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1. Introduction

If velocity and temperature profiles are known at a particular distance
along a vertical heated plate, the equations of motion determine the
velocity and temperature at points downstream, for a given variation of
plate temperature. The problem of continuing the boundary layer solution
for given initial conditions was investigated by Goldstein [2], for the
isothermal case of the laminar, incompressible flow past a flat plate, with a
given streamwise variation of pressure gradient outside the boundary
layer. He showed that the solution is not always free from singularities and
developed an expansion procedure to calculate the flow downstream when
these occurred. Typical singularities occur, for instance, near the leading
edge of the plate where the no-slip condition is imposed on the plate surface
and near the trailing edge, where this condition is relaxed to one of zero
stress along the axis of symmetry of the wake.

The method of Goldstein has been applied by Rheinboldt [6] and
Watson [8] to the flow with suction or blowing of the boundary layer.
It is extended here to advance the solution for the free convection boundary
layer along a vertical heated plate, past the height at which a discon-
tinuity of plate temperature occurs. It is assumed that the plate is flat and
is maintained at constant temperatures Tlt T2, below and above a height
L, above its lower edge. The environment is assumed to be at rest at uniform
temperature To and the Prandtl number of the fluid is taken to be unity 2.
Results are obtained for the two subcases, T2 > Tl > To and 7\ > T2 > To.

1 Present address: Department of Mathematics, Monash University, Clayton, Victoria
3168, Australia.

2 The theory can be applied to fluids with Prandtl numbers of order unity but not to
those with Prandtl numbers large or small compared to one—see § 7.
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150 R. K. Smith [2]

A pronounced, secondary thermal layer is formed at the temperature
discontinuity and grows downstream along the plate. The velocity field
responds more gradually to the discontinuity since the velocity conditions
on the plate are unaltered. Hence, the subsequent motions of fluid particles
near the plate are determined by the buoyancy field of the new thermal
layer, which establishes itself downstream at a steady rate. The solutions
emphasize the speed with which the temperature field adjusts itself to the
abrupt change in plate temperature.

2. The equations of motion

The laminar free-convection flow about a vertical, uniformly heated
plate has been studied by a number of authors (see Ostrach [5] for
references). For a rigorous derivation of the equations, the reader is referred
to Ostrach [4].

Let L be a representative length along the plate; To and Tx the ambient
and plate temperature and /3, v, K, the volumetric coefficients of expansion,
kinematic viscosity and thermometric conductivity of the fluid. The flow
is characterised by two dimensionless parameters; the Grashof number,

comparing buoyancy to viscous terms in the equations, and the Prandtl
number a = V\K, comparing the molecular diffusivity of momentum to
that of heat. Free-convection flows occur for a range of Gr much larger than
unity.

The equations of motion in non-dimensional form are,

2.1)

2.2)

2.3

where x, y are co-ordinates measured along and perpendicular to the plate
from the leading edge; u, v, are the velocity components in these directions
and 6 is a scaled temperature difference given by 6 = (!T—T0)/(7\—To),
where T is the temperature at a general position in the flow. (Here, scales
L, (v2L/5)i, (L6~)i, (v20/L)i, have been taken, corresponding to the quantities
x, y, u, v, where B = g/3(Tx—To), is a scale for the buoyant acceleration
term.)
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[3J Boundary layer on a vertical heated plate 151

For a plate maintained at a uniform temperature in an otherwise still
environment, the full boundary conditions are:

u= 6 = 0 on x = 0, y > 0;

(2.4) u = v = 0, 6 = 1 on y = 0, x > 0;

u, 6 -> 0 as y -> oo, x > 0.

Equations (2.1) —(2.3) are reduced by introducing a stream function y>,
defined by the relations

(2.5) u = y>y, v = —y>x,

and taking

0 = G(C),
where

(2.7) £ = yx-i.

In terms of y> equation (2.1) is satisfied identically and equations (2.2) and
(2.3) reduce to two ordinary differential equations for F and G, thus

(2.8) F'"+lFF"—|F'2+G = 0,

(2.9) G"+l<rFG' = 0.

Also, from (2.5), the velocity components are given by

u = xiF',
(2.10)

» = §a

Equations (2.8) and (2.9) for F and G have been solved numerically
subject to conditions (2.4), for a wide range of Prandtl numbers and details
are given in Ostrach [4]. The computations foi a = 1 were repeated here
using a routine facility for two-point boundaiy value problems of this
type on the Manchester Atlas Computer. In this case, F"(0) = .90797 and
G'(0) = —.40103.

3. The continuation problem

The continuation problem outlined in § 1 is to advance the solution
to equations (2.1) —(2.3), given velocity and temperature profiles at x = 0
and the variation of temperature along the plate; i.e.
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(3.1)

where

and

u

u

6

u,

R.

= uo(y), 6 = 60(y)

= v = 0 (a; ^ 0)

= 0o=61x+02x*+
6 -> 0 as j / -»• oo,

Mo(2/) = «i2/+«22

K. Smith

• • • (x >
x > 0;

0), .

on

J on

• K

X =

^ 0 )

0, y > 0;

0;

[4]

near y = 0.
(Note: We restrict ourselves here to initial velocity profiles with a single

zero at the origin; if u is finite at the origin, the problem becomes one of
mixed or forced convection; if ax —- 0, severe complications arise and the
equations are unmanageable — see Goldstein op. cit.).

If there is no singularity at x = 0, we can expand rp and 6 as double
power series in x and y. If these series are substituted into equations
(2.1) —(2.3) and the boundary conditions (3.1) are satisfied, we find that
certain relations must hold between the coefficients ait bt and 6>, in (3.1).
The first few are

0 + 2 , 1+\a3 = 0, I8b3+5\a5 = 0,

bo=6o, &2 = 0, 3!68 = «!©!,••

Further, if these conditions hold, we have

/Bd\ 4!
(3.3) — =ai+

and

86

The coefficient alt ai, blt 64, etc. are not determined by the relations (3.2);
once these are specified, we can find the skin friction and local heat transfer
from the plate, which are proportional to (3.3) and (3.4) respectively.

If the relations (3.2) are not satisfied, there is an algebraic singularity
at x = 0.

4. Inner expansion

With the stream function f defined by equation (2.5), we make the
following transformation of variables
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[5] Boundary layer on a vertical heated plate 153

(4.1) i = xi, v = yx-i,

and take

(4.2) V = !»/(£, r,),

and

(4-3) 9 = ^g(£,r,).

Then, from (2.5) and (4.2), the velocity components are given by

Further, equations (2.2) and (2.3) become

(4.5)

(4.6) -

The transformed boundary conditions from (3.1) are

(4.7a) / = ' ' = °' ( ^ ° M o n , = 0,
V ' g 2 7 f [ 0 + ( 9 ^ + 6 > ^ i + - - - ) ( | > 0 ) / '

/, = 3 ^ ( « l ( ^ ) + f l 2 ( ^ ) 2 + • • •), J f -> 0 and tj
6

Guided by this form, we expand / andg as power series in | . Thus

(4.8) / = fo+tf1+Ph+ • • :

(4.9) g = fgi+f2g2+l3)?3H

where fT and gr are functions of r\ only. Inserting (4.8) and (4.9) into (4.5)
and (4.6), we obtain two sets of ordinary differential equations for fr and
gr. These are:

C + 2/o/o - t f = 0,

(4.10) /i"+2/0/;'-3/;/;+3/o/1 = -&,

and

&+2ff/0gi = 0,

(4 in &+ 2afg
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Comparing conditions (4.7) with the series (4.8) and (4.9), we obtain
the following boundary conditions for fr and gr,

(4.12a)

(4.12b)

(4.13)

/,

& r «

lim '

. = /; =
= 27

f'r(rj)

= 0

&r, &, = &

-3^« + 1 ,

or r)

r+2 = 0 or »/

= 0,

= 0,

(4.14) Um ^

The solution for /0 having a double zeio at the origin and satisfying
(4.13) is

(4.15) /o = *--««

If we take

(4.16) z = our) = (Qa^irj,

then

(4-17) /o =

and these last two equations define a and Ao.
The equation for g± is now

This equation can be integrated directly and the solution satisfying con-
ditions (4.12b) and (4.14) is

where

r(n, x) =

is the incomplete gamma function and

/ n—1 (n—1)(«—2) \
r{n)-y{n, x) ~ e~xxn-1 ll-\ \- v ^ + . . .) as x -+ oo.

\ x x i

We note in passing that

(,20) A
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[7] Boundary layer on a vertical heated plate 155

In terms of z, the equations for fT and gr can be written

and

(4.22) -J£ + oz* Jjl -o(r-l)zgr = x

where Fr and Gr are functions involving ft, g{(l fg i ^ r—1) and their
derivatives.

Complementary functions for /r, satisfying equation (4.21) with zero
right hand side, are obtained by a power series substitution

oo

The recurrence relation, obtained by equating powers of z, is

n~t~3

The solutions can be conveniently expressed as generalized hypergeometric
functions of the type 2F2 and three independent complementary functions
fH (i = 1, 2, 3), are:

/rl — 2^2^ 3 ' Z1 3» 3' 3 '

(4.23) /r2 = z,

/r3 = = 2 2-^2\3> ii*' •3"' 3 '

Complementary functions for gr (r > 1) are found as follows. The sub-
stitution s = z3 in equation (4.22) with zero right hand side gives

Inserting

gr = I ^P+n,
n=0

into this equation and equating powers of s, we obtain the recurrence
relation

The coefficient of z° gives the indicial equation

3p(3p-l) = 0,
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from which p = 0, and p = ^, give independent solutions. These solutions,
gri [i = 1( 2) say, can be expressed in terms of the confluent hypergeometric
function. Thus, in terms of z,

P — F ( r l • 2.-
Sri — l r 1 1 T~ » 3 »

(4.24)

The boundary conditions on / r and gr as 2 -> oo, are

and

(4.26) lim « - « = ^ 6 r .

To apply these conditions, we must investigate the asymptotic behaviour of
fr and gr, and thus the behaviour of the functions fTi and gTi, for large z.

Asymptotic series for / r l and / r3 have been obtained by Goldstein op.
cit.. These are quoted below.

If r = 3M for some integer n, fTl is a finite series. Similarly for fr3 if
r = 3 » + l ; ^ r l if r = 3w+l; ^r2 if r = 3w— 1.

If r ^ 3w—1,

f
3(r+2l/3r|_!_ '*

3 /
(4.27)

( '±1)

and

(4.28)
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[9] Boundary layer on a vertical heated plate 157

If r = 3«—1, the terms with fi = n, in the ^-expression of each series
must be omitted and the last term in (4.27) replaced by

(4-29) 3ir!n+l]rtl-n)[lo§

and the last term in (4.28) replaced by

(4-30) rinJur^ [log ( ^

where %p{z) 3 is the logarithmic derivative of F(z).
The asymptotic expansion of the confluent hypergeometric function

with negative argument is given by

f
r{b—a) ^o ,"!

(see Slater, 1964). Thus, the expansions for gri are

( ff\(r-l)/3 r1^^ N \ S / \ 3 /

?) " ^ K 2 ^ — (

ofand

( ,- \ (r-2)/3 P/^1 AT \ 3 / \ 3 /

3/

solution for f±. The equation for /x is

(4.33) ^ + z . ^ _ 3 , ^

For large z,

and therefore, a particular integral for /x, valid for large z, is

The asymptotic behaviours of the complementary functions fri, obtained
from the series (4.27) and (4.28) are:

3 Only in this sentence does tp not denote the stream function.
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(4.35) /12 = z,

f13~Az3+Bz+C,

where A, B, C(= —2A), are constants determined by equation (4.28) with
r = 1. In particular,

A = 2r(f)/3*.

The complete solution for k may be written

where r1( sl7 tf1( are constants. Moreover, the asymptotic behaviour of this
solution has the form

(4.36) k~ A^+B^+C^.

The solution with a double zero at the origin and satisfying (4.25) is
obtained numerically as follows. Equation (4.33) is integrated outwards
with starting values /1(0) = /[(0) = 0, /i'(0) = 1, and the derivatives
calculated for a large value of z (z = 7, is found to be sufficiently large).
Tnis solution is regarded as a particular integral for k, say flq. Then, the
general solution with a double zero at the origin is

(4-37) k = ka+hfis,

for any value of Ax. Further

Jx = /19-M1/13
~ fiq-\-§XxAz as z -> oo.

From equation (4.36) 4 we see that f'^Jz -> a constant as z -> oo and using
condition (4.25) we find

(4.38) lim - = - '̂• = lim '-^ + G^A.
z -»oo Z U-^ z _> oo %

The limit fc'Jz is obtained numerically and X, is then deduced from (4.38).
Then from (4.37), we have

Equation (4.33) is now solved numerically with this as the appropriate
second derivative at the origin. In the asymptotic expansion for this
solution, the coefficient Ax in (4.36) has been obtained by satisfying the

4 It can be shown that an asymptotic power series, valid in a sector of the complex plane,
can be differentiated (Erdelyi, [1]).
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[11] Boundary layer on a vertical heated plate 159

boundary condition as z -> oo, i.e. A1 = a2\ax. The corresponding coef-
ficient Bt is calculated numerically using the values for f[ and f'-[. Hence

Bx = lim (/i-K').
Also

TAe solution for g2. The equation for g2 is

3<r

The equation has a particular integral gap. which is exponentially small for
large z. The complete solution is theiefore

(4-40) g2 = g2ll+mg21+ng22,

where m and n are constants and for large z,

(4.41) &

Equation (4.39) is integrated outwards with starting values
g'2(0) = 1, to give a particular integral g2Q. The general solution with a
single zero at the origin is then

Si — g
~ (a.a+n)z as z -> oo,

where a9 = l i m ^ ^ ^ , is calculated numerically and (i is any constant.
Then, using (4.26)

giving fx. The integration is repeated with g'2 (0) replaced by 1 +fi to give the
required solution. For this,

3*6
(4.42) g2 ~ xxz = — - z as z -> oo.

a

solution for f2. The equation for /2 is

^3/2 ^2/2 ^/s
4.43 _^+ z2^_4 z-/-2+4/2

az3 «22 az
With the asymptotic series for fx given by (4.36) and g2 given by (4.42), we
can find a particular integral f2v to this equation such that

, as z -> oo,
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where a', b', c', d' are constants depending on A1} B1,C1 and ct1. The general

solution for /2 is

where r2, s2, t2, are constants. Then, using the asymptotic series for the
functions f2i given above, we find that

(4.44) / 2 ~^ 2 z 4 +B 2 z 2 +C 2 z logz+C 2 z+D 2 +£ 2 z- 2 +0(z- 5 ) as z -> co.

Also, from equation (4.28), we have

~ ' ") as z -* oo.

Hence, the general solution for /2 with a double zero at the origin is

/2 = /2a i ^2/23>

and

(4.45) f'2~ 4 \A2q-\-X2 — Iz3+O(z) as z ->• 00,

where f2Q is the particular integral for which /2'4(0) = 1; A2Q is the leading
coefficient in the asymptotic series for this solution and A2 is any constant.
The value of A2Q and the next three coefficients in the series (4.44) are
obtained numerically. This value of A2Q is used together with (4.25) and
(4.47) to find A2. The appropriate solution for /2 and the corresponding
coefficients A2, B2, C2 and C2 are there found by integrating equation
(4.43) numerically with /"(0) = 1 + 2A2.

A similar procedure can be used for calculating g3, f3, git /4, gs, • • •
etc., in that order. However, the labour involved increases rapidly for
higher terms. We therefore restrict ourselves to calculating four terms in
each of the series for / and g. These appear sufficient to enable a reasonable
account to be given of the initial development of the inner layer. The
asymptotic series obtained for g3, /3 and gt are given below

(4.48) / , ~ J3z«+53^+C;^ log z+C 3 z 2 +^^+£; log 2+£3+0(^1),

5. Outer expansion

The series expansions for y> and 6 obtained in § 4, satisfy the boundary
conditions on the plate (z = 0) and at the initial section (x = 0). However,
for large z, the expansions have the form
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(5.1) +|*(^224+B222+C;z log z+C2z+D2+E2z~*+ • • •)

and

and these both diverge as z -> oo. The expansions are therefore valid only
in a neighbourhood of the plate, in fact for f z <c 1. To find a solution valid
for large yx~i, we seek expansions for y and 8 in powers of | , which
satisfy the boundary conditions on x = 0 and as t/ —> oo, but not neces-
sarily on y = 0, and which coincide 'with the inner solution in some region
away from the plate for each f.

If it is assumed that rearrangement is possible, the series (5.1) and
(5.2) can be written in terms of the outer variable y. Then

V>~ A0\\«y)*+A1(\*.y)*+Ai{\«y)l+ • • •

(5.3) +f»(C1+(C,+C;iog &x))
+ {C3+C3 log (ia)) (i«y)s+C;(iay)» log ? + • • • )

and

(5 4) +
+ ^ 3 ( y ( ^ 2 / ) - 1 + / ? ; log (i«

where a is given by (4.16). We therefore assume that for sufficiently large
values of yx~i, we can write

(5.5) V = f0(y) + - y,2(y) + *- y>3(y)

and

(5.6) 6 = 60(y) + ^ 62(y) + ^ 03(y)

where y>'0(y) and do(y) are given (see 3.1) and near y = 0,
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(5.7) v , = 6C1+2a(C2+C; log (%x))y+2xC'2y log
+fa»(C,+Ci log (ia))2/2+fa2C;^ log

^ 3 = — 2«.C'2y—|a2C32/2 ;
and

(5.8)

If the series (5.5) and (5.6) are substituted into equations (2.2) and
(2.3), making use of (2.5), and the coefficients of f and | r log | are equated,
the following sets of equations are obtained for the functions v\(2/) a n ( i

W
(5.9)

and

The first equation in (5.9) may be integrated directly to give

(5.11) ^2 = kip'o,

where k is a constant determined by comparing the series for y>2
 a n ( i Wo

in (5.7). Hence

(5.12) V2 = _ ^ ; .

Similarly,
2aC' ,

(5.13) ip3 = ? vi,

and making use of the last two equations, the first and third in (5.10) give

and

(5.15)
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Also, since y)3 is a multiple of ip'o, the equation for ip3 can be solved to give

(5.16) tp3 = 6f'o ——jw^— dy.
J Wo

The integrand can be expanded in powers of y using the series for 60 and
xp'Q. Hence

a/b0+2a2\ I 6a2(b0+2a2)\
«i, = —6 I I 4- y I ma, — I

(5.17)
/6(61 + 6a.) I2a2(bo+2a2)\+ylogy[ -^—— ^-V - I +0{y2),
\ «i ai '

where m is a constant of integration determined by comparison of (4.17)
with the series for y>3 in (5.7). Thus

(5.18) m = {oc(C2 + C; log (i«))/3+«2(60+2«a)}/a1.

The equation for 63 is simplified by using equation (5.15) to give

(5.19) 0 s = ( 6 d ' ' X

At this stage, it is interesting to note that not all the coefficients in
the asymptotic series for the functions fr and gr are unknown; indeed by
comparing the solutions obtained for y>2, rp3, y'3, with the series (5.7), we
see that only one coefficient in the asymptotic series for each fr is unknown
when those in its predecessors are known; this being the coefficient of z.
The reason is clear; since one of the complementary functions (i.e. fr2) is a
multiple of z, multiples of this function occur when finding a particular
integral to the equation for fr and the appropriate factor has to be detei mined
in each case. Moreover, when this has been done for each fr, the asymptotic
series for the functions gr are fully determined. In particular, we find that

(5.20) C; = 3(a1(

and from equations (3.2) we note that the terms containing multiples of
log f (that is, the functions %p3 and 63) vanish identically if the first two
relations in (3.2) are satisfied. Further, the fact that some of the coeffi-
cients Ait Bt, C(, a.(, fit, etc., are known in terms of the coefficients in the
initial profiles provides a useful check on the numerical computations.

6. Uniformly heated plate with a temperature discontinuity

The general theory developed in § 4 and § 5 is now applied to the flow
induced by a vertical heated plate when there is an abrupt change of
temperature from 7\ to T2 (T1, T2 constants) at a distance L from the
leading edge. Then L provides a typical length scale for the problem.
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Moreover, if the origin of co-ordinates is taken at the discontinuity, then
the initial profiles are given by the solution to the free convection problem
outlined in § 2, with x (non-dimensionalized with respect to L) taken equal
to unity (then £ = y). With starting values -F"(0) = p, G'(0) = q, the
initial profiles are obtained by differentiating equations (2.8) and (2.9)
and substituting in the Taylor series for F and G at the origin, using the
boundary conditions (2.4) on y = 0. Hence

and

(6-2)

Starting values, p(= F"(0)) and q(= G'(0)) for a = 1 are given in § 2.
Solutions are obtained for the two cases in which the temperature

difference between the plate and the environment is suddenly doubled
(6>0 = 2), or halved (6>0 = 0.5). Profiles for u and 6 at various downstream
positions from the singularity are shown in Figs (1) —(4) for a = 1. These
illustrate clearly the growth of the inner layer and in particular, the rapid
erosion of the initial temperature profile to match the new wall condition.
It is interesting to note that when the tempeiature difference is halved, the
fluid near the wall is decelerated since this is now negatively buoyant with
respect to adjacent fluid in the outer layer.

7. Discussion

The presence of a singularity (as defined in § 3) at a particular station
along the plate results in the growth of an inner boundary layer from that
point. As this layer spreads downstream, the original (outer) boundary
layer is modified to accommodate it.

The expansions for the stream function and temperature in the inner
layer (see § 4) satisfy the equations of motion and the boundary conditions
on the plate, but not those as y -> oo. Furthermore, these expansions also
depend on the coefficient at, b{ and 0{ and hence contain details of any
singularity5 at x = y == 0 (note, for example, that g± involved the dif-
ference bo—0o

 a n ( i therefore describes the immediate effect on the on-
coming temperature field of a temperature discontinuity on the plate at
x = y — 0). The inner expansions are expected to be valid close to the
plate, i.e. for rj = yx~i <c 1 and for a range of £ = xi < f0, say, where

5 Note — the expansion method is applicable whether or not a singularity is present but
the power of the technique is most evident in the former case.
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The outer expansions describe the modifications of the oncoming flow
due to the presence of the inner layer. They satisfy the equations of motion

and the boundary conditions on x = 0 and as y -> oo for x 2? 0. The forms
of the expansions are obtained by the requirement that for small y, they axi
the same as the forms of the corresponding inner expansions for large rj.
Moreover, the terms in the outer expansions are determined uniquely by
matching with the inner expansions as in § 5. The outer expansions are
expected to be valid for a range of | similar to that of the inner expansions
and for all but a small range of y in the neighbourhood of the plate.

Immediately downstream of the origin (x = y = 0), one hopes to find
a range of f (< fj say), at each point of which there is a range of y (de-
pending on f) in which the inner and outer expansions for tp and 8 overlap.
For values of f slightly larger than | x , it may be possible to obtain the flow
profiles by interpolation between the inner and outer solutions, but as
f ->- 1, none of the expansions is likely to converge. Unfortunately, these
series are all too complicated to allow any convergence criteria to be worked
out and it is necessaiy to rely on an appiaisal of the solutions obtained in
each case. It seems reasonable to believe that the solutions obtained here
are convergent at least over the range of x for which the inner and outer
expansions overlap. In general, this region is that in which both the asymp-
totic forms of the inner solution and the series expansion about y = 0 of
the outer solution give the same values for y and 6 for some range of y.

In the above discussion, it has been tacitly assumed that the Prandtl
number of the fluid is of order unity. If the Prandtl number is either large
or small compared to one, the thermal and momentum layers thicken at
widely different rates and the inner expansions (and outer expansions)
for each layer would be valid in different regions in the plane. It is riot then
clear how one might represent the coupling term (i.e. the buoyancy term)
in the inner and outer solutions. As far as the author is aware, the case of
extreme Prandtl number remains unsolved.

The continuation method described in this paper could be used in
principle to advance the boundary layer solution indefinitely, in a step-by-
step fashion. However, the convergence of the inner and outer expansions
appears to be too slow for this to be practical and with high speed computing
facilities available, a direct numerical solution of the equations seems a
more preferable means of continuation. A finite difference procedure has
been developed to this end, for free convection boundary layers, by Merkin
[3]. The present theory is primarily intended to overcome the difficul-
ties encountered at a singularity, where numerical methods break down.
For this purpose the method of matched co-ordinate expansions is a power-
ful one, as is clearly illustrated by the solutions to the above pioblems.
Moreovei, the expansions for y>, and 6 obtained here may be used to provide
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initial conditions for a numerical solution, once the singularity has been
transversed.
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