Homoclinic and non-wandering points for maps of the circle

LOUIS BLOCK, ETHAN COVEN, IRENE MULVEY AND ZBIGNIEW NITECKI

Department of Mathematics, University of Florida, Gainesville, FL 32611, USA; Department of Mathematics, Wesleyan University, Middleton, CT 06457, USA; Department of Mathematics, Swarthmore College, Swarthmore, PA 19081, USA; Department of Mathematics, Tufts University, Medford, MA 02155, USA

(Received 4 January 1983 and revised 15 May 1983)

Abstract. For continuous maps f of the circle to itself, we show: (A) the set of nonwandering points of f coincides with that of f^n for every odd n; (B) f has a horseshoe if and only if it has a non-wandering homoclinic point; (C) if the set of periodic points is closed and non-empty, then every non-wandering point is periodic.

1. Introduction

In this paper we examine the dynamics of continuous maps of the circle to itself, establishing for such maps versions of three results known to hold for maps of a compact interval.

THEOREM A. If f is a continuous map of the circle, then the set of non-wandering points of f coincides with that of fⁿ for every odd n.

Theorem A is identical to the corresponding result [3] for maps of the interval.

THEOREM B. A continuous map of the circle has a horseshoe if and only if it has a non-wandering homoclinic point.

Here we have added to the corresponding result [1], [9], [10] for maps of the interval the condition that the homoclinic point is non-wandering. We show by example that on the circle this condition cannot be omitted. Actually we prove a stronger result – see theorem B+ and the remarks following it at the end of § 5.

THEOREM C. If the set of periodic points of a continuous map of the circle is closed and non-empty, then every non-wandering point is periodic.

Here we have added to the corresponding result [4], [8], [11] for maps of the interval the obvious requirement that the set of periodic points is non-empty – consider an irrational rotation.

We will prove theorem A by adapting the proof in [3] to the circle. In fact we will produce a shorter proof, valid for the interval as well as the circle. We will prove theorems B and C by lifting the map of the circle to a map of the reals, for which these results are known to hold. We will then project back down to the circle.

2. Preliminaries

Throughout this paper f will denote a continuous map of the circle to itself. The set of non-wandering points of f will be denoted by $\Omega(f)$ and the set of periodic points by Per(f). $\Omega(f)$ is always closed and non-empty and

$$\operatorname{Per}(f) = \operatorname{Per}(f^n) \subseteq \Omega(f^n) \subseteq \Omega(f)$$

holds for all n.

Formally we will think of the circle as \mathbb{R}/\mathbb{Z} and use π to denote the canonical projection. Thus every continuous map f of the circle has countably many *lifts*, i.e. continuous maps $F:\mathbb{R}\to\mathbb{R}$ satisfying

$$f \circ \pi = \pi \circ F$$
.

Any two such lifts differ by an integer and the unique integer d satisfying

$$F(X+1) = F(X) + d$$

for all lifts F and all X is called the *degree* of f, denoted deg (f).

In addition, we will think of the circle as *oriented* so that π is orientation-preserving. Thus notation such as [a, b] will make sense on the circle as well as on the interval or reals. In all three cases, we will have occasion to refer to points near a given point as being on the positive (+) or negative (-) side of that point. When we wish to speak of a side without specifying which it is we will use the letter S.

We define a (basic) half-neighbourhood of a point to be a non-degenerate closed interval having that point as the appropriate endpoint. Thus a positive half-neighbourhood of x is a set of the form [x, y].

A technical concept we will use is that of f-covering. We say of two closed intervals J and K that J f-covers K if f(J') = K for some sub-interval J' of J. (For maps of the interval, this is equivalent to $f(J) \supseteq K$; for maps of the circle, it is stronger.) The importance of f-coverings lies in the fact that if J fⁿ-covers itself for some n, then f has a periodic point in J.

3. Unstable sets

The basic tool for proving all three theorems is the analysis of one-sided unstable sets. We review here the basic facts of this theory from [1], [3] and [7]. The definition we adopt is that of [1]; the unstable sets in [3] and [7] are the closures of the ones we consider here.

For a fixed point p of f and a side S, the one-sided unstable set of p is

$$W^{u}(p,f,S) = \bigcap_{U} \bigcup_{k\geq 0} f^{k}(U),$$

where the intersection is taken over all S-half-neighbourhoods of p. Each one-sided unstable set is a (possibly degenerate) interval (possibly the whole circle) containing p which is mapped onto itself by f. We remind the reader that there are no universal relations between the two one-sided unstable sets. In particular, a one-sided unstable set need not be a half-neighbourhood.

For a fixed point p of $f^{\overline{N}}$, the unstable sets (under f^{N}) of the points in the f-orbit of p are related in the manner stated in the following lemma, which summarizes the relevant portions of lemmas 8.1-8.3 of [3].

LEMMA 1. Let p be a fixed point of f^N and let $S_0 = +$ or -. If $W^u(p, f^N, S_0)$ is non-degenerate, then for each $i \ge 0$ there is a side S_i at $f^i(p)$ such that

(a) for every S_0 -half-neighbourhood U of p, $f^i(U)$ contains an S_i -half-neighbourhood of $f^i(p)$.

Write W_i in place of $W^u(f^i(p), f^N, S_i)$. Then

- (b) $W_i = f^i(W_0);$
- (c) $W_{i+N} = W_i$;
- (d) if $f^i(p) \in \text{int } (W_i)$, then $W_i = W_i$.

Note that (c) does not assert that $S_{i+N} = S_{i}$, but only that the one-sided unstable sets are the same. The proof of (d) may require a moment's thought. When W_j is a proper sub-interval of the circle, (d) is just a restatement of lemma 8.3 of [3]. On the other hand, if W_j is the whole circle, then (b) implies that f maps the circle onto itself so that W_i is the whole circle as well.

To get some feeling for one-sided unstable sets, the reader is invited to verify the lemma for the examples which appear in § 5.

4. Non-wandering points: theorem A

Recall that x is non-wandering under f, denoted $x \in \Omega(f)$, if for every neighbourhood U of x,

$$f^n(U) \cap U \neq \emptyset$$
 for some $n \ge 1$.

The following two technical lemmas are proved using essentially the same arguments used to prove the corresponding results [3] for maps of the interval. For details, see [6].

LEMMA 2. If $x \in \Omega(f)$, then for every neighbourhood U of $x, x \in f^n(U)$ for some $n \ge 1$.

LEMMA 3. If $x \in \Omega(f)$ has an infinite orbit, then $x \in \Omega(f^n)$ for every n.

It is easy to construct, for any pre-assigned even n, a map f with $\Omega(f^n) \neq \Omega(f)$ – just embed the appropriate example from [3] in a map of the circle.

It follows from lemma 3 that to prove theorem A it suffices to prove

(*) If $x \in \Omega(f)$ and the orbit of x contains a fixed point of f^N , then $x \in \Omega(f^n)$ for every odd n.

We do so by induction on N. Before we begin the induction we state the following technical lemma, which is an immediate consequence of lemmas 1 and 2.

LEMMA 4. If $x \in \Omega(f)$ and $f^{kN}(x) = p$ is a fixed point of f^N , then there are sides $S_i(i \ge 0)$, consistent with lemma 1, such that

- (a) for every neighbourhood U of x, $f^{kN+i}(U)$ contains an S_i -half-neighbourhood of $f^{kN+i}(x)$;
 - (b) $x \in W_i = W^u(f^i(p), f^N, S_i)$ for some i.

The following lemma proves (*) for N = 1 and 2. The proof we give is a streamlined version of the proof of Lemma 9.1 of [3].

LEMMA 5. If $x \in \Omega(f)$ and the orbit of x contains a fixed point of f^2 , then $x \in \Omega(f^n)$ for every odd n.

Proof. We may assume that x is not itself periodic. Let $f^{2k}(x)$ be a fixed point of f^2 . Using the notation of lemma 4, there exists i=0 or 1 and a side $S=S_i$ of $q=f^{2k+i}(x)$ such that for every neighbourhood U of x, $f^{2k+i}(U)$ contains an S-half-neighbourhood of q and such that $x \in W^u(q, f^2, S)$.

Let U be a neighbourhood of x and let V be an S-half-neighbourhood of q contained in $f^{2k+i}(U)$ with

$$x \notin V \cup f^2(V) \cup f^4(V)$$
.

Note that $x \in f^{2j}(V)$ for some $j \ge 3$. There are three possibilities for the behaviour of V under f^2 :

- (1) $f^2(V) \subseteq V$;
- (2) $f^2(V) \supseteq V$;
- (3) $f^2(V) = V' \cup V''$, where V' is a (possibly degenerate) S-half-neighbourhood of q properly contained in V and V'' is a non-degenerate half-neighbourhood of q on the other side.
- If (1) holds, then $x \notin W^u(q, f^2, S)$. If (2) holds, then $x \in f^{2m+2j}(V)$ for every m. If (3) holds, then $f^2(V \cup V'')$ is not contained in $V \cup V''$, so either
 - (3a) $f^2(V'') \supseteq V''$, or
 - (3b) $f^2(V'') \supseteq V$.

If (3a) holds, then

$$x \in f^{2(m-1)+2j}(V'') \subseteq f^{2m+2j}(V)$$
 for every m.

If (3b) holds, then $x \in f^{4m+2j}(V)$ for every m. In all three possible situations -(2), (3a), (3b) – we have $x \in f^{4m+2j+2k+i}(U)$ for every m. Thus $\{r \mid x \in f'(U)\}$ contains all sufficiently large integers in some residue class modulo 4. But every such class contains arbitrarily large multiples of every odd number. Thus $x \in \Omega(f^n)$ for every odd n.

LEMMA 6. Suppose $x \in \Omega(f)$ has a finite orbit. If, with notation as in lemma 4, $x \in \text{int}(W_i)$ for some i, then $x \in \text{Per}(f)$ and hence $x \in \Omega(f^n)$ for every n.

Proof. We again assume that x is not itself periodic. Let $f^{kN}(x) = p$ be a fixed point of f^N . There are sides S at x and S_i at $f^{kN+i}(x) = q$ such that for every S-half-neighbourhood U of x, $f^{kN+i}(U)$ contains an S_i -half-neighbourhood of q.

Let G be a lift of f^N with a fixed point Q satisfying $\pi(Q) = q$. Let X be such that $\pi(X) = x$ and $Q \in (X - 1, X)$. Since $x \in \text{int}(W^u(q, f^N, S_i))$ and x is not periodic, at least one of the following must hold:

- (1) $X \in \text{int}(W^u(Q, G, S_i));$
- (2) $X-1 \in \text{int} (W^u(Q, G, S_i));$
- (3) both X and X-1 are in $W^{u}(Q, G, S_{i})$.

In each case it follows that if U is a small enough S-half-neighbourhood of x contained in W_i , then U $f^{jN+kN+i}$ -covers itself for some j. Thus every such U contains a periodic point and hence $x \in \overline{\operatorname{Per}(f)}$.

Now comes the inductive step.

LEMMA 7. Let $N \ge 3$. If $x \in \Omega(f) - \overline{\operatorname{Per}(f)}$ and the orbit of x contains a fixed point of f^N , then there exist $m \ge 2$ and M < N such that for $g = f^m$, $x \in \Omega(g) - \overline{\operatorname{Per}(g)}$ and the g-orbit of x contains a fixed point of g^M .

Proof. Let $f^{kN}(x) = p$ be a fixed point of f^N . Without loss of generality, N is the least period of p, for otherwise the conclusion holds with M = the least period of p, and m = N/M.

Let W_i , $i \ge 0$, be given by lemma 4. Note that if $x \in W_0$, then the conclusion holds with m = N and M = 1. Suppose then that $x \notin W_0$ and hence that $x \in W_i$ for some $i, 1 \le i \le N - 1$.

Claim 1. The endpoints of W_i are x and p.

By lemma 6, x must be an endpoint of W_i . Since W_i is f^N -invariant, $p \in W_i$. If p were not an endpoint of W_i , then by lemma 1, $W_0 = W_i$ which contains x. This proves claim 1.

Claim 2. W_i contains only p and $f^i(p)$ from the orbit of p.

We use lemma 1 repeatedly. Suppose $f^{j}(p) \in W_{i}$ where $f^{j}(p) \neq p$ and $f^{j}(p) \neq f^{i}(p)$. Then $f^{j}(p) \in \text{int } (W_{i})$ and hence $W_{i} = W_{j}$. Let t = |i - j|. Then W_{i} is f^{t} -invariant and hence contains the entire f^{t} -orbit of p. In particular, for some r,

$$f'(p), f^{2t}(p), \dots, f^{rt}(p) \in \text{int } (W_i) \text{ and } f^{(r+1)t}(p) = p.$$

Then $W_i = W_n$ and hence $W_0 = f^t(W_n) = W_i$ which contains x. This proves claim 2.

Claim 3. Each W_j contains exactly two members of the orbit of p. This follows immediately from claim 2.

We now complete the proof of the lemma. If N=2i, the conclusion follows with M=2 and n=N/2. Suppose that $N \neq 2i$. Then the points $p, f^i(p)$, and $f^{2i}(p)$ are distinct. Now W_{2i} contains both $f^i(p) \in \text{int}(W_i)$ and $f^{2i}(p) \notin W_i$. Thus $p \notin W_{2i}$ and hence $x \in \text{int}(W_{2i})$. Then by lemma $6, x \in \text{Per}(f)$.

Assertion (*) and hence theorem A now follow easily from lemmas 5 and 7. Note that our proof of theorem A works for maps of the interval as well as for maps of the circle.

5. Homoclinic points: theorem B

Recall that x is a homoclinic point if for some N there is a fixed point p of f^N such that $x \neq p$, p is in the f^N -orbit of x, and $x \in W^u(p, f^N, S)$ for some side S. In this case we say that x is homoclinic to p. We sometimes call such a point a 'strong' homoclinic point, to distinguish it from a 'weak' homoclinic point, which we define below.

A point x is a weak homoclinic point if for some N there is a fixed point p of f^N such that $x \neq p$, p is in the f^N -orbit of x, and $x \in W^u(q, f^N, S)$ for some q in the f-orbit of p and some side S. It follows from lemma 4 that any point in $\Omega(f)$ – Per (f) with a finite orbit is a weak homoclinic point. Conversely, a non-wandering weak homoclinic point has a finite orbit but is not periodic. The distinction between strong and weak homoclinic points is illustrated by the following example.

Example 1. Let f be a map of the circle with the following properties: f has a periodic orbit $\{p, q\}$ of period 2 with p and q diametrically opposite; f maps [p, q] isometrically onto [q, p] preserving orientation; and for some $x \in (q, p)$, f collapses [q, x] to p and uniformly stretches [x, p] onto [p, q] preserving orientation. Then x is a weak homoclinic point but there are no strong homoclinic points.

We note in passing that this example shows that on the circle, unlike the interval [6], [8], [11], the existence of a weak homoclinic point does not imply the existence of a strong homoclinic point.

We say that f has a horseshoe if for some N there are disjoint closed intervals J and K such that each of J and $K f^N$ -covers both J and K. When f has a horseshoe as above, the f^N -invariant set

$$H = \bigcap_{i=0}^{\infty} f^{-iN} (J \cup K),$$

the set of points whose f^N -orbit lies in $J \cup K$, has the full one-sided shift on two symbols as a continuous factor, via the map that assigns to each point in H its itinerary under f^N . This factor map takes the periodic points of $f^N \mid H$ onto the periodic points of the shift, as a consequence of the fact that any interval which f^i -covers itself contains a fixed point of f^i .

The Homoclinic Point Theorem [1], [9], [10] states (in part) that a map of the interval (or the reals) which has a strong homoclinic point also has a horseshoe.

It is easy to construct a map of the circle with a strong homoclinic point but no horseshoes.

Example 2. Let f be a map of the circle with the following properties: f has a fixed point p, $x \neq p$, f collapses [x, p] to p and homeomorphically stretches (p, x) onto the complement of p, with every point moving a positive distance forward. Then x is homoclinic to p but f cannot have a horseshoe, since for any closed interval f which does not contain f, and for any f does not contain f.

We will prove the two implications of theorem B separately. The easier implication is:

Proposition 1. If f has a horseshoe, then it has a non-wandering homoclinic point.

A preliminary technical observation will streamline our proof. If J f-covers K, it is clear that we can choose the subinterval J' for which f(J') = K so that its endpoints map onto the endpoints of K. We then refer to J' as a precise pre-image of K in J. If J' = [a, b] is a precise pre-image of K = [c, d] then f either preserves the endpoint order (f(a) = c, f(b) = d) or reverses it (f(a) = d, f(b) = c).

LEMMA 8. Suppose J f-covers K and J' is a precise pre-image of K in J. If f preserves (respectively reverses) the endpoint order on J', then every sub-interval L of K has a precise pre-image in J' on which f preserves (respectively reverses) the endpoint order.

We omit the straightforward proof.

Proof of proposition 1. Suppose f has a horseshoe, exhibited by $J = [a_0, b_0]$, K, and f^N . Since a non-wandering point for f^N is non-wandering for f, we may assume that N = 1.

In particular, J f-covers itself, and hence it f^2 -covers itself as well. A precise pre-image J' of J which reverses endpoint order must, by lemma 8, contain a precise pre-image J'' of J' on which f also reverses endpoint order. But then f^2 maps J'' onto J preserving endpoint order. Thus (replacing f by f^2 if necessary) we can assume that $J_1 = [a_1, b_1]$ is a precise pre-image of J in J on which f preserves endpoint order. Invoking lemma 8 inductively, we find a nested sequence of intervals $J_m = [a_m, b_m]$ such that J_m is a precise pre-image of J_{m-1} in J_{m-1} on which f preserves endpoint order. In particular, we have

$$a_{m-1} = f(a_m) \le a_m < b_m \le f(b_m) = b_{m-1},$$

so that the sequences a_m and b_m converge monotonically to fixed points, say a and b, of f. Furthermore, given a negative half-neighbourhood U of a and a positive half-neighbourhood V of b, $a_m \in U$ and $b_m \in V$ for all sufficiently large m. This implies that $a_i \in W^u(a, f, -)$ and $b_i \in W^u(b, f, +)$ for $i = 0, 1, 2, \ldots$ Now, since $[a_0, b_0]$ f-covers K and

$$f[a_1, b_1] \cap K = \emptyset,$$

either $[a_0, a_1]$ or $[b_1, b_0]$ f-covers K. Without loss of generality, we assume the latter. Then, since the f-invariant set $W^u(b, f, +)$ contains $[b, b_0]$, it contains K as well.

On the other hand, K f-covers J, so there is a point $x \in K$ such that f(x) = b and the image of every neighbourhood of x contains a positive half-neighbourhood of x.

An examination of the proof of the Homoclinic Point Theorem in [1] reveals that, for maps of the interval or the reals, the intervals exhibiting the horseshoe can be chosen to lie inside any pre-assigned neighbourhood of the periodic point involved. In particular, if some lift F of f has a homoclinic point, then F has a horseshoe exhibited by intervals which are contained in an interval of length less than one, and hence which project under π to disjoint intervals on the circle. These latter intervals exhibit a horseshoe for f. Thus we have

LEMMA 9. If some lift of f has a homoclinic point, then f has a horseshoe.

We will make use of the following fact, which (for maps of the interval) is implicit in [1] and explicit in [8] and [11].

LEMMA 10. Let F be a map of the interval or reals. If there is a fixed point P of F and a point X > P with $X \in W^{u}(P, F, -) - W^{u}(P, F, +)$, then F has a homoclinic point.

We formulate a strengthened converse of proposition 1 as

PROPOSITION 2. If a map of the circle has a non-periodic non-wandering point with a finite orbit, then it has a horseshoe.

We first prove a special case.

LEMMA 11. If $x \in \Omega(f)$ is not a fixed point, but has a fixed point in its orbit, then f has a horseshoe.

Proof. We may assume that $f(x) = \pi(0)$ is a fixed point and choose a lift F of f such that F(0) = 0. By lemma 9, we may assume that F has no homoclinic points. Let X be the unique point between 0 and 1 such that $\pi(X) = x$. Then either X or X - 1 belongs to

$$W^{u}(0, F, +) \cup W^{u}(0, F, -).$$

We assume that it is X, noting that the proof in the other case is similar. Then by lemma $10, X \in W^{\mu}(0, F, +)$, for otherwise F has a homoclinic point.

To show that f has a horseshoe, it suffices to show

$$W^{u}(0, F, +)$$
 contains some $Y > 1$. (*)

To see this, note first that we may assume that Y < 2. There exist m > 0 and points

$$0 < X_0 < X_1 < X_2 < Y - 1$$

such that

$$F^{m}(X_{2}) = Y$$
, $F^{m}(X_{1}) = 1$ and $F^{m}(X_{0}) = X_{2}$.

Then the intervals $\pi[0, X_0]$ and $\pi[X_1, X_2]$ are disjoint and each f^m -covers both.

To prove (*), note that since $f(x) = \pi(0)$ is a fixed point, F(X) must be an integer, which is non-zero since otherwise X is homoclinic to 0. Furthermore, if F(X) > 1, then (*) holds with Y = F(X). Thus we have two cases: F(X) = 1 and F(X) < 0.

Case 1.
$$F(X) = 1$$
.

We may assume that F(1) = 1; for if F(1) < 0, then some point in (X, 1) is homoclinic to 0; if F(1) = 0, then 1 is homoclinic to 0; and if F(1) > 1, then (*) holds with Y = F(1). Thus we have F(X) = F(1) = 1. For every neighbourhood U of X, F(U) contains at least a half-neighbourhood of 1, otherwise $x \notin \Omega(f)$. In fact, it contains a positive half-neighbourhood, since if F(U) is a negative half-neighbourhood of 1, then by lemma X, $X \in W^u(1, F, -)$, making X homoclinic to 1. But since $X \in F(U)$ contains a positive half-neighbourhood of 1, (*) holds for some $X \in F(U)$.

Case 2. F(X) < 0.

If $F^2(X) < 0$ as well, then $\deg(f) > 0$ and hence $F^m(X) < 0$ for all $m \ge 1$. Now F[0, X] contains no point to the right of 0, since otherwise some point in [0, X] is homoclinic to 0. Similarly, for all $m \ge 1$, $F^m[0, X]$ contains no point to the right of 0 and hence $X \notin W^u(0, F, +)$.

Suppose then that $F^2(X) \ge 0$. If $F^2(X) = 0$, then X is homoclinic to 0. If $F^2(X) = 1$, then F(X) = -1, so deg (f) = -1 and hence F(X-1) = 0, making X-1 homoclinic to 0. This leaves only $F^2(X) > 1$, and so (*) holds with $Y = F^2(X)$. This proves (*) and hence the lemma.

Proof of proposition 2. Let $x \in \Omega(f)$ be non-periodic and suppose $f^{kN}(x) = p$ is a fixed point of f^N . If $x \in Per(f)$, then $x \in \Omega(f^N)$. By lemma 11, f^N has a horseshoe and hence so does f.

Suppose then that $x \notin \operatorname{Per}(f)$. Using the notation of lemma 4, we have $x \in W_i$ for some $i, 0 \le i \le N-1$. If $x \in W_0$, then $x \in \Omega(f^N)$ and f has a horseshoe as in the

preceding paragraph. Suppose then that $x \notin W_0$ and $x \in W_i$ where $1 \le i \le N-1$. As in the proof of lemma 7, the endpoints of W_i are x and p. Thus W_i is a compact, f^N -invariant, proper sub-interval of the circle. Let $q = f^i(p)$ and suppose without loss of generality that $S_i = +$ and hence that $W_i = W^u(q, f^N, +)$.

If $W_i = [p, x]$, then $f^{jN}(y) = x$ for some $y \in (q, x)$ and some $j \ge k$. Since $f^{jN}(x) = p$, there exists $z \in (y, x)$ such that $f^{jN}(z) = q$. But then z is a homoclinic point for $f^N | W_i$. By the Homoclinic Point Theorem, $f^N | W_i$ has a horseshoe, and hence f has one as well.

If $W_i = [x, p]$, then by lemma 10, either $f^N | W_i$ has a homoclinic point or $x \in W^u(q, f^N | W_i, -)$. In either case, as in the preceding paragraph, f has a horseshoe.

Note that we have proved a stronger version of theorem B, analogous to the proposition in [8].

THEOREM B+. For a continuous map f of the circle, the following are equivalent:

- (1) f has a horseshoe;
- (2) f has a non-wandering (strong) homoclinic point;
- (3a) f has a non-wandering weak homoclinic point;
- (3b) f has a non-periodic non-wandering point with a finite orbit.

We remark that these conditions are also equivalent to each of the following:

- (4) f has positive topological entropy;
- (5) f has periodic points with least periods n < m where m/n is not a power of 2.

(1) implies (5) follows from the fact that the factor map from the horseshoe preserves periods, (5) implies (4) from [2], and (4) implies (1) from [5].

6. Maps with closed periodic set: theorem C

Our proof of theorem C will follow from an analysis of the non-wandering set for maps with no horseshoes. That this is the right situation to look at follows from

LEMMA 12. If f has a horseshoe, then Per (f) is not closed.

Proof. Recall from the earlier discussion of horseshoes that for some N there is a compact f^N -invariant set H such that $f^N|H$ has the full one-sided shift on two symbols as a continuous factor. Furthermore, $Per(f^N|H)$ maps onto the set of periodic points of the shift. If Per(f) is closed, then so is $Per(f^N|H)$ and hence also the set of periodic points of the shift. But this last set is not closed.

LEMMA 13. If for some lift F of f, there is an interval $J \subseteq [0, 1]$ of length less than one such that for some $m \ge 1$, $F^m(J)$ contains three consecutive integers, then f has a horseshoe.

The proof of lemma 13 is straightforward (see lemma 5.10 of [6]). Lemmas 12 and 13 allow us to concentrate on maps of degree 0 or ± 1 . We handle these cases separately.

PROPOSITION 3. Suppose f has degree zero and F is a lift of f. We have

- (1) $\pi[\Omega(F)] = \Omega(f)$;
- (2) if Per(f) is closed, then so is Per(F).

Proof. Since the range of F is compact, F has a fixed point, and so we can assume without loss of generality that F(0) = 0. Let I be a compact interval which contains the range of F and has (distinct) integer endpoints. Then $\Omega(F) = \Omega(F|I)$ and $\pi|I$ is a finite-to-one factor map of F|I onto I. We will abuse notation slightly by using F in place of F|I and π in place of $\pi|I$.

To show (1), we need only show that $\Omega(f) \subseteq \pi[\Omega(F)]$. Given $x \in \Omega(f)$, we may assume that $0 \notin \pi^{-1}(x)$, since otherwise $x \in \pi[\Omega(F)]$. Let

$$\pi^{-1}(x) = \{X^{(1)}, \ldots, X^{(m)}\};$$

observe that $X^{(j)} \in \text{int } (I)$ for all j. By lemma 2, there exist $x_i \to x$ and $n_i \ge 1$ such that $f^{n_i}(x_i) = x$. We may assume that $0 \notin \pi^{-1}(x_i)$ and hence that each $\pi^{-1}(x_i)$ consists of exactly m points in I,

$$\pi^{-1}(x_i) = \{X_i^{(1)}, \ldots, X_i^{(m)}\}.$$

We can label these points so that $X_i^{(j)} \to X^{(j)}$ for each j. Note that $F(X_i^{(j)})$ depends on i but not on j, since f has degree zero.

Now $\pi[F^{n_i}(X_i^{(j)})] = x$ for all i and all j, and $\pi^{-1}(x)$ is finite while $F^{n_i}(X_i^{(j)})$ is independent of j. It follows that for some k,

$$F^{n_i}(X_i^{(j)}) = X^{(k)}$$

for infinitely many i and all j, and hence that

$$X^{(k)} \in \Omega(F) \cap \pi^{-1}(x).$$

This proves (1).

To show (2), suppose $X \in \overline{Per(F)} - Per(F)$. Then $\pi(X) \in \overline{Per(f)} = Per(f)$. Thus $\pi(X)$ has a finite orbit and so X does too. This makes X a weak homoclinic point. Then F must have a strong homoclinic point as well (see [6], [8] or [11]). Hence by lemma 9, f has a horseshoe and then by lemma 12, Per(f) is not closed. \square

To obtain the analogue of proposition 3 for maps of degree one we need to assume more.

PROPOSITION 4. Suppose f is a map of degree one which has no horseshoes. If F is a lift of f which has a fixed point, then

- (1) $Per(F) = \pi^{-1}[Per(f)];$
- (2) $\Omega(F) = \pi^{-1}[\Omega(f)].$

Proof. We may assume that 0 is a fixed point of F. We first establish

$$X-1 < F^n(X) < X+1$$
 for all X and all n. (*)

Since deg (f) = 1, $F^n(X + k) = F^n(X) + k$, so we need prove (*) only for $X \in (0, 1)$. If $F^n(X) \ge X + 1$, then

$$F^{2n}[0,X] \supseteq F^n[0,X+1] \supseteq [0,X+2],$$

and so by lemma 13 f has a horseshoe. Similarly, if $F^n(X) \le X - 1$, then

$$F^{2n}[X,1] \supseteq [X-2,1],$$

and again f has a horseshoe. This proves (*).

To prove (1), it suffices to show that if $\pi(X) \in \text{Per}(f)$, then $X \in \text{Per}(F)$. If $\pi(X) \in \text{Per}(f)$, say $f^n(\pi(X)) = \pi(X)$, then $F^n(X) = X + k$ for some integer k. By (*), k = 0 and hence $X \in \text{Per}(F)$.

To prove (2), it suffices to show that if $x = \pi(X) \in \Omega(f)$, then $X \in \Omega(F)$. Since $x \in \Omega(f)$, lemma 2 implies that there exist $x_i \to x$ and $n_i \ge 1$ such that $f^{n_i}(x_i) = x$. Let X_i be the point closest to X in $\pi^{-1}(x_i)$. Then $X_i \to X$ and $F^{n_i}(X_i) = X + k_i$ for some integer k_i . The convergence of X_i to X together with (*) imply that for i sufficiently large, $k_i = -1$, 0, or 1. Thus, for a subsequence of X_i (which we still denote X_i) $F^{n_i}(X_i)$ is constant and equals X - 1, X, or X + 1.

Suppose $F^{n_i}(X_i) = X + 1$. If F(X) < X, then for some $\delta > 0$ and all sufficiently large i, $F(X_i) < X - \delta$. Using (*) again, for these i we have

$$F^{n_i}(X_i) = F^{n_i-1}(F(X_i)) < F(X_i) + 1 < X + 1 - \delta,$$

contradicting the assumption that $F^{n_i}(X_i) = X + 1$. Using the fact that

$$F^{n_i+1}(X_i) = F(X)+1,$$

similar arguments lead to a contradiction when F(X) > X. Hence F(X) = X and $X \in \Omega(F)$.

In the same way, if $F^{n_i}(X_i) = X - 1$, then F(X) = X and $X \in \Omega(F)$. Finally, if $F^{n_i}(X_i) = X$, then $X \in \Omega(F)$ by definition.

We now assemble a proof of theorem C. Suppose Per (f) is closed and non-empty. By lemma 12, f has no horseshoes. It follows from lemma 13 that deg (f) = 0 or ± 1 . If deg (f) = 0, then by proposition 3, for a lift F of f, Per (F) is closed and non-empty. Then by [8], $\Omega(F) = \text{Per }(F)$, and by proposition 3 again,

$$\Omega(f) = \pi[\operatorname{Per}(F)] = \operatorname{Per}(f).$$

If $\deg(f) = \pm 1$ and $x \in \Omega(f) - \operatorname{Per}(f)$, then x must have an infinite orbit, since otherwise by theorem B f has a horseshoe. But then by lemma 3, $x \in \Omega(f^n)$ for all n. Choose n even (so that f^n has degree one) and such that f^n has a fixed point. Let G be a lift of f^n which has a fixed point. Since f^n has no horseshoes, it follows from proposition 4 that $\operatorname{Per}(G)$ is closed and non-empty, and hence by [8] again that $\Omega(G) = \operatorname{Per}(G)$. But then

$$x \in \Omega(f^n) = \pi[\Omega(G)] = \pi[\operatorname{Per}(G)] = \operatorname{Per}(f^n) = \operatorname{Per}(f).$$

The proof is complete.

REFERENCES

- [1] L. Block. Homoclinic points of mappings of the interval. Proc. Amer. Math. Soc. 72 (1978), 576-580.
- [2] L. Block, E. M. Coven & Z. Nitecki. Minimizing topological entropy for maps of the circle. *Ergod. Th. & Dynam. Sys.* 1 (1981), 145-149.
- [3] E. M. Coven & Z. Nitecki. Non-wandering sets of the powers of maps of the interval. *Ergod. Th. & Dynam. Sys.* 1 (1981), 9-31.

- [4] V. V. Fedorenko & A. N. Sarkovskii. Continuous mappings of the interval with closed sets of periodic points. In *Introduction to Differential and Differential-difference Equations*, pp. 137-145. Kiev, 1980. (Russian)
- [5] M. Misiurewicz. Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. Ser. Sci. Math. 27 (1979), 167-169.
- [6] I. Mulvey. Periodic, recurrent and non-wandering points for continuous maps of the circle. Ph.D. thesis. Wesleyan University, Middletown, Conn. (1982).
- [7] Z. Nitecki. Topological dynamics on the interval. In Ergodic Theory and Dynamical Systems II, pp. 1-73. College Park, Md., 1979-80, Progr. Math. vol. 21. Birkhaüser: Boston, 1982.
- [8] Z. Nitecki. Maps of the interval with closed periodic set. Proc. Amer. Math. Soc. 85 (1982), 451-456.
- [9] A. N. Sarkovskii. On cycles and structure of continuous mappings. *Ukrain. Mat. Z.* 17 (1965), 104-111. (Russian)
- [10] A. N. Sarkovskii. On the problem of isomorphism of dynamical systems. In *Proceedings of the International Conference on Nonlinear Trajectories*, vol. 2, pp. 541-545. Kiev, 1970. (Russian)
- [11] J.-C. Xiong. Continuous self-maps of the closed interval whose periodic points form a closed set. J. China University of Science and Technology 11 (1981), 14-23.