi S \rightarrow T[\mathbf{B}]$

We may use [B, Proposition 14] and a construction sımılar to that of $\S 3$ above (from [KMT]) to reduce to the case where $\pi S \rightarrow T$ has a markov magic symbol m Then [B, Proposition 14] gives the following generalization of the permutation Lemma 22

Lemma 52 Let $\pi S \rightarrow T$ be a degree d 1-block map with markov magic symbol m Let $m^{1}, m^{2}, \quad, m^{d}$ be the symbols in S with $\pi^{-1}{ }_{0}[m]=\bigcup_{t=10}^{d}\left[m^{\prime}\right]$ For each allowable word of the form mum in T, there are d words $u^{1}, u^{2}, \quad, u^{d}$ in S and a permutation τ_{u} of $\{1,2, \quad, d\}$ such that

$$
\pi_{0}^{-1}[m u m]=\bigcup_{1=1}^{d} 0\left[m^{\prime} u^{\prime} m^{\tau_{u}(1)}\right]
$$

As in the shift of finite type case, we may assume that the symbol m in T has at least two predecessors and two successors

The period of T is

$$
\operatorname{gcd}\{|m u m|-1 \text { mum is a word in } T\}
$$

and the period of S is

$$
\operatorname{gcd}\left\{\left|m^{1} u m^{1}\right|-1 m^{1} u m^{1} \text { is a word in } S\right\}
$$

The construction of $\hat{\pi} S \rightarrow T$ using Lemma 52 follows much the same lines as the shift of finite type case

6 The Markov chain case

If the irreducible shift of finite type (Σ_{G}, σ) is given a Markov measure μ_{G} defined by a stochastic matrix $P \geqslant 0$ via

$$
\mu_{G}\left({ }_{0}[s t]\right)=P_{s t} \mu_{G}\left({ }_{0}[s]\right)
$$

then $\left(\Sigma_{G}, \sigma, \mu_{G}\right)$ is called a Markov chain
Following [PS], define the weight of a cycle $s_{0} s_{1} \quad s_{p-1}$ in the graph G as

$$
w_{G}\left(s_{0} s_{1} \quad s_{p-1}\right)=P_{s_{0} s_{1}} P_{s_{1} s_{2}} \quad P_{s_{p-1} s_{0}}
$$

and the multıplicatıve subgroup Δ_{G} of \mathbb{R}^{+}by

$$
\Delta_{G}=\left\{\frac{W_{G}(s)}{W_{G}\left(s^{\prime}\right)} s, s^{\prime} \text { are cycles in } G \text { with }|s|=\left|s^{\prime}\right|\right\}
$$

In [PS] it is shown that if

$$
\pi\left(\Sigma_{G}, \sigma, \mu_{G}\right) \rightarrow\left(\Sigma_{H}, \sigma, \mu_{H}\right)
$$

is measure-preserving, then $\Delta_{G} \subseteq \Delta_{H}$, moreover, if π is 1-to-1 almost everywhere, then $\Delta_{G}=\Delta_{H}$

As was pointed out to me by Brian Marcus, the construction of $\hat{\pi}$ used in the proof of Theorem 11 can be adapted to work in the category of Markov measurepreserving block maps to give a partial converse to the [PS] result

Theorem 61 If $\pi\left(\Sigma_{G}, \sigma, \mu_{G}\right) \rightarrow\left(\Sigma_{H}, \sigma, \mu_{H}\right)$ is a measure-preserving factor map from the Markov chain Σ_{G} with period p_{C} to a Markov chain Σ_{H} with equal period $p_{H}=p_{G}$, and if $\Delta_{G}=\Delta_{H}$, then there is a measure-preserving factor map $\hat{\pi}\left(\Sigma_{G}, \sigma, \mu_{G}\right) \rightarrow\left(\Sigma_{H}, \sigma, \mu_{H}\right)$ that is 1-to-1 almost everywhere
Sketch of proof In the proof of Theorem 11 , we construct paths t and \bar{t} in the graph G such that their images $\pi(t)=m v m$ and $\pi(\bar{t})=m \bar{v} m$ in the graph H overlap by at most one symbol The map $\hat{\pi} \Sigma_{G} \rightarrow \Sigma_{H}$ is defined by "switching the images" of t and \bar{t}

Now $v m$ and $\bar{v} m$ are both cycles in the graph H If $w_{H}(v m)=w_{H}(\bar{v} m)$ then $\hat{\pi}$, like π, will be measure-preserving Otherwise the ratio

$$
\frac{w_{H}(v m)}{w_{H}(\bar{v} m)}=\rho \in \Delta_{H}=\Delta_{G}
$$

1s equal to a ratio

$$
\frac{w_{G}(\bar{r})}{w_{G}(r)}=\rho \in \Delta_{G},
$$

where $r=s_{0} r_{1} r_{2} \quad r_{k}$ and $\bar{r}=s_{0} \bar{r}_{1} \bar{r}_{2} \quad \bar{r}_{k}$ are cycles in the graph G based at the state s_{0} of G defined in the proof of Theorem 11

Now interpolate the cycle \bar{r} into the path \bar{t} at state s_{0}, and interpolate the cycle r into the path t at state s_{0}, and extend the common prefix $c_{1} c_{2} \quad c_{p L+1}$ of t and \bar{t} (by choosing a larger L if necessary) to ensure that the two modified paths t^{\prime} and \vec{t}, like t and \bar{t}, non-trivially overlap themselves or each other only by one symbol Denote $\pi\left(t^{\prime}\right)=m v^{\prime} m$ and $\pi\left(\bar{t}^{\prime}\right)=m \bar{v}^{\prime} m$

Now

$$
w_{H}(\pi(r))=w_{G}(r)
$$

and

$$
w_{H}(\pi(\bar{r}))=w_{G}(\bar{r}),
$$

so

$$
\frac{w_{H}\left(v^{\prime} m\right)}{w_{H}\left(\bar{v}^{\prime} m\right)}=\frac{w_{H}(v m) w_{G}(r)}{w_{H}(\bar{v} m) w_{G}(\bar{r})}=1,
$$

by the choice of the cycles r and \bar{r} Hence of we define $\hat{\pi} \Sigma_{G} \rightarrow \Sigma_{H}$ by 'switching the images' of t^{\prime} and \bar{t}^{\prime} (which we can do since t^{\prime} and \bar{t}^{\prime} non-trivially overlap each other or themselves by at most one symbol), then $\hat{\pi}$, like π, will be measure-preserving As in the proof of Theorem $11, \hat{\pi}$ will have lower degree than π

Acknowledgements The author is indebted to Roy Adler, Brian Marcus, and Bruce Kitchens for posing the problem and for useful discussions

REFERENCES

[AGW] R Adler, L W Goodwyn \& B Weiss Equivalence of topological Markov Shifts Israel J Math 27 (1977) 49-63
[AM] R Adler \& B Marcus Topological entropy and equivalence of dynamical systems Memorrs Amer Math Soc 219 (1979)
[B] M Boyle Constraints on the degree of a sofic homomorphism and the induced multiplication of meaures on unstable sets Israel J of Math 53 (1986) 52-68
[BKM] M Boyle, B Kitchens \& B Marcus A note on minımal covers for sofic systems Proc Amer Math Soc 95 (1985) 403-411
[BMT] M Boyle, B Marcus \& P Trow Resolving maps and the dimension group for shifts of finite type Memorrs AMS 377 (1987)
[CP] E Coven \& M Paul Endomorphisms of urreducible shifts of finite type Math Sustems Theory 8 (1974) 167-175
[F] R Fischer Sofic systems and graphs Monatch fur Math 80 (1975) 179-186
[KMT] B Kitchens, B Marcus \& P Trow Eventual factor maps and compositions of closing maps, in preparation
[PS] W Parry \& K Schmidt Natural coefficients and invariants for Markov shifts Invent Math 76 (1984) 15-32

