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We investigate the global stability properties of an electron–positron pair plasma in the
linear regime. The plasma is confined by the magnetic field of an infinitely long wire. This
configuration is the large-aspect-ratio limit of the levitated dipole experiment of the APEX
collaboration. The stability is governed by the diocotron mode and the interchange mode.
The diocotron mode dominates in the case of a cold, non-neutral plasma. For specific
density profiles we find analytic solutions. We derive a necessary condition for instability
and find unstable solutions if the plasma forms a thin shell around the wire. Solutions
for arbitrary density profiles with finite temperature are obtained numerically. We find
that finite-temperature effects stabilise the diocotron mode. The interchange mode, on the
other hand, dominates if the plasma is neutral and has a finite temperature. This mode
becomes unstable for a steep-enough density gradient, that is aligned with the gradient of
the magnetic field strength and is stabilised by the equilibrium E × B drift of a non-neutral
plasma.
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1. Introduction

This paper discusses the stability of a pair plasma of arbitrary non-neutrality that is
confined by the magnetic field of a long, straight, current-carrying wire. We are interested
in this configuration because it is the large-aspect-ratio limit of a dipole trap, where the
magnetic field is produced by a circular current hoop (Saitoh et al. 2010). The APEX
collaboration plans to use a dipole trap with a levitated coil to confine a pair plasma.
Depending on the injection scheme, a pure electron plasma is initially confined in the trap
(Stoneking et al. 2020). Because of the mass symmetry of the electrons and positrons, the
pair plasma is expected to provide insights into novel plasma physics (Helander & Connor
2016; Stenson et al. 2017; Mishchenko, Plunk & Helander 2018).

We expect that the most important instabilities are of low frequency and long wavelength
compared with the cyclotron motion and are electrostatic in nature, since the plasma
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pressure is typically low compared with the magnetic pressure (β � 1). Depending on
the degree of non-neutrality, diocotron modes (Levy 1965; Briggs, Daugherty & Levy
1970) and interchange modes (Krall, Trivelpiece & Gross 1973; Garcia 2003) govern
the stability.

Stable and unstable diocotron modes are ubiquitous in the low-frequency dynamics of
magnetically confined non-neutral plasmas. These modes have been studied extensively
in Penning–Malmberg traps, where a non-neutral plasma column is confined radially by a
uniform axial magnetic field and axially by electrostatic fields (Fine & Driscoll 1998). The
equilibrium plasma undergoes azimuthal E × B drift rotation because of the radial electric
field of the plasma space charge. The perturbed electric potential of the diocotron mode
is nearly constant along the magnetic field and propagates in the direction of the drifts.
In the case of a Penning–Malmberg trap the mode potential is nearly constant axially and
propagates azimuthally.

In contrast, the long straight wire produces a purely azimuthal magnetic field.
The space charge electric field is still radial, resulting in an axial E × B drift. Thus,
the diocotron mode potential is constant azimuthally and propagates axially. In addition,
the inhomogeneity and curvature of the magnetic field for the long straight wire produce
curvature and gradient-B drifts in the axial direction which compete with the E × B drift.
We will see that these drifts can have a stabilising influence on diocotron modes.

Just as the E × B drift plays a key role in the dynamics of the diocotron mode, the
curvature and gradient-B drifts play a key role in the dynamics of the interchange mode
(Krall et al. 1973; Garcia 2003). Because the curvature and gradient-B drifts depend on the
sign of charge, the drifts can produce a perturbed charge density within a neutral plasma.
If the gradient in the magnitude of the magnetic field and the gradient in the density are
aligned, the perturbed charge density acts self-consistently to enhance the perturbation.
These gradients both point radially inwards at the outboard side of the cylindrical plasma.
There has been previous work on the interchange mode for a neutral pair plasma using
a local theory (Mishchenko et al. 2018). Here, we solve the mode equation taking
into account the global plasma geometry and the boundary conditions on the perturbed
potential at conductors surrounding the confinement region.

Section 2 of the paper combines the linearised drift kinetic equations for electrons and
positrons and Poisson’s equation to obtain the mode equation for the perturbed electric
potential. This same mode equation describes both the diocotron mode and the interchange
mode. When the equation is scaled properly, it contains two dimensionless parameters.
The parameter k2λ2

D is a measure of the importance of the curvature and gradient-B drifts,
where k is the axial wavenumber and λD is a characteristic Debye length. The parameter
η = n(0)

p (r)/n(0)
e (r) is the ratio of positron density to electron density. We assume that the

two species are uniformly mixed and have in mind that the electron density is always larger
than or equal to the positron density, allowing 0 � η � 1. In addition, the Debye length
is defined using a density characteristic of the electrons. The temperature is assumed to
be uniform in radius and to be common to both species. The rest of the paper examines
solutions for diocotron and interchange modes that arise in various limits of these two
parameters.

In the dimensionless mode equation, the scaled frequency is given by the expression
Ω = ω/α, where α = −2πc2en0e/Ik is an effective drift frequency. Here n0e is a constant
characterising the electron density, I is the current in the wire, c is the speed of light, e is
the magnitude of the electron charge and k is the axial wavenumber for the mode. We will
find solutions to the mode equation with scaled growth rate Im(Ω) that is order unity. The
unscaled growth rates are therefore of order α. The current I is taken to be negative so that
the scaling factor α is positive.
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Stability of non-neutral and pair plasma 3

Section 3 considers the limit where both parameters are zero, that is, the case of a pure
electron plasma with temperature low enough that the curvature and gradient-B drifts may
be neglected. This is the limit where the diocotron mode takes its simplest form. The
velocity variables drop out, yielding a simplified kinetic equation of reduced dimension.
The reduced mode equation yields a necessary condition for instability; the derivative
∂(r2n(0)(r))/∂r must be non-monotonic, where n(0)(r) is the equilibrium density and r
is the radial coordinate. This criterion is easily satisfied since the density must vanish
at the two cylindrical conductors that bound the confinement region and be non-zero in
between. The inner conductor is the surface of the cylindrical wire and the outer is a
cylindrical boundary wall. Thus, it is not surprising that we find diocotron instabilities for
various sample density profiles. In a Penning–Malmberg trap one finds the condition that
∂(n(0)(r))/∂r must be non-monotonic. The r2 difference between the two criteria arises
from the fact that the E × B drift flow is incompressible in the canonical phase space of
the reduced distribution, not in configuration space. Even in the limit where the curvature
and gradient-B drifts are negligible, the difference in the magnetic field is important.

The mode equation is a differential equation for the electric potential. In § 3.2, a Green’s
function is used to rewrite the mode equation as a Van Kampen eigenvalue equation for
the density perturbation (Van Kampen 1955; Case 1959; Schecter et al. 2000). Section 3.3
uses this approach to find an analytic solution for a plasma where r2n(0) is a flat-top profile.
We show that the instability results from the linear interaction between a positive energy
density perturbation and a negative energy density perturbation. Section 3.4 discusses
numerical solutions for the Van Kampen eigenvalue equation and the mode equation for
the case of a Gaussian density profile. The mode equation is solved using the shooting
method and the Van Kampen equation is solved by discretising the radial coordinate and
solving the resulting matrix-eigenvalue problem.

Section 3.5 considers the limit where the parameter η is zero but k2λ2
D is finite. This

limit corresponds to a warm, pure electron plasma. We consider a density distribution
that leads to instability for k2λ2

D = 0 and examine the stability for a sequence of increasing
values of this parameter. The growth rates drop smoothly to zero as k2λ2

D increases towards
unity, demonstrating a stabilising influence of the curvature and gradient-B drifts on the
diocotron mode.

Section 4 discusses warm, partially neutral plasmas for which the parameters η and k2λ2
D

are non-zero. To clearly identify the interchange mode, we start in § 4.1 by considering
the limit η = 1, where the plasma is neutral. In this limit, the equilibrium E × B drift
vanishes and there is no diocotron mode. Numerical solutions of the mode equation for
Gaussian density distributions show that the mode growth rate is an increasing function
of the parameter k2λ2

D. This dependence reflects the central role played in the instability
by the curvature and gradient-B drifts. We identify the instability as an interchange mode.
Section 4.3 considers the modes under variation of both parameters η and k2λ2

D. As these
two parameters vary, the relative importance of the E × B drift and of the curvature
and gradient-B drifts vary, producing variation in the growth rates of the diocotron and
interchange modes.

There are several important differences between the simplified model of a long, straight
wire and the actual levitated dipole trap. Bending the straight wire into a coil has two
implications. First, the axis of symmetry is no longer aligned with the wire but is
given by the central axis of the coil. The magnetic field strength is no longer constant
along a magnetic field line and magnetic mirroring has to be considered. Second, the
possible wavenumbers are no longer continuous but take on discrete values. An additional
difference comes with the cylindrical vacuum chamber that encloses the levitated dipole.
The conducting surface is no longer aligned with a magnetic field line, more specifically,
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FIGURE 1. Schematic of the configuration with the wire in red, the plasma in blue and the wall
in grey. The current through the wire is indicated by the black arrow and the magnetic field by
the blue arrow.

there is no conducting surface at the inboard side of the coil. Hence, the effect of a
perturbation of the plasma on the opposing plasma at the inboard side has to be taken
into account.

2. General mode equation

The purpose of this section is to obtain the governing equation for diocotron and
interchange modes that propagate on an electron–positron plasma that is confined by
the magnetic field of a long straight current carrying wire. The plasma is allowed to
have arbitrary non-neutrality and finite temperature. The two modes have sufficiently
low frequency and long wavelength that guiding-centre-drift theory can be used to
describe the electron and positron dynamics, and the two modes are electrostatic in nature.
Consequently, the mode equation for the perturbed electric potential can be obtained from
the linearised drift kinetic equations for the electrons and positrons and Poisson’s equation.

2.1. Drift kinetic equation
Let a long, straight, current carrying wire be coincident with the z-axis of a cylindrical
coordinate system (r, θ, z). The magnetic field in the vicinity of the wire is then given by
the expression

B = 2I
cr

θ̂ , (2.1)

and the vector potential by the expression

A = Az(r)ẑ = −2I
c

ln(r)ẑ. (2.2)

The confinement region is bounded by the conducting surface of the wire at radius rwire
and an outer conducting cylinder at radius rwall, where rwire < rwall. A schematic of this
configuration is given by figure 1.

Following Taylor (1964), the guiding-centre-drift Lagrangian of a particle moving in the
field of the wire can be written in the form

Lj = mjr2θ̇ 2

2
+ qj

c
Azż − qjφ − μj|B|, (2.3)
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where j = e refers to electrons and j = p refers to positrons. The respective particle has
charge qj, mass mj and magnetic moment μj = mjv

2
⊥/2|B|. Since the mass for electrons and

positrons is the same we will drop that index from now on. The first term in the Lagrangian
is the kinetic energy associated with the velocity component parallel to the magnetic field
line, the second is the vector potential term, the third is the electrostatic potential energy
and the last term is the potential energy associated with the magnetic moment. Both
potential energy terms enter the Lagrangian with a minus sign. The canonical momenta
for the species j are given by the expressions

pθ = ∂Lj

∂θ̇
= mr2θ̇ and pzj = ∂Lj

∂ żj
= qj

c
Az. (2.4a,b)

The corresponding guiding-centre-drift Hamiltonian is given by the expression

Hj = pθ θ̇ + pzjż − Lj = p2
θ

2mr2
+ μ|B| + qjφ. (2.5)

The canonically conjugate variables are (θ, pθ ) and (z, pzj), where pzj represents any
dependence on the radius r. Neglecting collisions for the relatively short time scales
relevant to mode growth, the adiabatic invariant μ can be treated as a constant of
the motion.

The distribution of guiding centres is given by the expression fj = fj(θ, pθ , z, pzj, μ, t)
and satisfies the kinetic equation

∂fj

∂t
+ [ fj, Hj] = 0. (2.6)

The number of guiding centres within a phase space volume is given by the expression

dNj = fj(θ, pθ , z, pzj, μ, t)| dθ dpθ dz dpzj dμ| (2.7)

and the density of guiding centres in physical space is given by the expression

nj =
∫

dNj

|dzr dθ dr| =
∣∣∣∣2Iqj

c2r2

∣∣∣∣ ∫ ∞

0
dμ

∫ ∞

−∞
dpθ fj, (2.8)

where use has been made of the relation |dpzj| = |2Iqj/c2r| dr. The drift in the z-direction
follows from the Hamiltonian in (2.5)

żj = ∂Hj

∂pzj
= − p2

θ

mr3

∂r
∂pzj

+ μ
∂|B|
∂r

∂r
∂pzj

+ qj
∂φ

∂r
∂r
∂pzj

= c2

2qjI

(
mv2

‖ + mv2
⊥

2

)
− c2r

2I
∂φ

∂r
,

(2.9)

where ∂r/∂pzj = −c2r/2qjI. The first two terms on the right-hand side of (2.9) are the
curvature and gradient-B drifts and the last term is the E × B drift. For a given electric
potential, the E × B drift is independent of the sign of charge in contrast to the curvature
and gradient-B drift.
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6 P. Steinbrunner and T.M. O’Neil

2.2. Linear mode equation
In linear theory the distribution for species j can be written in the form

fj = f (0)

j ( pθ , pzj, μ) + f (1)

j ( pθ , pzj, μ) exp[i(kz − ωt)], (2.10)

where the first term is the equilibrium distribution and the second term is the perturbation.
The corresponding electric potential is written in the form

φ = φ(0)( pzj) + φ(1)( pzj) exp[i(kz − ωt)]. (2.11)

We neglect the finite resistivity of the bounding conductors. Consequently, the mode
potential vanishes at both boundaries. The pzj in the argument of the potential functions
represents radial dependence and must be used in the corresponding Hamiltonian Hj.
Assume an equilibrium distribution of the form

f (0)

j = g( pzj) exp
[
− 1

T
(H(0)

j − qjφ
(0))

]
, (2.12)

with the equilibrium Hamiltonian H(0)

j = p2
θ/2mr2 + μ|B| + qjφ

(0). The second factor in
(2.12) is a Maxwellian velocity distribution. We consider the case where the temperature
is independent of the radius and is the same for both species. Carrying out the integrals in
(2.8) shows that gj( pzj) is the equilibrium density up to a multiplicative constant.

n(0)

j (r) = qjT3/2

c

√
πm
2

gj( pzj). (2.13)

Using the functional dependence of f (0)

j ( pθ , pzj, μ) and H(0)

j ( pθ , pzj, μ) and linearising
the kinetic equation in the perturbation yields the relation(

ω − k
∂H(0)

j

∂pzj

)
f (1)

j = −kqjφ
(1)

∂f (0)

j

∂pzj
, (2.14)

with the solution

f (1)

j = −
kqjφ

(1)
∂f (0)

j

∂pzj

ω − k
∂H(0)

j

∂pzj

. (2.15)

Poisson’s equation for the mode potential then takes the form

1
r

∂

∂r
r
∂φ(1)

∂r
− k2φ(1) = −4π

∑
j

qjn
(1)

j

=
∑

j

8πq2
j

∣∣∣∣ qjI
c2r2

∣∣∣∣ kφ(1)

∫ ∞

0
dμ

∫ ∞

0
dpθ

∂f (0)

j

∂pzj

ω − k
∂H(0)

j

∂pzj

, (2.16)

where use has been made of (2.8).
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To solve (2.14) we divided by the resonance factor ω − k(∂H(0)/∂pz), which can be zero
for some value of pz if Im(ω) = 0. This is the same problem as faced by Landau when
solving the Vlasov equation (Landau 1946). The underlying difficulty is that (2.15) is a
proper initial value solution to (2.14) only for a growing wave where Im(ω) > 0 is positive.
As Im(ω) approaches zero the contour of integration must be deformed to stay on the same
side of any pole or branch cut. We avoid this complication by solving the mode equation
only for growing modes. This is sufficient to identify domains of instability. However, it
is important to keep in mind that a growing mode is not a general solution for an arbitrary
initial density perturbation. The eigenfunction of such a mode does not necessarily match
the radial dependence of an arbitrary initial perturbation. However, if this mode is the
fastest-growing mode and has a non-zero overlap integral with the initial perturbation, it is
the time-asymptotic limit of the solution for the initial perturbation. Likewise, the plasma
modes in Landau’s solution dominate only in the time-asymptotic limit.

The integral on the right-hand side can be rewritten in the form∫ ∞

0
dμ

∫ ∞

0
dpθ

∂f (0)

j /∂pzj

ω − k
∂H(0)

j

∂pzj

=
√

mT3/2r2c
4I

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
]

ω − kqj
∂φ

∂pzj
− kc2T

2Iqj

(
x2

⊥
2

+ x2
‖

)
×
[
∂gj( pz)

∂pzj
− c2g( pzj)

2qjI

(
x2

⊥
2

+ x2
‖

)]
, (2.17)

with the scaled velocities x‖ = √
m/T v‖ and x⊥ = √

m/T v⊥. Here, use had been made
of dμ dpθ = (

√
mT3/2r/2B) dx2

⊥ dx‖. Gauss’s law and the relation ∂r/∂pzj = −c2r/2qjI
imply the result

kqj
∂φ

∂pzj
= 2πqec2k(1 − η)

I

∫ r

0
dr′ r′n(0)

e , (2.18)

where η = n(0)
p (r)/n(0)

e (r) is the ratio of positron to electron density. We have assumed that
the two species are uniformly mixed. Expressing gj( pzj) in terms of the number density
nj according to (2.13) and plugging (2.17) back into Poisson’s equation (2.16) yields the
equation

1
r

∂

∂r
r
∂φ(1)

∂r
− k2φ(1)

= −
∑

j

√
2πqjkc2φ(1)

I

×
∫ ∞

0
dx2

⊥
∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
][

r
∂n(0)

j

∂r
+ n(0)

j

(
x2
⊥
2

+ x2
‖

)]

ω + 2πqec2k(1 − η)

I

∫ r

0
dr′ r′n(0)

e − kc2T
2Iqj

(
x2
⊥
2

+ x2
‖

) . (2.19)
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We now want to bring (2.19) into a dimensionless form. To do so, we introduce the
scaled radius ξ = kr and the scaled density ñ = n/n0 where n0 is a constant characteristic
value of the density. As an example, consider the Gaussian density profile

n(0)
e (r) = n0e exp

[
−(r − r0)

2

2�r2

]
, (2.20)

which when scaled takes the form

ñ(ξ/k) = exp
[
−(ξ − ξ0)

2

2�ξ 2

]
, (2.21)

where ξ0 = kr0 is the scaled peak and �ξ = �rk is the scaled width. For notational
simplicity, we denote ñ(r) = ñ(ξ/k) by ñ(ξ) remembering that all lengths are scaled by k.
The mode equation (2.19) can be rewritten in the form

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1)

= − φ(1)

√
2π

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
] [

ξ
∂ ñ(0)

e

∂ξ
+ ñ(0)

e

(
x2

⊥
2

+ x2
‖

)]
Ω − (1 − η)

∫ ξ

0
dξ ′ ξ ′ñ(0)

e − k2λ2
D

(
x2

⊥
2

+ x2
‖

)

+ ηφ(1)

√
2π

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
] [

ξ
∂ ñ(0)

e

∂ξ
+ ñ(0)

e

(
x2

⊥
2

+ x2
‖

)]
Ω − (1 − η)

∫ ξ

0
dξ ′ ξ ′ñ(0)

e + k2λ2
D

(
x2

⊥
2

+ x2
‖

) . (2.22)

The scaled frequency is given by Ω = ω/α = −Ikω/2πqec2n0e. The Debye length
λD = √

T/4πq2
en0e depends on the characteristic density n0e that was introduced

before. The importance of finite-temperature effects depends on the ratio a =
k2λ2

D/Ω − (1 − η)
∫ ξ

0 dξ ′ ξ ′ñ(0) in regions where the plasma density is non-zero. We can
simplify (2.22) further

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1)

= φ(1)

k2λ2
D

⎡⎢⎢⎣−ñ(0) +
(

aξ
∂ ñ(0)

∂ξ
+ ñ(0)

)
1√
2π

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
]

1 − a
(

x2
⊥
2

+ x2
‖

)
⎤⎥⎥⎦

− ηφ(1)

k2λ2
D

⎡⎢⎢⎣ñ(0) +
(

aξ
∂ ñ(0)

∂ξ
− ñ(0)

)
1√
2π

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
]

1 + a
(

x2
⊥
2

+ x2
‖

)
⎤⎥⎥⎦ .

(2.23)
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The remaining integral can be carried out analytically by following Zocco et al. (2018)

1√
2π

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
]

1 + a
(

x2
⊥
2

+ x2
‖

) =
π exp

[
1
a

]
erfc2

[
1√
2a

]
2a

, (2.24)

where erfc is the complementary error function for a complex argument. Note that the
parameter a does not depend on the scaled velocity variables.

3. Cold pure electron plasma

This section considers the limit where both k2λ2
D and η are small compared with unity,

taken here to be formally zero. Setting these parameters to zero in (2.22) and using the
relation

1√
2π

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖ exp

[
−1

2
(x2

⊥ + x2
‖)
](

x2
⊥
2

+ x2
‖

)
= 2 (3.1)

yields the reduced equation

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1) = − 2φ(1)

Ω −
∫ ξ

0
dξ ′ ξ ′ñ(0)

e

∂(ñe
(0)ξ 2)

∂ξ 2
. (3.2)

3.1. Reduced description
This equation can be obtained directly by noting that in the zero-temperature
approximation the two kinetic energy terms in the Hamiltonian (2.5) may be neglected
and we are left with He = qeφ(z, pz, t). Because the velocity variables are not present in
this reduced Hamiltonian, a reduced electron distribution can be used

he(z, pz, t) =
∫ ∞

0
dμ

∫ ∞

0
dpθ fe( pθ , z, pze, μ, t). (3.3)

The reduced distribution satisfies the reduced kinetic equation ∂he/∂t + [he, qeφ] = 0.
Linearising the reduced kinetic equation and combining it with Poisson’s equation yields
(3.2).

A necessary condition for instability can be established by following the same procedure
as that used for a long, cylindrical, non-neutral plasma in a homogeneous magnetic field
(Briggs et al. 1970). Let the scaled frequency be written as a real and an imaginary part,
Ω = Ωr + iΓ , multiply mode equation (3.2) by the mode complex conjugate, integrate
over dξξ from the inner conductor to the outer conductor, use integration by parts on
the partial derivative term and take the imaginary part of the resulting equation to obtain
the requirement ∫ ξwall

ξwire

dξ
Γ |φ(1)|2(

Ωr −
∫ ξ

0
dξ ′ ξ ′ñe

(0)

)2

+ Γ 2

∂(ñe
(0)ξ 2)

∂ξ
= 0. (3.4)

Equation (3.4) can be satisfied for positive Γ only when ñ(0)
e ξ 2 is non-monotonic in ξ .

Since the density is zero at the inner cylinder and at the outer cylinder but finite in between
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10 P. Steinbrunner and T.M. O’Neil

this requirement is always satisfied. The inner conductor is the surface of the cylindrical
wire and the outer surface is a cylindrical boundary wall. Thus, it is not surprising that
we find diocotron instabilities for several sample density profiles. The corresponding
condition for a plasma in a Penning–Malmberg trap is that ∂n(0)

e (r)/∂r be non-monotonic.
The r2 difference between the two criteria is due to the E × B flow being incompressible
in the canonical phase space of the reduced distribution, not in configuration space. This
is the same factor that enters the ratio between the phase space density and the physical
density r2ne = |2Ie/c2|he, where |2Ie/c2| is a constant. For the uniform axial magnetic
field of a Penning–Malmberg trap, the two spaces are the same. Even in the limit where
the curvature and gradient-B drifts are negligible, the difference in the magnetic field
is important.

Since the diocotron instability involves the requirement that the plasma cylinder is
hollow, one might think that the plasma can be stabilised by charging the wire. However,
this does not work for the case of a long straight wire, since both the electric field from
the charged wire and the magnetic field fall off as 1/r. Hence, the E × B drift from the
charged wire is independent of r and can be removed by a transformation to the drifting
frame. In the lab frame, the drift produces a Doppler shift in the real part of the mode
frequency, but does not change the imaginary part, that is, the growth rate.

3.2. Van Kampen method
An alternative to mode equation (3.2) for the electric potential is the Van Kampen
eigenvalue equation for the density perturbation (Van Kampen 1955; Case 1959; Schecter
et al. 2000). To this end, first note that the scaled Poisson equation for the mode potential
takes the form (

1
ξ

∂

∂ξ
ξ

∂

∂ξ
− 1

)
φ(1) = 1

k2
∇2φ(1) = −4πqe

k2
n(1)

e . (3.5)

One can identify the left-hand side in (3.2) as the scaled, perturbed density −4πqn(1)/k2.
Hence, we can write (3.2) as(

Ω −
∫ ξ

0
dξ ′ ξ ′ñ(0)

e

)
4πqe

k2
n(1)

e = 2φ(1) ∂(ñ(0)
e ξ 2)

∂ξ 2
. (3.6)

In Appendix A, we obtain Green’s function

G(ξ, ξ ′)

=

⎧⎪⎪⎨⎪⎪⎩
(I0(ξwall)K0(ξ

′) − I0(ξ
′)K0(ξwall))(I0(ξwire)K0(ξ) − I0(ξ)K0(ξwire))

I0(ξwall)K0(ξwire) − I0(ξwire)K0(ξwall)
for ξwire < ξ < ξ ′,

(I0(ξwall)K0(ξ) − I0(ξ)K0(ξwall))(I0(ξwire)K0(ξ
′) − I0(ξ

′)K0(ξwire))

I0(ξwall)K0(ξwire) − I0(ξwire)K0(ξwall)
for ξ ′ < ξ < ξwall,

(3.7)

where I0(ξ) and K0(ξ) are Bessel functions of an imaginary argument. The perturbed
potential can be written in terms of the perturbed density by using Green’s function

φ(1) = −4πqe

∫ ξwall

ξwire

dξ ′ ξ ′G(ξ, ξ ′)n(1)
e (ξ ′), (3.8)
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yielding the Van Kampen eigenvalue equation for the density perturbation(
Ω −

∫ ξ

0
dξ ′ ξ ′ñ(0)

e

)
n(1)

e + 2
∂(ñ(0)

e ξ 2)

∂ξ 2

∫ ξwall

ξwire

dξ ′ ξ ′G(ξ, ξ ′)n(1)
e (ξ ′) = 0. (3.9)

The derivation of (3.9) does not involve division by Ω − ∫ ξ

0 dξ ′ ξ ′ñ(0). There is no
restriction that Γ be greater than zero. The Van Kampen method systematically finds
all modes, stable and unstable, without the need for analytic continuation. As we show,
the eigenmodes include discrete modes as well as continuum modes (Case 1959). As
mentioned earlier, our focus here is on unstable modes.

For completeness, we note that the different eigenmodes can be combined to provide a
solution to an arbitrary initial value problem. Let n(1)

1 (ξ) and n(1)

2 (ξ) be two eigenfunctions
corresponding to frequencies Ω1 and Ω2 and define the inner product

〈n(1)

1 (ξ)|n(1)

2 (ξ)〉 =
∫ ξwall

ξwire

dξ ξ
n(1)

1 (ξ)n(1)

2 (ξ)∗

∂(ñ(0)ξ 2)

∂ξ 2

. (3.10)

From (3.9) one finds the orthogonality relation

(Ω1 − Ω∗
2 )〈n(1)

1 (ξ)|n(1)

2 (ξ)〉 = 0. (3.11)

This relation is useful in expanding an arbitrary initial density perturbation in
eigenmodes

n(1)(ξ, t) =
∑

d

adn(1)

d (ξ) exp[−iΩdt] +
∫

dΩ a(Ω)n(1)
Ω exp[−iΩdt], (3.12)

where ad and a(Ω) are time-independent constants given in terms of the initial
perturbation n(1)(ξ, t) by the relations

ad = 〈n(1)

1 (ξ, t = 0)|n(1)

d (ξ)〉
〈n(1)

d (ξ)|n(1)

d (ξ)〉 (3.13)

a(Ω) = 〈n(1)

1 (ξ, t = 0)|n(1)
Ω (ξ)〉

〈n(1)
Ω (ξ)|n(1)

Ω (ξ)〉 . (3.14)

the sum over ad covers the discrete modes and the integral over a(Ω) covers the continuum
modes.

3.3. Analytic solution
Analytic solutions to mode equation (3.2) and Van Kampen equation (3.9) are possible for
the special case where the equilibrium density profile is given by the expression

ñ(0)
e = ξ 2

in

ξ 2

[
Θ(ξ 2 − ξ 2

in) − Θ(ξ 2 − ξ 2
out)
]
, (3.15)

where ξin and ξout are the inner and outer edge of the plasma density, which is generally
not the same as the inner and outer boundary ξwire and ξwall and Θ is a step function. This
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12 P. Steinbrunner and T.M. O’Neil

density profile corresponds to a flat-top profile for the equilibrium distribution function
h(0)

e (ξ). For this density distribution the radial derivative in (3.9)

∂(ñ(0)ξ 2)

∂ξ 2
= ξ 2

in

[
δ(ξ 2 − ξ 2

in) − δ(ξ 2 − ξ 2
out)
]
, (3.16)

is the sum of two delta functions. This feature simplifies both the mode equation and
the Van Kampen equation, allowing analytic solutions. We will solve the Van Kampen
equation since Green’s function has already solved part of the problem. Equation (3.9)
implies that the density perturbation is a sum of two delta functions as well:

n(1) = Cinδ(ξ
2 − ξ 2

in) − Coutδ(ξ
2 − ξ 2

out). (3.17)

Evaluating (3.9) at the inner and outer edge of the plasma respectively yields

ΩCin + ξ 2
in[CinG(ξin, ξin) + CoutG(ξin, ξout)] = 0, (3.18)

Cout

[
Ω − ξ 2

in ln
(

ξout

ξin

)]
− ξ 2

in [CinG(ξout, ξin) + CoutG(ξout, ξout)] = 0. (3.19)

Eliminating Cin and Cout between the two equations gives a quadratic equation for Ω[
Ω

ξ 2
in

− ln
(

ξout

ξin

)
− G(ξout, ξout)

] [
Ω

ξ 2
in

+ G(ξin, ξin)

]
− G(ξin, ξout)

2 = 0. (3.20)

where the relation G(ξin, ξout) = G(ξout, ξin) has been used.
Physically the dispersion relation describes the interaction between two charge density

perturbations. There is one at ξ = ξin, where the step function n(0)(ξ)ξ 2 rises, which we
labelled Cin. The second charge density perturbations is labelled Cout and is located at
ξ = ξout, where the step function falls back to zero. In the dispersion equation (3.20),
the interaction between the two density perturbations is represented by G(ξin, ξout). When
ξout − ξin is large compared with unity, G(ξin, ξout) ≈ exp[−(ξout − ξin)] is exponentially
small and the interaction between the two density perturbations is negligible. Equation
(3.20) then simplifies yielding the two modes

Ωin = −ξ 2
in

2
G(ξin, ξin) for Cin = 0, Cout = 0, (3.21)

Ωout = ξ 2
in

2

[
ln
(

ξout

ξin

)
+ G(ξout, ξout)

]
for Cin = 0, Cout = 0. (3.22)

When ξout − ξin is not large compared with unity, G(ξin, ξout) is not exponentially small
and must be retained in (3.20). The two density perturbations interact significantly and
each mode involves both perturbations. The solution to (3.20) can be expressed in terms
of the frequencies Ωin and Ωout:

Ω± = 1
2

(
Ωin + Ωout ±

√
(Ωin − Ωout)2 − 4ξ 4

inG(ξin, ξout)2

)
. (3.23)

The right-hand side of (3.23) contains an imaginary part if (Ωin − Ωout)
2 <

4ξ 4
inG(ξin, ξout)

2. In this case, the two solutions Ω± correspond to a growing and a damped
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(a) (b)

(c) (d)

FIGURE 2. The normalised initial density distribution for a pure electron plasma (grey solid
line) and the density perturbation at the inner plasma edge (red dashed line) as well as the outer
edge (blue dotted line) plotted over the scaled radius ξ = kr. The thickness of the initial density
distribution decreases from the upper left to the lower right panel. For the thinnest case in panel
(d), the frequency becomes complex. Both the damped (purple dashed line) and the growing
mode (blue dotted line) are shown.

diocotron mode. The growth rate is largest when the two frequencies Ωin and Ωout are
nearly resonant and the interaction strength 4ξ 4

inG(ξin, ξout)
2 is large.

An interesting property of these two modes is the respective sign of the wave energies.
If the frequencies are both positive, the energy associated with density perturbation Cin
has positive energy, and the second mode, density perturbation Cout, has negative energy.
In Appendix B we calculate the energy required to create the two density perturbations
and find the signs of the energy associated with the two perturbations to be opposite.
For the growing mode, the energy flow is from the negative energy perturbation to the
positive energy perturbation, and for the damped mode, the energy flow is reversed. Such
an interaction, also known as reactive instability, is known to happen both in plasma
physics and fluid dynamics (Cairns 1979). The direction in which the energy flows is
associated with the phase shift between the two perturbations. This phase shift is given by
the expression

tan−1

[
Im(Cin/Cout)

Re(Cin/Cout)

]
= − Im(Ω)

Re(Ω) + ξ 2
inG(ξin, ξin)

. (3.24)

If the mode is growing (Γ = Im(Ω) > 0), the outer perturbation is ahead of the
inner perturbation and vice versa. The ratio between the amplitudes of the two density
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FIGURE 3. Contour plot of the growth rate Im(Ω) of discrete modes, where the abscissa is ξin
and the ordinate is ξout − ξin. The inner and outer cylindrical conductors are located at ξwire = 1
and ξwall = 8, respectively. The white line marks the region in which the outer radius would be
smaller than the inner radius ξout < ξin.

perturbations for one distinct mode is given by the expression

Cin

Cout
= ξ 2

inG(ξin, ξout)

Ω + ξ 2
inG(ξin, ξin)

. (3.25)

Figure 2 shows the changing mode structure for a decreasing sequence of the plasma
thickness ξout − ξin. The inner and outer conductors are located at ξwire = 1 and ξwall =
8. The thickest plasma in figure 2(a) supports two modes consisting of separate density
perturbations at the respective plasma edges. For the slightly thinner plasma in figure 2(b)
a small density perturbation on the opposite edge in addition to the dominant one becomes
apparent. This trend continues in figure 2(c). Note also that the difference between the
frequencies of the two modes decreases. Finally, figure 2(d) shows the case of an unstable
mode. The frequency becomes complex and the two solutions turn into their respective
complex conjugate, a growing and a damped solution.

To understand the dependence on the plasma geometry, that is, on rin and rout, we allow
these quantities to vary, holding rwire, rwall and k constant. This translates to holding ξwire
and ξwall constant and varying ξin and ξout independently. Figure 3 shows a contour plot of
Im[Ω(ξin, ξout, ξwire, ξwall)], where the x-axis is ξin and the y-axis is the difference ξout − ξin.
Again, the boundaries are fixed at ξwire = 1 and ξwall = 8.

As was discussed previously, good interaction between the two density perturbations
requires that ξout − ξin is not too large. This is in agreement with the vertical range
of instability in figure 3 up to ξout − ξin ≈ 1. Likewise, we expect that neither density
perturbation can be too near to one of the conducting boundaries. Otherwise, the
boundaries would shield the interaction potential. This is consistent with the gap between
the last contour of finite growth rate and the ordinate on the left as well as the white solid
line on the right in figure 3.

The unscaled growth rate is given by the expression

γ = 2πc2qen0e

Ik
Im[Ω(ξin, ξout, ξwire, ξwall)]. (3.26)
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FIGURE 4. Growth rate for different wavenumbers k normalised by the growth rate for the
reference wavenumber k0 = r−1

wire.

The growth rate varies linearly with the density and inversely with the current. The
scaling of the growth rate with the wavelength is not directly apparent since the scaled
distance ξ = kr is a function of the wavelength. Consider a constant wavenumber k0 with
the corresponding growth rate γ (k0) = α Im[Ω(k0rin, k0rout, k0rwire, k0rwall)]. Changing the
wavenumber k while keeping the position of the boundary and the plasma edges fixed
results in a change of the growth rate according to the ratio

γ (k)
γ (k0)

= k0

k
Im[Ω(krin, krout, krwire, krwall)]

Im[Ω(k0rin, k0rout, k0rwire, k0rwall)]
. (3.27)

The pre-factor of k0/k on the right-hand side of (3.27) comes from the k-dependence in
the scaling factor α. The change of the growth rate with wavelength is shown in figure 4.

Instability is limited to wavenumbers with k/k0 < 1.3, where k0 = r−1
wire. Again this

restriction comes from the requirement that ξout − ξin = k(rout − rin) is not large compared
with unity. The variation of this quantity in figure 4 comes from the variation of k, rather
than the variation of rout − rin.

For an infinitely long plasma, the allowed wavenumbers k lie on a continuum. That is
not the case for the model of a plasma in a large-aspect-ratio dipole trap which implies
a periodic boundary condition. Consequently, the allowed wavenumbers are restricted
to the discrete values k = n/R, where n is a positive integer and R is the radius of the
coil. This restriction suggests the possibilities of eliminating unstable modes by choosing
R < (rout − rin)/1.3. Unfortunately, this is inconsistent with our model of a
large-aspect-ratio dipole. Nevertheless, this observation does suggest that the opposite
limit, a dipole trap with near-unity aspect ratio, might have interesting stability properties.

3.4. Numerical results
For a general density profile, a numerical solution of the mode equation or of the Van
Kampen equation is necessary. For solutions of the mode equation, we use the shooting
method. This method relies on an initial guess for the complex scaled frequency Ω . The
boundary condition requires that the mode potential is zero at the inner boundary ξwire and
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we choose a finite initial slope of the potential at that point. The specific value of the slope
does not matter since the mode equation is linear. These two initial conditions allow the
equation to be integrated outwards to the conductor at ξwall. The outer boundary condition
requires the potential to vanish which is generally not the case for the first guess of Ω .
A root finder that is based on Powell’s method (Powell 1964) is used to find the complex
value of Ω , for which the boundary condition is satisfied. This value is the correct complex
frequency of the mode.

There is a subtlety in the integration of the mode equation from the inner to the outer
boundary. To solve (2.14), we divided by the resonance factor ω − k(∂H(0)/∂pz), which can
be zero for some value of ξ if ω is real. The contour of integration must then be deformed to
stay on the same side of the singularity. We avoid this complication by solving the mode
equation only for growing modes. In this case the equation can be integrated along the
real ξ -axis. In subsequent plots of growth rates we use zero value whenever the shooting
method does not return a positive value.

In order to solve the eigenvalue problem (3.9) for a general density profile we follow
Schecter et al. (2000). The radius is discretised such that (3.9) can be rewritten in
matrix form. For every grid point we obtain one eigenvalue, the scaled frequency, and
one eigenfunction, the density perturbation. As discussed in § 3.2 this method yields a
discretised representation of all the modes without recourse to analytic continuation. We
focus on the discrete unstable mode, which corresponds to the mode obtained by solving
the mode equation.

Consider the Gaussian distribution in (2.21). Solving the mode equation (2.22) yields
the scaled growth rate Γ = Im(Ω(ξin, ξout, ξwire, ξwall). Figure 5 shows a contour plot of
this growth rate in the plane (�ξ, ξ0) for fixed values ξwire = 1 and ξwall = 8. This figure
illustrates the dependence of the growth rate on the plasma geometry for fixed wavenumber
and fixed boundaries. The same results are obtained when solving the Van Kampen
equation (3.9), selecting only the discrete unstable mode. The result for a Gaussian density
profile agrees qualitatively with the analytic result for the profile given by (3.15). Some of
the results in figure 5 resemble density profiles with a non-negligible value in the close
proximity of a boundary. If a large fraction of the plasma is close to either boundary we
expect a quick loss of particles and a consequent truncation of the density profile.

3.5. Finite-temperature effects
In this section, we allow the parameter k2λ2

D to be finite but retain zero value for the
parameter η = 0 in mode equation (2.22). This is the case of a warm pure electron plasma.
Using the shooting method, we solve the mode equation for the Gaussian equilibrium
density distribution given in (2.21), with the scaled values ξwire = 1 and ξwall = 8. Figure 6
shows a plot of the scaled growth rate vs k2λ2

D for four values of the Gaussian thickness
�ξ . In all four cases, the scaled growth rate decreases to zero as k2λ2

D increases towards
unity, demonstrating a stabilising influence of the curvature and gradient-B drifts on the
diocotron mode. As mentioned before, only solutions with Im(Ω) > 0 can be accepted.

The stabilisation might appear to be due to Debye screening of the potential
perturbation, but note that the mode propagates perpendicular to the magnetic field. The
plasma cannot rearrange itself freely such that it shields the potential perturbation. The
factor k2λ2

D appears only in front of the gradient-B and curvature drift. Instead, we believe
that the stabilisation is due to the spread in these drifts, not to the mere existence of a
drift velocity.

The spread comes from the Maxwellian velocity distribution. Thus, we ask what
happens if the equilibrium velocity distribution is replaced by f (0) = g( pz)δ(v‖ −
v‖0)δ(v

2
⊥ − v2

⊥0). This distribution is a valid equilibrium, since the variables v‖ =
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FIGURE 5. Contour plot of the growth rate Im(Ω) of discrete modes for a Gaussian equilibrium
density profile that is centred around ξ0 and has the width �ξ as defined in (2.21). The inner
and outer cylindrical conductors are at ξwire = 1 and ξwall = 8, respectively. The hatched areas
highlight the density profiles for which the density in close proximity of a boundary is beyond
1 % of the maximum density.

FIGURE 6. The growth rate of the diocotron mode is plotted over k2λ2
D. The density profile

of the plasma is given by the Gaussian in (2.21), centred in between the conducting surfaces.
The thickness of the lines corresponds to the thickness �ξ of the density profile. The velocity
distribution is a Maxwellian. The inner and outer cylindrical conductors are at ξwire = 1 and
ξwall = 8, respectively.

pθ/mr( pz) and v⊥ = μ|2I/mcr( pz)| are both constants of the motion in that pθ , pz and
μ are all constants of the motion. In Appendix C, we obtain the mode equation for this
distribution and solve for the growth rate assuming the same Gaussian density distribution
as used for figure 6. The velocity integral in the mode equation is evaluated trivially
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FIGURE 7. The growth rate of the diocotron mode is plotted over k2λ2
D. The density profile

of the plasma is given by the Gaussian in (2.21), centred in between the conducting surfaces.
The thickness of the lines corresponds to the thickness �ξ of the density profile. The velocity
distribution is a delta distribution that peaks at x⊥ = x‖ = 1. The inner and outer cylindrical
conductors are at ξwire = 1 and ξwall = 8 respectively.

because of the delta function velocity dependence. As can be seen in figure 7 we find no
evidence of stabilisation for large k2λ̂2

D when there is no spread in the drift velocities. Here,
we define the characteristic length scale λ̂D = √

W/4πq2
en0e which replaces the Debye

length. Instead of the temperature T , it depends on the total kinetic energy W. Accordingly,
the scaled velocities are defined as x‖ = √

m/W v‖ and x⊥ = √
m/W v⊥.

The linear stability analysis does not reveal the mechanism behind the stabilisation.
However, figure 6 indicates that the stability threshold for k2λ2

D is a strictly increasing
function of the growth rate in the cold limit Γ (k2λ2

D = 0). We suspect that, if the spread in
the drifts is comparable to Γ (k2λ2

D = 0), the interaction between the negative and positive
energy mode described in § 3.3 is mitigated.

4. Pair plasma

In this section we consider a partially neutralised plasma of uniformly mixed electrons
and positrons. For low temperature where the curvature and gradient-B drifts are small
compared with the E × B drift, a trivial extension of results for a single-species plasma is
possible. Since the E × B drifts are independent of the sign of charge, the uniformly mixed
pair plasma evolves as a single-species plasma of equilibrium density (1 − η)n(0)(r).
Consequently, the diocotron mode disappears in the quasi-neutral limit (η = 1). In contrast
to the E × B drift, the curvature and gradient-B drifts depend on the sign of charge and
are in opposite directions for the two species.

The purpose of this section is to understand the interchange mode for a pair plasma
and to explore the relation of this mode to the diocotron mode for various degrees
of non-neutrality and various temperatures. While the diocotron mode lives off the
equilibrium E × B drift, the interchange mode lives off the equilibrium curvature and
gradient-B drifts. Nevertheless, the modes have much in common. The electric potentials
for both are constant along the magnetic field lines and sinusoidal in the direction of the
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drifts. Since the mode potential structure is the same, both modes are governed by the
mode equation (2.22).

4.1. Neutral warm pair plasma
To identify the interchange mode in its simplest form, we first consider the limit of a neutral
pair plasma, where η = 1. There is no diocotron mode in this limit. The mode equation
reduces to the form

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1)

= − φ(1)

√
2π

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
]

Ω − k2λ2
D

(
x2

⊥
2

+ x2
‖

) [ξ ∂ ñ(0)
e

∂ξ
+ ñ(0)

e

(
x2

⊥
2

+ x2
‖

)]

+ φ(1)

√
2π

∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
]

Ω + k2λ2
D

(
x2

⊥
2

+ x2
‖

) [ξ ∂ ñ(0)
e

∂ξ
+ ñ(0)

e

(
x2

⊥
2

+ x2
‖

)]
.

(4.1)

This equation again can be solved by using the shooting method. Figure 8 shows
the scaled growth rate Γ = Im(Ω) vs k2λ2

D. Both the electron and the positron density
distributions are given by the Gaussian from (2.21), centred in between the conducting
cylindrical boundaries at ξwire = 1 and ξwall = 8 with different widths �ξ = ξout − ξin. All
curves start from k2λ2

D = 0 and reach a peak for k2λ2
D of order unity, but then decrease

with further increase in k2λ2
D. In the next section, analytic explanations for the rapid rise

and fall will be obtained.
In the scaled mode equation (2.22) the parameter k2λ2

D enters as the coefficient of the
curvature and gradient-B drifts. The rapid rise in growth rate in figure 8 with increasing
k2λ2

D reflects the central role played in the instability by the curvature and gradient-B
drifts. We identify the instability as an interchange mode in that its mechanism involves
the curvature and gradient-B drifts acting transverse to a density gradient. The magnetic
field has bad curvature, and there is a negative density gradient on the outside of the
Gaussian. The growth rate decreases for k2λ2

D � 1. Again, this stabilisation for large k2λ̂2
D

disappears if we consider a delta distribution instead of a Maxwellian as shown in figure 9.
The definition of the parameter λ̂D is the same as in § 3.5. Similar to the diocotron mode,
the interchange mode appears to be stabilised by a large spread in the drift velocities.

The growth rate displayed in figure 8 might therefore be interpreted as a competition
between the curvature and gradient-B drifts as drivers of the instability and the
stabilisation due to the spread in those drifts leading to a maximum growth rate at k2λ̂2

D ≈ 1
and stabilisation for k2λ̂2

D > 5.
However, the instability is different from the standard description of an interchange

instability. In the standard description, the curvature and gradient-B drifts are modelled by
a drift due to an artificial gravity. The interchange instability is presented as an analogue
of the Rayleigh–Taylor instability for a heavy fluid on top of a light fluid (Guzdar et al.
1982). The large ion mass produces an ion gravitational drift that is large compared with
the electron gravitational drift. For the electron–positron plasma the drifts for the two
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FIGURE 8. The growth rate is plotted over k2λ2
D for a quasi-neutral pair plasma (η = 1) with

different Gaussian density profiles and a Maxwellian velocity distribution. The Gaussian density
profiles have different widths in the range 0.4 < �ξ < 0.7 and they are centred in between the
conducting surfaces.

FIGURE 9. The growth rate of the interchange mode is plotted over k2λ̂2
D for a quasi-neutral

pair plasma (η = 1) and different Gaussian density profiles. The Gaussian density profiles have
different widths in the range 0.4 < �ξ < 0.7 and they are centred in between the conducting
surfaces. The velocity distribution is a delta distribution that peaks at x⊥ = x‖ = 1.

species are equal in magnitude. In the case of an electron–ion plasma the large ion mass
gives rise to a large polarisation drift for the ions in the mode field or, equivalently, a large
plasma dielectric constant ε = 1 + 4πnMic2/B2 � 1. Because of the small mass for the
electrons and positrons, we have neglected the polarisation drift or, equivalently, assumed
that the dielectric constant, ε = 1 + 4πnmec2/B2, is nearly unity. In addition, since the
magnetic field is inhomogeneous, the E × B drift is not incompressible.
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FIGURE 10. The initial density distribution at different scaled radii ξ = kr is given by the black
dashed line. The black solid curves correspond to the potential perturbation for different mode
numbers. The thickness of the lines decreases with increasing mode number.

An interesting feature of the neutral case is that the real part of the frequency vanishes
for all values of k2λ2

D (Kennedy 2020). The mode is purely growing and does not propagate.
To understand this result, note that (4.1) is invariant under interchange of Ω → −Ω .
Consequently, there is nothing in the equation to choose a direction of propagation for
the wave, so the real part of the frequency must be zero. We see this result explicitly in
graphs of the Re(Ω) vs η in the next section.

4.2. Higher-order radial modes
Up to this point, no mention has been made of higher-order radial modes. The growth
rates in figure 8 are all for the fundamental radial eigenmodes. However, higher-order
radial modes occur for η ≈ 1 and sufficiently small k2λ2

D. Figure 10 shows plots of the first
three radial eigenmodes for k2λ2

D = 0.2 and η = 1. The eigenmodes are typically labelled
by the number of zero crossings. One can see that the higher order mode potentials are
oscillatory in the region where the slope of the density distribution is negative.

Likewise, figure 11 shows plots of the growth rates for these eigenmodes vs k2λ2
D. Note

that the fundamental radial eigenmode is the fastest growing and so is the most important
for stability considerations.

To understand these results intuitively, we rewrite (4.1) in a simpler form. Setting η = 1
and Ω = iΓ yields

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1) = φ(1)

k2λ2
D

[
gñ(0) + f ξ

∂ ñ(0)

∂ξ

]
, (4.2)
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FIGURE 11. The growth rates for different radial eigenmodes of the interchange mode are
plotted over k2λ2

D assuming a quasi-neutral pair plasma (η = 1). The unperturbed density profile
is a Gaussian with the width �ξ = 0.7 that is centred in between the conducting surfaces.

where

g(|a|2) =
√

2
π

|a|2
∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
](

x2
⊥
2

+ x2
‖

)2

1 + |a|2
(

x2
⊥
2

+ x2
‖

) , (4.3)

f (|a|2) =
√

2
π

|a|2
∫ ∞

0
dx2

⊥

∫ ∞

0
dx‖

exp
[
−1

2
(x2

⊥ + x2
‖)
](

x2
⊥
2

+ x2
‖

)
1 + |a|2

(
x2

⊥
2

+ x2
‖

) , (4.4)

As can be seen in figure 12, the function f rises monotonically from 0 to the maximum
value of π as |a|2 = k4λ4

D/Γ 2 varies from 0 to ∞. The function g rises monotonically from
0 to the maximum value of 2 in the same interval.

First, we look at (4.2) in the limit where |a|2 = k4λ4
D/Γ 2 � 1. The denominators in (4.3)

can then be approximated by unity and performing the integrals yields g(|a|2) = 14|a|2 and
f (|a|2) = 4|a|2. The mode equation (4.2) takes the form of a Sturm–Liouville problem
(Goedbloed & Poedts 2004).

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1) = λnφ

(1)

[
7
2

ñ(0) + ξ
∂ ñ(0)

∂ξ

]
. (4.5)

A Sturm–Liouville problem is an eigenvalue problem for which the eigenvalue λn =
4k2λ2

D/Γ 2
n increases with the number of zero-crossings n of the eigenfunction. Hence,

the lowest-order radial eigenmode (n = 0) has the largest scaled growth rate as was
observed in figure 11. Likewise, the rapid increase of the growth rate in figures 8 and
11 as k2λ2

D = λnΓ
2

n /4 increases from zero can be understood in terms of this expression
for the eigenvalue. All the modes in figure 8 are the fundamental, but with different values
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FIGURE 12. Evaluating the two integrals in (4.3) for different values of |a|2 yields the solid
curve for g and the dashed curve for f . The ratio g/f is given by the dotted line.

of the width for the Gaussian. The variation from curve to curve arises from changes in
the eigenvalue as the width of the Gaussian is varied.

If 7
2 ñ(0) + ξ(∂ ñ(0)/∂ξ) > 0 in the entire confinement region, the second derivative of

the potential perturbation is purely positive (purely negative for φ(1) < 0). The boundary
conditions cannot be satisfied in that case. Consequently, the interchange instability occurs
for density profiles with a steep, negative gradient only. The same result was found in the
local limit (Mishchenko et al. 2018). When k2λ2

D approaches unity we have to go back
to (4.2). The condition for instability of the interchange mode then generalises to g

f ñ(0) +
ξ(∂ ñ(0)/∂ξ) < 0. The fraction g/f monotonically decreases from 7/2 to 2/π as |a|2 goes
from zero to infinity.

Looking at regions where the density falls off steeply, such that (ξ/ñ(0))(∂ ñ(0)/∂ξ)
� −1, we can think of the quantity f /k2λ2

D as the eigenvalue λn. The function f (|a|2)
monotonically increases to the maximum value of π. Thus, as λnk2λ2

D approaches π, the
growth rate Γn is forced to zero and there is no solution for λnk2λ2

D > π. This behaviour is
seen in figure 8 and is probably related to the spread in drift velocities for the Maxwellian
velocity distribution that was discussed before.

4.3. Arbitrary non-neutrality
Next, we investigate the stability of pair plasmas with arbitrary non-neutrality. Figure 13
shows the imaginary part of the scaled growth rate Im(Ω) vs the density ratio η for
different values of k2λ2

D. Figure 14 shows the corresponding real part of the scaled
frequency. All of the curves assume that both the electrons and positrons have a Gaussian
density distributions that is given by (2.21).

As we have seen, the diocotron instability depends crucially on the axial E × B drift,
but is stabilised by the curvature and gradient-B drifts. In contrast, the interchange mode
depends crucially on the curvature and gradient-B drifts, and shear associated with the
E × B drift has a stabilising influence. Thus, the growing mode is diocotron-like for small
values of η and small values of k2λ2

D. Likewise the interchange mode dominates for large
values of η and large values of k2λ2

D. For intermediate values of η and finite k2λ2
D, a
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FIGURE 13. The growth rate is plotted over the density ratio of positrons to electrons η.
The parameter k2λ2

D increases as the curves gradually change colour from blue to red. The
density distribution is given by a Gaussian that is centred in between the conducting cylindrical
boundaries at ξwire = 1 and ξwall = 8 and has the width �ξ = ξout − ξin = 0.4.

FIGURE 14. The frequency plotted over the density ratio of positrons to electrons η. The
parameter k2λ2

D increases as the curves gradually change colour from blue to red. The density
distribution is given by a Gaussian that is centred in between the conducting cylindrical
boundaries at ξwire = 1 and ξwall = 8 and has the width �ξ = ξout − ξin = 0.4. We omit the
values for which Im(Ω) � 0.

mode is formed by the competition between the driving and stabilising influences of the
different drifts.

Consistent with this picture, the blue curve in figure 13, for which k2λ2
D = 0, exhibits

the largest growth rate for small values of η and completely vanishes for η = 1. This is
the limit of a pure diocotron mode. With a small but finite temperature corresponding
to k2λ2

D = 0.01, the interchange mode becomes apparent for η > 0.7. The red curve, for
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which k2λ2
D = 1, illustrates the opposite limit where the diocotron mode is suppressed

relative to the interchange mode. The plasma is stable for η = 0 but the growth rate
increases as η approaches unity. For k2λ2

D > 1 we see a stabilising effect on the interchange
mode due to the relative drift motion of particles with different thermal velocities.

As mentioned in the previous section, the real part of the frequency in figure 14 goes to
zero as the plasma becomes quasi-neutral. The mode does not propagate in that limit.

5. Conclusion

This paper has discussed the stability of diocotron and interchange modes in a pair
plasma with arbitrary non-neutrality that is confined by the magnetic field of a long,
straight, current-carrying wire. The linearised drift kinetic equations for the electrons
and positrons were combined with Poisson’s equation to obtain a comprehensive mode
equation that describes both modes. This equation depends on the two dimensionless
parameters: the parameter k2λ2

D, where k is the axial wavenumber of the mode and λD
is the Debye length; and the parameter η = n(0)

p (r)/n(0)
e (r), which is the ratio of positron

density to electron density. The stability of the modes is discussed as a function of these
two parameters.

In the limit where both of the parameters are small compared with unity, that is, the
limit of a relatively cold pure electron plasma, the equilibrium E × B drift dominates over
the curvature and gradient-B drifts. Consequently, the diocotron mode dominates over the
interchange mode. The mode equation yields a necessary condition for instability in this
limit, namely that r2n(0)

e must be non-monotonic in radius r. This criterion is typically
satisfied, given that the density is zero at the inner and outer cylindrical conductor but
non-zero in between. An analytic solution to the mode equation was obtained for the
special case where r2n(0)

e is a flat-top profile. In this case, the instability results from the
linear interaction of a positive energy density perturbation and a negative energy density
perturbation. The order of magnitude of the growth rates obtained is the drift frequency
Ik/2πc2qen0e. When the parameter k2λ2

D approaches unity the equilibrium curvature and
gradient-B drifts become comparable to the E × B drift and stabilise the diocotron mode.
The stabilisation is due to the spread in the drift velocities, rather than the existence of a
drift velocity.

When η = 1, the pair plasma is neutral and there is no equilibrium E × B drift and,
hence, no diocotron mode. For finite k2λ2

D we find an interchange mode with a maximum
growth rate at k2λ2

D ≈ 1. The curvature and gradient-B drifts play a central role in this
mode. However, if the temperature or the wavenumber is large (k2λ2

D � 1), the relative
drift motion mitigates the formation of the mode structure. For sufficiently small k2λ2

D and
η = 1, the mode equation admits higher-order radial modes, although the fundamental
always has the largest growth rate.

When the two parameters are intermediate in value, we found a competition between
the two modes.

The goal of this and future work is to help understand upcoming measurements of
density and potential fluctuations in electron plasmas in the APEX levitated dipole. The
current experiment (Deller et al. 2024) runs with a cold electron plasma (η = 0, k2λ2

D �
0). A persistent potential perturbation is observed that is likely to be an m = 1 diocotron
mode with confinement times on the order of several minutes. Even if the plasma is
unstable in the linear regime, the perturbation may saturate due to nonlinear effects
which does not necessarily lead to a loss of confinement. In future experiments, the
number of positrons will be increased gradually with the goal of reaching η = 1. In
this case we expect the interchange mode to dominate over the diocotron mode. For the
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interchange mode we will probably see a wavelength comparable to the Debye length
(k2λ2

D = 1) since this is the fastest growing mode. Generally, the confinement properties
of a non-neutral plasma exceed those of a neutral electron–ion plasma. It is the main goal
of the APEX collaboration to explore the (confinement) properties of a pair plasma. The
results presented here provide a starting point for analysing these upcoming experiments.
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Appendix A

Green’s function G(ξ, ξ ′) is defined through the equation(
1
ξ

∂

∂ξ
ξ

∂

∂ξ
− 1

)
G(ξ, ξ ′) = δ(ξ − ξ ′)

ξ
, (A1)

and the boundary conditions that G(ξ, ξ ′) vanish on the inner and outer cylindrical
conductors. Hence, G(ξ, ξ ′) depends parametrically on ξwire and ξwall. To simplify the
notation we leave this dependence implicit. We postulate a Green’s function of the form

G(ξ, ξ ′) =
{

Aα(ξ, ξwire), for ξwire < ξ < ξ ′,
Bα(ξ, ξwall), for ξ ′ < ξ < ξwall,

(A2)

where α(ξ, ξx) = I0(ξ)K0(ξx) − I0(ξx)K0(ξ) is a combination of modified Bessel
functions. The proposed Green’s function satisfies (A1) everywhere except at the delta
function and satisfies the boundary conditions at the two conducting boundaries. The
equation is satisfied at the delta function if the following two conditions are satisfied as
well:

Aα(ξ ′, ξwire) = Bα(ξ ′, ξwall), (A3)

ξ ′B
∂α(ξ ′, ξwall)

∂ξ
− ξ ′A

∂α(ξ ′, ξwire)

∂ξ
= 1. (A4)

Using ∂α(ξ ′, ξx)/∂ξ = I1(ξ)K0(ξx) + I0(ξx)K1(ξ) as well as ξ [I1(ξ)K0(ξ) + I0(ξ)K1(ξ)] =
1 and solving for A and B yields Green’s function

G(ξ, ξ ′)

=

⎧⎪⎪⎨⎪⎪⎩
(I0(ξwall)K0(ξ

′) − I0(ξ
′)K0(ξwall))(I0(ξwire)K0(ξ) − I0(ξ)K0(ξwire))

I0(ξwall)K0(ξwire) − I0(ξwire)K0(ξwall)
for ξwire < ξ < ξ ′,

(I0(ξwall)K0(ξ) − I0(ξ)K0(ξwall))(I0(ξwire)K0(ξ
′) − I0(ξ

′)K0(ξwire))

I0(ξwall)K0(ξwire) − I0(ξwire)K0(ξwall)
for ξ ′ < ξ < ξwall.

(A5)
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Note that Green’s function satisfies the expected relation G(ξ, ξ ′) = G(ξ ′, ξ).

Appendix B

In this appendix, we calculate the sign of the energy for the analytic solutions found
in § 3.3. We first introduce the mode action �J and recall that the mode energy and
mode axial momentum are related to the action through the relations �W = ω�J and
�Pz = k�J. These relations imply a simple relation between the mode energy and mode
momentum �W = ω/k�Pz (Landau & Lifshitz 1976). This relation is useful since it is
easier to calculate �Pz than �W. The momentum of the plasma is

Pz = 2π

∫
dz dpzh(z, pz, t)pz, (B1)

expressed in terms of the reduced distribution function h = ∫
dpθ dμf . As the wave grows,

the plasma momentum changes by the amount

�Pz = 2π

∫
dz dpz�h(z, pz, t)pz, (B2)

where �h(z, pz, t) = h(1)(z, pz) + h(2)(z, pz) is the corresponding change in the particle
distribution. The term h(1)(z, pz) is first order in the mode potential and is sinusoidal in
its z-dependence. This term is removed by the z-integral. The second-order terms are
characterised by wavenumber k + k = 2k and k − k = 0. The term characterised by 2k
also vanishes when integrating over z. The only relevant term is the one with k = 0. This
term is given by a quasi-linear second-order perturbation theory (Davidson 2001)

h(2)(z, pz) = ∂

∂pz

k2|qφ(1)|2
(ω − kż)2

∂h(0)

∂pz
. (B3)

Using the fact that ∂h(0)/∂pz is the sum of two delta functions and integrating by parts
yields the expression

�Pz = 2πL
(

k2|qφ(1)(ξin)|2h(0)

(ω − kż)2
− k2|qφ(1)(ξout)|2h(0)

(ω − kż)2

)
, (B4)

where L = ∫
dz is the plasma length. The energy of the mode is then given by the

expression

�W = 2πL
(

kω|qφ(1)(ξin)|2h(0)

(ω − kż)2
− kω|qφ(1)(ξout)|2h(0)

(ω − kż)2

)
. (B5)

If the frequencies are both positive, the energy associated with density perturbation Cin
has positive energy and the second mode density perturbation Cout has negative energy.

Appendix C

We want to exclude the effect of a spread in the drift velocities that comes with
a Maxwellian velocity distribution. Let us assume a distribution function of the form
f (0)

j = g( pzj)δ(v‖ − v‖0)δ(v
2
⊥ − v2

⊥0). In order to derive the corresponding mode equation,
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we first evaluate the following integral

∫ ∞

0
dx2

⊥

∫ ∞

0
dx2

‖

∂f (0)

j

∂pzj

ω − kqj
∂φ(0)

∂pzj
− kc2W

2Iq

(
x2

‖ + x2
⊥
2

)

=
∂g( pzj)

∂pzj
−
∣∣∣∣ c2

Iqj

∣∣∣∣ g( pzj)

ω − kqj
∂φ(0)

∂pzj
− kc2W

2Iqj

(
x2

‖0 + x2
⊥0

2

)

+
kc4W

Iqj|Iqj|g( pzj)

(
x2

‖0 + x2
⊥0

4

)
(

ω − kqj
∂φ(0)

∂pzj
− kc2W

2Iqj

(
x2

‖0 + x2
⊥0

2

))2 , (C1)

where we have used integration by parts to evaluate the derivative of the delta distribution
and used the relations ∂x‖/∂pzj = c2x‖/2Iqj and ∂x2

⊥/∂pzj = c2x2
⊥/2Iqj. We define the

scaled velocities as x‖ = √
m/W v‖ and x⊥ = √

m/W v⊥ with the total kinetic energy W. In
the following, we set W⊥ = W‖ = W/2 such that x‖0 = x⊥0 = 1. For a direct comparison
with previous results we define the characteristic length scale λ̂D = √

W/4πq2
en0e which

replaces the Debye length. Substituting this result in the mode equation (2.16) and
expressing it in dimensionless form yields the mode equation

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1)

= −2φ(1)

⎡⎢⎢⎢⎣
∂(ñe

(0)ξ 2)

∂ξ 2

Ω̃+−(1 − η)

∫ ξ

0
dξ ′ ξ ′ñ(0)

+
5
4

ñe
(0)k2λ̂2(

Ω̃+−(1 − η)

∫ ξ

0
dξ ′ ξ ′ñ(0)

)2

⎤⎥⎥⎥⎦

+ 2ηφ(1)

⎡⎢⎢⎢⎣
∂(ñe

(0)ξ 2)

∂ξ 2

Ω̃−−(1 − η)

∫ ξ

0
dξ ′ ξ ′ñ(0)

+
5
4

ñe
(0)k2λ̂2

D(
Ω̃−−(1 − η)

∫ ξ

0
dξ ′ ξ ′ñ(0)

)2

⎤⎥⎥⎥⎦ , (C2)

where Ω̃± = Ω ± k2λ̂2
D(x2

⊥0/2 + x2
‖0) is the mode frequency, Doppler shifted by the

curvature and gradient-B drift. Integrating the distribution function over velocity space
gives us the number density n(0)

j (r) = |qj|(√mT̂3/2/2c)g( pzj). In the limit of a pure

https://doi.org/10.1017/S0022377824001405 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001405


Stability of non-neutral and pair plasma 29

electron plasma (η = 0) we obtain

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1)

= −φ(1)

⎡⎢⎢⎢⎣
2
∂(ñe

(0)ξ 2)

∂ξ 2

Ω̃+−(1 − η)

∫ ξ

0
dξ ′ ξ ′ñ(0)

+
5
4

ñe
(0)k2λ2

D(
Ω̃+−

∫ ξ

0
dξ ′ ξ ′ñ(0)

)2

⎤⎥⎥⎥⎦ . (C3)

In the cold limit k2λ̂2
D = 0 the mode equation reduces to the result we obtained in (3.2).

For a quasi-neutral pair plasma the mode equation becomes

1
ξ

∂

∂ξ
ξ
∂φ(1)

∂ξ
− φ(1) = −6φ(1)k2λ̂2

D

⎡⎢⎢⎣
∂(ñe

(0)ξ 2)

∂ξ 2

Ω2 − 9
4

k4λ̂4
D

+
5
4
Ω ñe

(0)k2λ̂2
D(

Ω2 − 9
4

k4λ̂4
D

)
⎤⎥⎥⎦ . (C4)

The resulting growth rate does not show any stabilisation with increasing k2λ̂2
D.
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