FINITE GROUPS WHOSE CHARACTER CODEGREES ARE CONSECUTIVE INTEGER[S](#page-0-0)

MARK L. LEWI[S](https://orcid.org/0000-0001-9627-6922)[®] and QUA[N](https://orcid.org/0000-0002-1856-8003)FU YAN[®]

(Received 17 May 2024; accepted 29 May 2024)

Abstract

Let *G* be a finite group. We investigate the structure of finite groups whose irreducible character codegrees are consecutive integers.

2020 *Mathematics subject classification*: primary 20C15. *Keywords and phrases*: finite groups, irreducible character codegrees.

1. Introduction

Throughout this paper, G always denotes a finite group. As usual, $\text{Irr}(G)$ denotes the set of complex irreducible characters of *G* and cd(*G*) = { χ (1) | χ \in Irr(*G*)} the set of character degrees. A number of papers, such as [\[5–](#page-4-0)[7\]](#page-4-1), have studied the influence of the set cd(*G*) on the structure of *G*. In particular, Huppert in [\[3,](#page-4-2) Theorem 32.1] considered finite groups whose irreducible character degrees are consecutive integers and showed that if $cd(G) = \{1, 2, ..., k - 1, k\}$, then *G* is solvable if and only if $k \le 4$, and that if $k > 4$ then $k = 6$ and $G = HZ(G)$ where $H \approx SI(2, 5)$ $k > 4$, then $k = 6$ and $G = HZ(G)$, where $H \cong SL(2, 5)$.
Inspired by these results, we consider the analogous **r**

Inspired by these results, we consider the analogous problem related to the character codegrees. The concept of character codegrees was first introduced by Qian *et al.* in [\[9\]](#page-4-3) as follows. For $\chi \in \text{Irr}(G)$, the *codegree* of χ is defined to be

$$
\operatorname{cod} \chi = \frac{|G: \ker \chi|}{\chi(1)}.
$$

Recently many papers have studied character codegrees (see, for instance, [\[4,](#page-4-4) [8,](#page-4-5) [10\]](#page-4-6)). Let $Cod(G) = \{ cod \chi \mid \chi \in \text{Irr}(G) \}$ be the set of irreducible character codegrees of *G*. The aim of this paper is to investigate finite groups whose irreducible character codegrees are consecutive integers. We have the following result.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

THEOREM 1.1. Let G be a group with $\text{Cod}(G) = \{1, 2, \ldots, n-1, n\}$, where n is a *positive integer. Then n* - 3 *and one of the following holds:*

- (1) *if* $n = 1$ *, then* $G = 1$ *;*
- (2) *if n* = 2, *then G is an elementary abelian* 2*-group;*
- (3) if $n = 3$, then $G = N \times H$ is a Frobenius group with an elementary abelian 3-group as its kernel, $N = G'$ and H is cyclic of order 2.

2. Preliminaries

We begin with the following basic lemma concerning character codegrees, which will be used frequently in our proofs.

LEMMA 2.1 [\[9,](#page-4-3) Lemma 2.1]. *Let G be a group and* $\chi \in \text{Irr}(G)$.

- (1) If N is a normal subgroup of G, then $\text{Cod}(G/N) \subseteq \text{Cod}(G)$.
- (2) *If N is subnormal in G and* $\phi \in \text{Irr}(N)$ *is a constituent of* χ_N *, then* cod $\phi \mid \text{cod}\chi$ *.*

Next we recall the concept of the codegree graph, which was first introduced in [\[9\]](#page-4-3). The codegree graph $\Gamma(G)$ is a graph whose vertex set $V(G)$ is the set of all primes dividing cod χ for some $\chi \in \text{Irr}(G)$ and there is an edge between two distinct primes p and *q* if *pq* divides cod χ for some $\chi \in \text{Irr}(G)$. We present the following facts on the codegree graph Γ(*G*).

LEMMA 2.2 [\[9,](#page-4-3) Theorems A and E]. Let G be a group and $\pi(G)$ be the set of prime *divisors of* |*G*|.

- (1) $\pi(G)$ *coincides with* $V(G)$ *, the vertex set of* $\Gamma(G)$ *.*
- (2) *For any subset* $\Delta \subseteq \pi(G)$ *with* $|\Delta| \geq 3$ *, there are two distinct primes* $p, q \in \Delta$ *so that there is an edge between p and q*.
- (3) Γ(*G*) *is not connected if and only if G is a Frobenius group or a* 2*-Frobenius group.*

3. Proof of Theorem [1.1](#page-1-0)

We start by proving the following result concerning number theory, which plays a very important role in determining the integer *n* when $Cod(G) = \{1, 2, ..., n-1, n\}$.

PROPOSITION 3.1. *Let n be an integer and r*, *q*, *p be three consecutive primes so that* $2 < r < q < p \le n$ and p is the largest prime less than or equal to n. Then $n < 2p$ and $n < rq$ *ⁿ* < *rq*.

PROOF. Assume that $n \ge 2p$. Then $p < 2p \le n$. By Bertrand's postulate, there exists a prime say s so that $n \le s \le 2n$. This contradicts the hypothesis that *n* is the largest a prime, say *s*, so that $p < s < 2p$. This contradicts the hypothesis that *p* is the largest prime less than or equal to *n*. Hence, $n < 2p$.

Now assume that $n \geq rq$. Applying Bertrand's postulate again, we see that $q < p < 2q$ and so $q < p < 2q < 3q \le rq n$. By [\[1,](#page-4-7) Theorem 1.3], there is a prime between 2*a* and 3*a*. This is a contradiction Thus $n < rq$ between 2*q* and 3*q*. This is a contradiction. Thus, $n < rq$.

Proposition [3.1](#page-1-1) enables us show that the integer *n* will not be too large.

PROPOSITION 3.2. Let G be a group with $\text{Cod}(G) = \{1, 2, ..., n-1, n\}$, where n is a $positive$ integer. Then $n \leqslant 6$ and $n \neq 5$.

PROOF. Assume that $n \ge 7$. Then there are three consecutive primes *r*, *q*, *p* as defined in Proposition [3.1.](#page-1-1) Thus, $n < 2p$ and $n < rq$. Consider the subset $\Delta = \{r, p, q\} \subseteq$ $V(G) = \pi(G)$. By Lemma [2.2\(](#page-1-2)2), there exists $\chi \in \text{Irr}(G)$ so that *pq* | cod χ , *rq* | cod χ or *rp* | cod *χ*. It follows from Proposition [3.1](#page-1-1) that $n \ge \text{cod } \chi \ge \min\{pq, rq, rp\} > n$. This is a contradiction. Thus, $n \le 6$. Similarly, by Lemma 2.2(2), $n \ne 5$. is a contradiction. Thus, $n \le 6$. Similarly, by Lemma [2.2\(](#page-1-2)2), $n \ne 5$.

With the above proposition, to prove Theorem [1.1,](#page-1-0) we only need to classify the groups when $1 \le n \le 3$ and show that $n \ne 4$, 6. Notice that if $n \le 6$, the codegree graph Γ(*G*) is not connected. Then by Lemma [2.2\(](#page-1-2)3), *G* is a Frobenius group or a 2-Frobenius group. So we need to understand the structure of Frobenius groups. In particular, we give the following proposition.

PROPOSITION 3.3. Let $G = N \rtimes H$ be a Frobenius group with kernel N. Suppose that $\pi(N) = \{p_1, p_2, \ldots, p_s\}$. Then the following statements hold.

- (1) *If* $\phi \in \text{Irr}(N)$, *then* cod $\phi \mid \text{cod}\chi$ *for some* $\chi \in \text{Irr}(G)$. *In particular*, $\prod_{i=1}^{s} p_i \mid \text{cod}\chi$ *for some* $\chi \in \text{Irr}(G)$ *for some* $\chi \in \text{Irr}(G)$.
- (2) $\text{Cod}(G) = \text{Cod}(G/N) \cup \{\text{cod}(\phi^G) \mid 1_N \neq \phi \in \text{Irr}(N)\}\)$. *Furthermore*, $\text{cod}(\phi^G)$ *divides* $\text{IN} \cup \{f\} \cup \{f\} \cup \{f\}$ $|N|$ *if* $1_N \neq \emptyset \in \text{Irr}(N)$.

PROOF. (1) The first part follows from Lemma [2.1\(](#page-1-3)2) immediately. Notice that *N* is nilpotent. Then $N = P_1 \times P_2 \times \cdots \times P_s$, where P_i is a Sylow p_i -subgroup of N. Let $1_{P_i} \neq \lambda_i \in \text{Irr}(P_i)$ and set $\phi = \lambda_1 \times \lambda_2 \times \cdots \times \lambda_s$. Then $\phi \in \text{Irr}(N)$ and $\text{cod}\ \phi = \prod_{i=1}^s \text{cod}\ \lambda_i$ with $p_i \mid \text{cod}\ \lambda_i$. Hence, by Lemma [2.1\(](#page-1-3)2), $\prod_{i=1}^s p_i \mid \text{cod}\ \chi$ for some $v \in \text{Irr}(G)$ as required $\chi \in \text{Irr}(G)$, as required.

(2) It is well known that $\text{Irr}(G) = \text{Irr}(G/N) \cup \{\phi^G \mid 1_N \neq \phi \in \text{Irr}(N)\}\)$. Thus, the first t is true. Notice that $\phi^G(1) = |G \cdot N|\phi(1)$. Then part is true. Notice that $\phi^G(1) = |G : N | \phi(1)$. Then

$$
\text{cod}(\phi^G) = \frac{|G:N||N|}{|G:N|\phi(1)|\text{ker }\phi^G|} = \frac{|N|}{\phi(1)|\text{ker }\phi^G|}
$$

divides |*N*|, as required. □

PROPOSITION 3.4. Let G be a group with $|\pi(G)| = 3$. *Suppose that* Cod(G) ⊆ {1, 2, 3, 4, 5, 6}. *Then G is not a Frobenius group.*

PROOF. We work by contradiction. Assume that $G = N \rtimes H$ is a Frobenius group with kernel *N*. By Lemma [2.2\(](#page-1-2)1) and (2), $\pi(G) = \{2, 3, 5\}$ and $6 \in \text{Cod}(G)$. First we consider the case when $|\pi(N)| = 2$. Since *N* is nilpotent, it follows from Proposition [3.3\(](#page-2-0)1) that $\pi(N) = \{2, 3\}$ and N is a direct product of an elementary abelian 2-group and an elementary abelian 3-group. Notice that the complement *H* is a cyclic 5-group and $\text{Cod}(H) \subseteq \text{Cod}(G)$. Then *H* must be cyclic of order 5. Since there is $\phi \in \text{Irr}(N)$ so that $\text{cod}(\phi^G) = |N|/|\text{ker }\phi^G| = 6$, we have $\text{ker }\phi^G < N$ and so $G/\text{ker }\phi^G = N/\text{ker }\phi^G \rtimes H$
 $H \text{ker }\phi^G/\text{ker }\phi^G \cong C \iff C \in \text{Hom } G$. Hence $30 \in \text{Cod}(G)$ a contradiction *H*ker ϕ ^{*G*}/ker ϕ ^{*G*} \cong *C*₆ \cong *C*₅ \cong *C*₃₀. Hence, 30 \in Cod(*G*), a contradiction.
Assume now that $|\pi(N)| = 1$ By Proposition 3.3(2) $\pi(N) = 51$

Assume now that $|\pi(N)| = 1$. By Proposition [3.3\(](#page-2-0)2), $\pi(N) = \{5\}$ and so *N* is elementary abelian. Since there is $\phi \in \text{Irr}(N)$ so that $\text{cod}(\phi^G) = |N|/|\text{ker }\phi^G| = 5$, we have ker $\phi^G \le N$. Let $\overline{G} = G/\text{ker } \phi^G$. Then $\overline{G} = \overline{N} \rtimes \overline{H}$ is a Frobenius group with kernel $\overline{N} \approx C \epsilon$ and $\overline{H} \approx H$. Let \overline{O} be a Sylow 3-subgroup of \overline{H} . Then \overline{O} is cyclic of order 3 $N \cong C_5$ and $H \cong H$. Let *Q* be a Sylow 3-subgroup of *H*. Then *Q* is cyclic of order 3. It follows that \overline{NO} is a Frobenius group of order 15. This is a contradiction since such a group does not exist.

Both cases are impossible. The proof is completed.

For convenience, here we introduce the notation of 2-Frobenius groups. If *G* is a 2-Frobenius group, then there are normal subgroups N , M of G so that G/N is a Frobenius group with kernel *^M*/*N*, and *^M* is a Frobenius group with kernel *^N*. We write $G = \text{Frob}_{2}(G, M, N)$ to denote such a 2-Frobenius group.

PROOF OF THEOREM [1.1.](#page-1-0) We first introduce two basic facts.

(A) cod $\chi > \chi(1)$ if $1_G \neq \chi \in \text{Irr}(G)$.

(B) If *G* is abelian, then cod χ is equal to the order of χ in the group Irr(*G*) \cong *G*.

There is nothing to prove when $n = 1$. Assume that $n \ge 2$. Applying fact (A), together with $2 \in \text{Cod}(G)$, we see that there exists a linear character $\chi \in \text{Irr}(G)$ such that $\cot \chi = 2$ and hence $\chi \in \text{Irr}(G/G')$. Then it follows from fact (B) that $2 \mid |G : G'|$.
If $n = 2$ then by facts (A) and (B) G is an elementary abelian 2-group and (2)

If $n = 2$, then by facts (A) and (B), G is an elementary abelian 2-group and (2) follows.

Assume that $n = 3$. Then by Lemma [2.2\(](#page-1-2)1) and (3), $\pi(G) = \{2, 3\}$ and G is a Frobenius group or a 2-Frobenius group. First suppose that $G = N \times H$ is a Frobenius group with kernel *N*. Since $2 \mid |G : G'|$, it follows that *H* is a 2-group and *N* is a 3-group. By Proposition [3.3,](#page-2-0) $\text{Cod}(N) = \{1, 3\}$ and $\text{Cod}(G/N) = \text{Cod}(H) = \{1, 2\}$. Therefore, *N* is an elementary abelian 3-group and *H* is an elementary abelian 2-group. Notice that the complement *H* must be cyclic or a generalised quaternion group (see [\[2,](#page-4-8) Theorem 9.2.10]). Hence, *H* is cyclic of order 2. Since $6 \notin \text{Cod}(G)$, we have $G' = N$. To complete the proof of (3), we only need to show that G is not a 2-Frobenius group. Assume that $G = \text{Frob}_2(G, M, N)$ is a 2-Frobenius group. It follows from Proposition [3.3](#page-2-0) that $\text{Cod}(G/N) = \text{Cod}(M) = \{1, 2, 3\}$. Similarly, $G/N \cong C_3^s \rtimes C_2$
and $M \cong C^t \rtimes C_2$ for some positive integers s and t This is a contradiction. Hence (3) and $M \cong C_3' \rtimes C_2$ for some positive integers *s* and *t*. This is a contradiction. Hence, (3) follows.

Now we show that $n \neq 4$. If $n = 4$, then $\pi(G) = \{2, 3\}$ and *G* is a Frobenius group or a 2-Frobenius group. First assume that $G = N \times H$ is a Frobenius group with kernel N. Then by a proof similar to that above, *N* is an elementary abelian 3-group and *H* is a 2-group with $\text{Cod}(H) = \{1, 2, 4\}$. Together with the fact that the complement *H* must be cyclic or a generalised quaternion group, we have $H \cong C_4$ or Q_8 . Notice that there exists $\phi \in \text{Irr}(N)$ so that $\text{cod}(\phi^G) = |N|/|\text{ker }\phi^G| = 3$. It is obvious that $\ker \phi^G < N$. Then $G/\ker \phi^G = N/\ker \phi^G \rtimes H \ker \phi^G/\ker \phi^G \cong C_3 \rtimes C_4$ or $C_3 \rtimes Q_8$ is a Frobenius group, which is a contradiction. Thus *G* cannot be a Frobenius group Frobenius group, which is a contradiction. Thus, *G* cannot be a Frobenius group.

Assume that $G = \text{Frob}_2(G, M, N)$ is a 2-Frobenius group. Since G/N is Frobenius and $\text{Cod}(G/N) \subseteq \text{Cod}(G)$, we have $\text{Cod}(G/N) = \{1, 2, 3\}$. Similarly, $\text{Cod}(M) = \{1, 2, 3\}$. This cannot happen by statement (2) of this theorem. Hence, $n \neq 4$.

By Proposition [3.2,](#page-2-1) it remains to show that $n \neq 6$. If $n = 6$, then $\pi(G) = \{2, 3, 5\}$ and *G* is a Frobenius group or a 2-Frobenius group. It follows by Proposition [3.4](#page-2-2) that *G* is not a Frobenius group. We may assume that $G = \text{Frob}_2(G, M, N)$ is a 2-Frobenius group. By Proposition [3.3\(](#page-2-0)1) and (2), Cod(G/N) \subseteq Cod(G) and $\text{Cod}(M/N) \subseteq \text{Cod}(M) \subseteq \text{Cod}(G)$. Since both G/N and M are Frobenius groups, it follows by Proposition [3.4](#page-2-2) that $|\pi(G/N)| = |\pi(M)| = 2$. Write $\overline{G} = G/N$ and then $\overline{G} = \overline{M} \rtimes \overline{K}$, where \overline{K} is the Frobenius complement. First consider the case when $\pi(K) \neq \{2\}$. As \overline{K} is cyclic and $\text{Cod}(\overline{K}) \subseteq \text{Cod}(G)$, we have $G' \leq M$ and \overline{K} is cyclic of order 3 or 5. Notice that $2 \mid |G:G'|$. Then $\overline{K} \cong C_2$ and \overline{M} is a 2-group. Since of order 3 or 5. Notice that $2 \mid |G : G'|$. Then $\overline{K} \cong C_3$ and \overline{M} is a 2-group. Since *M* is Frobenius and \overline{M} is isomorphic to its complement, it follows that \overline{M} is cyclic or a generalised quaternion group and hence $\overline{M} \cong C_2$, C_4 or Q_8 . But $\overline{G} \cong \overline{M} \rtimes C_3$ is Frobenius, which is impossible. Assume now that $\pi(\overline{K}) = \{2\}$. It is obvious that $\pi(M) = \{3, 5\}$. Let $M = N \times H$ be a Frobenius group with kernel *N*. By a similar proof there exists $\phi \in \text{Irr}(N)$ so that $G/\text{ker}\phi^G \approx N/\text{ker}\phi^G \approx H \approx C$ is It follows that proof, there exists $\phi \in \text{Irr}(N)$ so that $G/\text{ker}\phi^G \cong N/\text{ker}\phi^G \rtimes H \cong C_{15}$. It follows that $15 \in \text{Cod}(G)$ a contradiction. Hence $n \neq 6$. The proof is completed 15 ∈ Cod(*G*), a contradiction. Hence, $n \neq 6$. The proof is completed.

References

- [1] M. El Bachraoui, 'Primes in the interval [2*n*, 3*n*]', *Int. J. Contemp. Math. Sci*. 1(13) (2006), 617–621.
- [2] L. C. Grove, *Groups and Characters* (John Wiley and Sons, New York, 1997).
- [3] B. Huppert, *Character Theory of Finite Groups* (de Gruyter, Berlin, 1998).
- [4] I. M. Isaacs, 'Element orders and character codegrees', *Arch. Math.* 97 (2011), 499–501.
- [5] I. M. Isaacs and D. S. Passman, 'A characterization of groups in terms of the degrees of their characters', *Pacific J. Math.* 15 (1965), 877–903.
- [6] M. L. Lewis, 'Determining group structure from sets of character degrees', *J. Algebra* 206(1) (1998), 235–260.
- [7] M. L. Lewis, 'Irreducible character degree sets of solvable groups', *J. Algebra* 206(1) (1998), 208–234.
- [8] M. L. Lewis and Q. Yan, 'On the sum of character codegrees of finite groups', Preprint, 2024, [arXiv:2402.12628.](https://arxiv.org/abs/2402.12628)
- [9] G. Qian, Y. Wang and H. Wei, 'Co-degrees of irreducible characters in finite groups', *J. Algebra* 312 (2007), 946–955.
- [10] Y. Yang and G. Qian, 'The analog of Huppert's conjecture on character codegrees', *J. Algebra* 478 (2017), 215–219.

MARK L. LEWIS, Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA e-mail: lewis@math.kent.edu

QUANFU YAN, Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA e-mail: qyan5@kent.edu