
A NOTE ON DIVERGENT SERIES 

G. M. PETERSEN 

1. Methods of summation of Rogosinski and Bernstein. In this note we shall 
discuss certain matrix methods of summation, though otherwise, §1 and §2 are 
not connected. 

In this section, we shall study some properties of the method (Bh) where we 
say the series X)w„ is summable (Bh) when 

B\ = Yl u» cos ~ô\ — f ~ 7 ) ~> 5> n *̂  °° • 

The method (Bh) has been studied in special cases airsing from different values 
of h by Rogosinski [11; 12], Bernstein [2], and more recently by Karamata 
[3; 4]. 

Two methods (A) and (B) are equivalent, (A) = (B), when all series sum
mable (A) are summable (B) to the same sum and inversely; on the other hand, 
the method (B) is more powerful than the method (A), (A) C (-B), when all 
series summable (̂ 4) are summable (B) to the same sum. 

In the paper of Karamata [3] a theorem states that (Bh) = (Ci) if 0 < A < 1 , 
\h — | | > .19 where (Ci) denotes the Cesàro method. Lorentz [6] pointed 
out that his proof contains gaps, but can be made valid if .69 < h < 1. If h — \, 
then (Bh) is more powerful than (G) [4], Here we shall prove Karamata's 
theorem for \ < h; our proof will be simpler than that given in [3]. 

The partial sums Bn of the (Bh) method may be expressed, after easy calcula
tions, in terms of <rv the partial sums of the (Ci) method. The transformation 
from av to Bn is regular and hence any (Ci)-summable series is summable (Bh) 
for all A, i.e., ( d ) C (B*). 

Our main theorem is 

THEOREM 1.1 (Bh) = (Ci) for h > J. 

In our proof we shall need a theorem of Agnew [1], which was rediscovered 
by Rado [10]. In the formulation of Rado, if the method (T): 

0 

is regular and if cmv = 0, v > m, 
m—l 

/ J \Cmv\ ^ "\Cmm\i " N 1 

for almost all m, then (T) is equivalent to convergence. 
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We shall introduce the method (Kc) where 

1 n 

Kn = , < Z ) [ (1 - C)sv-i + C 5 , ] - > 5 , H—> oo. 

n + 1 „=o 

If we express the partial sums of (Kc) in terms of av, the partial sums of (G)> 
i ^ = (1 — C) . <Tn-i + £<Twi 

w + 1 
it follows at once from the theorem of Agnew that (Kc) = (Ci) if c > J. We 
shall now prove that (Bh) = (X7*) for /* > | and the proof of Theorem 1.1 will 
then follow. 

THEOREM 1.2 (Bh) = (#*) if h > h 

Proof. We have 

Bn = 2-^ w" c o s ' ^o 2 ^ + h' 

1 w 

i C = T T X ) [C1 — C)5v-i + CSV]. 

n + 1 „=o 

Solving for s„, we have 

«, = (v +\)KI - -VKU + ^-Ç-^ - \)KU + ... + (- i) v - ^ ] X-KI 
C C \ C / C 

or 

' = (1-^S'(T^)^ (-1^ + 1 ^ (1 - c) 

where the prime means that the term with ju = v has the additional factor 
(1 — c). Substituting in Bn, we obtain, with 6 = ir/2(n + h) and a = 1 — 1/c, 

£* = 52 c o s "̂  — r r ( s n — V-i) == S sM{cos M# — cos (M + 1)0} + ^ cos nB 
jTo 2 ^ + n M = o 

= - \ l l { c o s ^ - cos 0* + l ) ^ a M £ a - u + 1 ) ( ^ + l ) iH 

- 4 cos nO anH'ar{'+1\v + \)Ke„ 
C y = o 

and changing the order of summation in the first sum, 

Bh
n = - 4 Ë a~(v+1\v + 1)KC\ £ aM{cos tf - cos (M + 1)0} + an cos ?z0 

+ - (n+ l)KnCosnd. 
c 
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Here, the expression in square brackets is 

(1 - c)a"{cos v6 - cos (v + 1)0} + av+1{cos (v + 1)6 - cos (y + 2)0} 

+ . . . + aw_1{cos (n - 1)6 - cos n6) + a cos n6 

= — ca"{cos v6 — cos (v + 1)6} + a cos v6 — - a cos (y + 1)6 

+ 
1 w - 1 „ 
- a cos n6. 
c 

Using the formula 

a+1 cos (v + 1)6 + . . . + an cos n6 

v+l Ur+l)d n+i i(n+l)d 

= di(a+1eiiv+1)d + . . . + anein6) = $R i - â / *  

= qy+1 cos (y + 1)0 - qy+2 cos y0 - an+1 cos (rc + 1)6 + an+2 cos rc0 
1 - 2a cos 0 + a2 

we obtain, for the above expression, 

{— cav+1 cos v6 + ca" cos (v + 1)6} 

9L. COS (V + 1)0 — g cos p0 o^ a cos #0 — cos (n + 1)0, 
c 1 — 2a cos 0 + a 2a cos 0 + a 

so we have 
-j n—x 

- ( ' + i ) ( „ + i ) i n { - ^ ^ cos n6 — cos (n + 1)0 
2a cos 6 + a2 

, 4ca"+1 sin2|0[cos 0 + 1)0 - a cos v0]\ , w + 1^C 

+ r-—^ . , 2 f + Kn cos w0. 
1 — 2a cos 0 + a ; c 

We shall now estimate the sum of the absolute values of the coefficients of 
Kl and show that the sum of the first n — 1 of them is less than that of Kc

n. Under 
these conditions we apply the theorem of Agnew. 

Here, for the coefficient of Kny 

lim -(n + 1 ) cos n6 = — ' - . 
w->oo £ L C 

We break the sum of the absolute values of the other coefficients into two 
parts, the second part of which is 

w - 1 

D2= Z 

1 

1 -JLr i N^ay+1 sin2|0{cos (v + 1)0 - a cos v6} 
- c2 a^i[v+l) 1- 2a cos 6 +a2 

4 sin2*0 
c 1 — 2a cos 6 -\r a 

X) (? + 1)1 cos (y + 1)0 - a cos y0| 
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Since we have 

| cos 0 + 1)0 - a cos vd\ < | cos 0 + 1)0 - cos v8\ + 

n - l 

=0 
] £ 0 + 1)1 cos 0 + 1)0 - a c o s ^ | < 4 ( w + 1) + 

1 M . . 
- IJ cos vd I, 

\n(n + 1) 

. 2 0 I f , m Sm 2 = ?lÏ6 + ^(1) 

and 1 - 2a cos 0 + a2 = (1 - a ) 2 + o( l ) = r~2 + <?(1), therefore 

Z>2<£+*(1) . 

Now we shall turn our at tent ion to the first par t of the sum 

Z > i < 
an cos nd — an cos (n + 1)0 
I 1 — 2a cos 0 + a 

w - l 

Z(" + DI«"'I-
j>=0 

As before 1 — 2 a cos 0 + a2 = c~2 + o ( l / n ) , and therefore 

£ > i < 

< 

|a cos nd — cos (w + 1)0|[1 + o(l/n)]- • (^+i)kr"+^krw"1+i 
(1 - l / | a | ) s 

! a ( A . i\n\n^ ~ \a>\) + o(\) 
\a cos nd — cos (n + 1 ) 0 - — , . f - T T " ^ . 

(i - H) Here we have assumed tha t an = 0(1), t ha t is, \a\ < 1. We shall proceed to 
give an estimate of \a cos nd — cos(n + 1)0|. We have 

-K h 
\a cos nd — cos (n + 1)0| = a sm 2 n + h 2 n + h 

and so 

| a cos nQ — cos (w 

( h — l \ . 7T k , h — 1 . 7T /£ 

IV* " T ' y Sm~~2^+h + -Jr sm 2 nTh 
h - 1 . 7T /f . X A - 1 A \ 

T Sm 2 V+l - Sm 2 nTh = °\y)' 

. T h - \ 

l - * l + 
C 

Substi tut ing the above est imate for \a cos nd — cos(n + 1)0| in our expression 
for D, we obtain 

1 
2 > i < 2c c 

T o satisfy the theorem of Agnew, the absolute value of the coefficient of 
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Kn must be greater than the sum of the absolute values of the other coefficients. 
In our case, this is true if 

If c = h, this reduces to 

2 

> - + -
^ 8 ^ 2c 

l-h-
c 1 - a 

2 
T IT 

2 > 8 ' 

so that (Bh) = (is?) whenever |a| < 1 or h > \. This completes our proof. 
In the general case, (1.1) does not hold for h < \ while c > J; so that (Bh), 

h < \ can not be shown equivalent to some (Kc), c > \ by these means. 
Examples can be constructed to show (Bh) is not equivalent to (G) for h < 0. 
The most interesting question remaining open is whether or not (Bh) is equiva
lent to (Ci) in the interval 0 < h < J. 

2. Some special Norlund methods of summation. In this section we wish 
to consider some elementary Norlund methods, namely, methods of the form 

(A) <rn = a0 sn^p + . . . + ap sn, ao + ai + • • • + dp = 1. 

It was first proposed as a problem by Pôlya, [9] that the method defined by 

tn = (1 — c) sn-i + c sn-+ sy n —» oo (c T^ 0), 

is equivalent to convergence if and only if c > \. Kubota [5] proved more 
generally that a transformation of type (A) is equivalent to convergence if and 
only if all of the roots of the ''associated" equation 

(2.1) ao + oi z + . . . + ap z
v = 0, 

lie inside the unit circle. 
Other results concerning the method (̂ 4) have been obtained by Lorentz [7] 

and by Silverman and Szâsz [13]. We shall show that any bounded sequence 
summable (A) is convergent if and only if none of the roots of (2.1) lie on the 
unit circle. This will easily follow from Theorem 2.2 (the main theorem of this 
section), where we describe all (A)-summable sequences under the above 
hypotheses on the roots of (2.1). 

We shall first prove 

LEMMA 1. If 

n 

Sn = Z "V (a 9* 1) 

then Sn may be written in the form P^(^) an + c where P^(w) is of the form 

ckn
k + ck-xnk-1 + . . . + Co, 

and ck, Cfc-i, . , . , Co, C are constants depending only on a. 
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Let us write 

AyW=Z (-!)-( ,* > + *•)• 
Applying Abel's formula, we have 

± „V = ̂ — - ~~± a'A/ - j^—(n + 1)*. 
7=1 1 — a 1 — a 7=i 1 — a 

Repeating this process k + 1 times, 

S '*»' - l r ^ + wh? M" + • • •+ '- , % ^ ? i , ( " + "'I 

and therefore, since A s + V = 0, 

£ «*«' = P*(»)a" + c 
v=l 

as required. 
In preparation for Theorem 2.2 we shall first consider the special case of (A) 

when p = 1. In this case, we may write (A) in the form 

(Aa) <rn = __ { - asw_i + sn} (a ^ 1). 

THEOREM 2.1 Suppose \a\ > 1. 

(i) If <rn—+ <r, then sn = can + <r£, w&ere o-£ —> <r and c is a certain constant. 

(ii) 7/ <rn = Pfl(n)an where P^in) = c^n* + cM_iWM_1 + . . . + c0, ^ 0 ^ 

sn = (^ + 1 ^ + 1 + c/>" + . . . + cQan = Pl+i(n)an 

and conversely. 

(iii) 7/ <rw = Pv(n)bn; Pv(n) = cvnv + Cy-i^"-1 + • • • + Co ana7 b 9^ a then 

sn = (c;w + • . • + cj) &n + can 

ana conversely. 

Proof. We have for (i), 

(2.2) T^—s* = flnho + ~ + . . . + ^ l 
1 — a L a a J 

If we define tn — an/a
n, then part (i) of our theorem means that, for \a\ > 1„ 

an tn—> a implies to + h + . . . + tn — c + an/a
n, where (1 — a)an —» a. 
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The series £/„ is absolutely convergent. Set 
oo 

then 

*o + /i + . . . + k = c - (4+i + 4+2 + . . .) 

_ r __ L i „n+l- , 1_ n+2. , 
~" nn\ n a n+1 """ n2 ^ ^ + 2 " + " • • • • 

Since an tn—> a-, 
CO 4 

k=i a 
converges toward 

*Va + b + • • • + h+• • • ) = °l r^îÂ = ^ T -
Therefore 

/o + • • • + tn = c -\—n<rL vn—* 
a a — 1 

which proves (i). 

(ii) Substituting the value of an in (2.2) we have 

YZTa sn = aw{^M(r + 2* + . . . + n") + ^ - i ( l M _ 1 + 2/x~1 + . . . + n*"1) 

+ . . . + ^o(l + l + . . . + l ) } . 

Using the well-known fact that 1" + 2" + . . . + ^M is a polynomial in w of 
degree JJL + 1 with constant coefficients, we obtain 

sn = ta+mM+1 + c>M + . . . + c'0}an = PUi(n)an. 

The converse becomes evident on substituting the expression for sn in (Aa)* 

(iii) Again we substitute the value for an in (2.2), 

T - 1 - s n = a - j c / l ' - + 2 ^ + . . . + fi'**) 
1—a I \ a a a / 

+ ^ _ i l l - + 2 -2 + . . . + W " H J + . . . + c o l l + - + . . . + ~ » J f . \ a a a / \ a a / ; 

By Lemma 1, 

(2.3) l"-+2^+... + n"K = -nP',(n) + c, 
a CL CL a 

where Pj(») = ( Q w + . . . + £0). 
Using (2.3) we have 

1 ( hn hn hn 1 
:, sn = an{cvP'v(n)-^ + c9ti + . . . + CiPi(»)-â + d i + c0-n + W 
1 — a v a a a ) 
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which may be written P'v'(n)bn + can. Again the converse is evident if we sub
stitute sn in (A a). 

We now return to the method (A). 

THEOREM 2.2 Ifai, a%, . . • , ah \at\ 5̂  1 are all of the different roots of equation 
(2.1), ai, a2, . . . , ak are those roots with \a\ > 1 and mi, m^ . . . , mk their multi
plicities, then the general form of a sequence summable (A) is 

(2.4) sn = Pi(»)aï + P2{n)a\ + . . . + P*(»)a2 + si, 

where 

P f \ m%—\ f m%—2 , , 

i(n) = ci<mi-in + cit7ni-.2n + . . . + c i t0 

are polynomials in n of degree mt-i with arbitrary constant coefficients and si is 
an arbitrary convergent sequence. 

Proof. (A) may be considered as an iteration of p transformations 

°» ~ -j _ 7 { — bj(Tn-i + <J3
n) , j = 1 , 2 , . . . , p , an = <7W, (T^ = Sn. 

The 6y are first those at with |«-*| < 1 and then the #i, a2, . . . , ak all taken with 
their multiplicities. There will be Wi transformations with bj = ai and so on. 
The first m — mk+\ + . . . + mt transformations are all equivalent to conver
gence by the theorem of Kubota, and therefore the convergence of an will be 
equivalent to the convergence of o%. 

Hence, in proving our theorem we may assume that all \a\ > 1. For the first 
transformation al is a convergent sequence, and therefore 

f n t -f -f 

an — ca\ -f <Jni cw —> (7 

by Theorem 2.1 (i). If now we repeat this argument p times and use Theorem 
2.1 (i), (ii), and (iii), we shall obtain as the final result expression (2.4) for sn. 
Conversely, substi tuting sn in the expression for (A), we see sn is (A) summable. 
Th is proves the theorem. 

We shall next prove a lemma tha t will enable us to prove a further theorem 
on methods of type (A). 

LEMMA 2. / / \at\ > 1 for at ^ ajf i ^ j (i = 1, 2, . . . , k), and 

Pvi(n) = Ci^rf* + . . . + ci0, Pya{n) 9^ 0 for alii, 

then the expression 

(2.5) yn = PMa\ + P„.(»)aS + . . . + PMal 

is unbounded for n —» <». 

We shall show that if yn = 0(1) we have a contradiction. Assume the first / 
of the a% are all those having that modulus which is the maximum modulus of 
the at that is 

M = |a2| = . . . = |ai|, 
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and 

at = d\ela\ ai = 0, at 9e aj, i 9^ j (i = 1, 2, . . . , /). 

Then (2.5) becomes 

yn = allPM + eina>PM + ... + einaiPM] + a\o{\). 

We have, since yn — 0(1), 

(2.6) PMl (») + eina>P„ « + . . . + e*"'P„ (n) = o{\). 

We write Q* for the coefficients in 

Pm(n) oin*, fx = max /**; 
i=l,2,..., I 

at least one of these is different from zero. We consider the / equations 

cL + e^+M,cL + . . . + e«»+^<c;, = en+i> j = o, 1, 2 , . . . / - 1. 

Dividing by n» in (2.6) we have en+j—> 0, n—* œ. The a;- are all different and 
different from zero. Solving these / equations 

(2.7) 7 iajn 
cUie 

1 1 

1 iaa(l-l) 

. 1 . . 1 

iai(l-l) 

v-\ 

where F is a Vandermonde determinant different from zero and independent 
of n. 

Hence, expanding the numerator in (2.7) by the j th column, we see that 
cl. eiain —» 0 as n —> o° or c'p. — 0 for all j . This contradiction proves our lemma. 

THEOREM 2.3 Any bounded sequence summable (A) is convergent if and only 
if none of the roots of (2.1) lie on the unit circle. 

Proof. The sufficiency of these conditions follows from Theorem 2.2 and 
Lemma 2. 

If we assume that the associated equation (2.1) has a root a with \a\ = 1, 
then breaking (̂ 4) into an iteration of transformations as in Theorem 2.2, we 
can consider 

1 
(2.8) 

1 
- [ - asn-i + sn], 

last in our sequence of transformations. It is then evident that the method 
(2.8) and therefore (A) sums the sequence ein^ where a = eixf/. This contradiction 
proves our conditions necessary. 

The existence of a bounded divergent (A)-summable sequence implies [8] 
that sequences of his type form a non-separable subset of the space m of bounded 
sequences. It follows that in the case of a root \a\ = l a simple enumeration of 
all (A)-summable sequences comparable with (2.4) is impossible. 
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