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Abstract. For continuous maps / of the circle to itself, we show: (A) the set of
nonwandering points of / coincides with that of /" for every odd n; (B) / has a
horseshoe if and only if it has a non-wandering homoclinic point; (C) if the set of
periodic points is closed and non-empty, then every non-wandering point is periodic.

1. Introduction
In this paper we examine the dynamics of continuous maps of the circle to itself,
establishing for such maps versions of three results known to hold for maps of a
compact interval.

THEOREM A. / / / is a continuous map of the circle, then the set of non-wandering
points of f coincides with that of f" for every odd n.

Theorem A is identical to the corresponding result [3] for maps of the interval.

THEOREM B. A continuous map of the circle has a horseshoe if and only if it has a
non-wandering homoclinic point.

Here we have added to the corresponding result [1], [9], [10] for maps of the interval
the condition that the homoclinic point is non-wandering. We show by example
that on the circle this condition cannot be omitted. Actually we prove a stronger
result - see theorem B+ and the remarks following it at the end of § 5.

THEOREM C. If the set of periodic points of a continuous map of the circle is closed
and non-empty, then every non-wandering point is periodic.

Here we have added to the corresponding result [4], [8], [11] for maps of the interval
the obvious requirement that the set of periodic points is non-empty - consider an
irrational rotation.

We will prove theorem A by adapting the proof in [3] to the circle. In fact we will
produce a shorter proof, valid for the interval as well as the circle. We will prove
theorems B and C by lifting the map of the circle to a map of the reals, for which
these results are known to hold. We will then project back down to the circle.
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2. Preliminaries
Throughout this paper / will denote a continuous map of the circle to itself. The
set of non-wandering points of / will be denoted by fl(f) and the set of periodic
points by Per (/). H(/) is always closed and non-empty and

Per(/) = Per(/")sn(/")sn(/)
holds for all n.

Formally we will think of the circle as R/Z and use n to denote the canonical
projection. Thus every continuous map / of the circle has countably many lifts, i.e.
continuous maps F: U -* U satisfying

/ ° IT = IT ° F.

Any two such lifts differ by an integer and the unique integer d satisfying

for all lifts F and all X is called the degree of /, denoted deg (/).
In addition, we will think of the circle as oriented so that TT is orientation-

preserving. Thus notation such as [a, b] will make sense on the circle as well as on
the interval or reals. In all three cases, we will have occasion to refer to points near
a given point as being on the positive (+) or negative (—) side of that point. When
we wish to speak of a side without specifying which it is we will use the letter S.

We define a (basic) half-neighbourhood of a point to be a non-degenerate closed
interval having that point as the appropriate endpoint. Thus a positive half-neigh-
bourhood of x is a set of the form [x, y].

A technical concept we will use is that of /-covering. We say of two closed intervals
J and K that J f-covers K if / ( / ' ) = K for some sub-interval J' of /. (For maps of
the interval, this is equivalent to f(J)^K; for maps of the circle, it is stronger.)
The importance of /-coverings lies in the fact that if //"-covers itself for some n,
then / has a periodic point in /.

3. Unstable sets
The basic tool for proving all three theorems is the analysis of one-sided unstable
sets. We review here the basic facts of this theory from [1], [3] and [7]. The definition
we adopt is that of [1]; the unstable sets in [3] and [7] are the closures of the ones
we consider here.

For a fixed point p of f and a side S, the one-sided unstable set of p is

U k>0

where the intersection is taken over all S- half -neighbourhoods of p. Each one-sided
unstable set is a (possibly degenerate) interval (possibly the whole circle) containing
p which is mapped onto itself by /. We remind the reader that there are no universal
relations between the two one-sided unstable sets. In particular, a one-sided unstable
set need not be a half-neighbourhood.

For a fixed point p of fN, the unstable sets (under fN) of the points in the /-orbit
of p are related in the manner stated in the following lemma, which summarizes
the relevant portions of lemmas 8.1-8.3 of [3].
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LEMMA 1. Let p be a fixed point of fN and let So = + or - . If W(p,fN, So) is
non-degenerate, then for each i sO there is a side St at f'(p) such that

(a) for every So -half-neighbourhood U ofp, f'(U) contains an Si-half-neighbour-
hood of f'(p).
Write Wt in place of Wu(fi(p),fN, S,). Then

(b) W,=/'(W0);
(c) Wl+N=Wt;
(d) iff(p) e int (W,), then W, = Wt

Note that (c) does not assert that S-,+N = SK but only that the one-sided unstable
sets are the same. The proof of (d) may require a moment's thought. When W, is
a proper sub-interval of the circle, (d) is just a restatement of lemma 8.3 of [3].
On the other hand, if W, is the whole circle, then (b) implies that / maps the circle
onto itself so that Wt is the whole circle as well.

To get some feeling for one-sided unstable sets, the reader is invited to verify
the lemma for the examples which appear in § 5.

4. Non-wandering points: theorem A
Recall that x is non-wandering under /, denoted x e il( f), if for every neighbourhood
I/of x,

forsomen>l .

The following two technical lemmas are proved using essentially the same arguments
used to prove the corresponding results [3] for maps of the interval. For details,
see [6].

LEMMA 2. Ifx e fl(/), then for every neighbourhood Uofx, x e /"(U) for some n > l .

LEMMA 3. If xe il(f) has an infinite orbit, then x e ft(/n) for every n.

It is easy to construct, for any pre-assigned even n, a map / with ft(/") # il(f) - just
embed the appropriate example from [3] in a map of the circle.

It follows from lemma 3 that to prove theorem A it suffices to prove

(*) Ifxeil(f) and the orbit of x contains a fixed point of fN, then xef t ( / n ) for every
odd n.

We do so by induction on N. Before we begin the induction we state the following
technical lemma, which is an immediate consequence of lemmas 1 and 2.

LEMMA 4. / / x eft(/) and fkN{x) =p is a fixed point of fN, then there are sides
S,(i>0), consistent with lemma 1, such that

(a) for every neighbourhood Uofx, fkN+l ([/) contains an Srhalf-neighbourhood
offkN+i(x);

(b) xe W, = Wu(f'(p), fN, S,) for some i.

The following lemma proves (*) for N = 1 and 2. The proof we give is a streamlined
version of the proof of Lemma 9.1 of [3].
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LEMMA 5. If xe ft(/) and the orbit of x contains a fixed point of f2, then xefl(f")
for every odd n.

Proof. We may assume that x is not itself periodic. Let f2k(x) be a fixed point of
f2. Using the notation of lemma 4, there exists i = 0 or 1 and a side S = S; of
q=f2k+l (x) such that for every neighbourhood U of x, f2k+> (U) contains an
S-half-neighbourhood of q and such that xe W(q,f2, S).

Let U be a neighbourhood of x and let V be an S-half-neighbourhood of q
contained in f2k+i(U) with

xi Vu / 2 (V)u / 4 (V) .

Note that xef2'( V) for some / > 3. There are three possibilities for the behaviour
of V under f2:

(1) / 2 ( V ) c V ;
(2) /2(V)=>V;
(3) / 2 (V)= V'u V", where V is a (possibly degenerate) S-half-neighbour-

hood of q properly contained in V and V" is a non-degenerate half-neighbourhood
of q on the other side.
If (1) holds, then xt Wu(q,f2, S). If (2) holds, then xef2m+2'( V) for every m. If
(3) holds, then f ( V u V") is not contained in Vu V", so either

(3a) /2(V")=V", or
(3b) /2(V")=V.

If (3a) holds, then

x e /2(»-»+2y( v») £ y*»+2/( v ) f o r e v e r y m

If (3b) holds, then xef4m+2'(V) for every m. In all three possible situations
- (2), (3a), (3b) - we have x e fi'"+2i+2k+i (u) for every m. Thus {r \ x e f'{ U)} con-
tains all sufficiently large integers in some residue class modulo 4. But every such
class contains arbitrarily large multiples of every odd number. Thus xeil(f) for
every odd n. •

LEMMA 6. Suppose xefl(f) has a finite orbit. If, with notation as in lemma 4, xe
int (Wt) for some i, then x e Per (/) and hence xefi(/") for every n.

Proof. We again assume that x is not itself periodic. Let fkN(x) =p be a fixed point
of fN. There are sides S at x and $ at fkN+i(x)=q such that for every S-half-
neighbourhood U of x, fkN+' ([/) contains an S,-half-neighbourhood of q.

Let G be a lift of fN with a fixed point Q satisfying TT(Q) = q. Let X be such
that TT(X) = x and Q e (X - 1 , X). Since x £ int (W"(q, fN, $)) and x is not periodic,
at least one of the following must hold:

(1) X e i
(2) X - l
(3) both AT and X - 1 are in W(Q, G, S,).

In each case it follows that if U is a small enough S-half-neighbourhood of x
contained in Wh then U f'N+kN+l-covers itself for some /. Thus every such U
contains a periodic point and hence x e Per (/). •
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Now comes the inductive step.

LEMMA 7. Let N & 3. If xe Cl(f) — Per (/) and the orbit of x contains a fixed point
offN, then there exist m>2 andM<N such that for g=fm, xeft(g)-Per (g) and
the g-orbit of x contains a fixed point of gM.
Proof. Let fkN(x) = p be a fixed point of /N. Without loss of generality, N is the
least period of p, for otherwise the conclusion holds with M = the least period of
p, and m = N/M.

Let Wt, i > 0, be given by lemma 4. Note that if x e Wo, then the conclusion holds
with m = 7V and M = 1. Suppose then that x<£ Wo and hence that xe Wj for some
i, l < i < N - l .

Claim 1. The endpoints of W, are x and p.
By lemma 6, x must be an endpoint of Wt. Since Wf is fN-invariant, p e W;. If /?
were not an endpoint of Wh then by lemma 1, Wo= Wf which contains x. This
proves claim 1.

Claim 2. W, contains only p and / '(p) from the orbit of p.
We use lemma 1 repeatedly. Suppose f'(p)e Wt where f'(p)^p and f'(p)^ f'(p)-
Then/;(p)eint(W,) and hence Wj = W,. Let f = | i - / | . Then Wj is/'-invariant and
hence contains the entire /'-orbit of p. In particular, for some r,

/ ' (p ) , / 2 ' (p ) , - . . , r (p )e in t (W j ) and f(r+1)l (p)= p.

Then Wf = Wrt and hence Wo = /'(Wrt) = Wj which contains x. This proves claim 2.

Claim 3. Each W, contains exactly two members of the orbit of p.
This follows immediately from claim 2.
We now complete the proof of the lemma. If N = 2i, the conclusion follows w t̂h
M = 2 and n = N/2. Suppose that N^ 2i. Then the points p, f'(p), and f2i(p) are
distinct. Now W2i contains both f'(p)eint (Wj) and f2i(p)£ Wt. Thus p£ W2j and
hence x € int (W2l). Then by lemma 6, x e Per (/). •

Assertion (*) and hence theorem A now follow easily from lemmas 5 and 7. Note
that our proof of theorem A works for maps of the interval as well as for maps of
the circle.

5. Homoclinic points: theorem B
Recall that x is a homoclinic point if for some N there is a fixed point p of fN such
that X9^p, p is in the /N-orbit of x, and xe W"(p,fN, S) for some side S. In this
case we say that x is homoclinic to p. We sometimes call such a point a 'strong'
homoclinic point, to distinguish it from a 'weak' homoclinic point, which we define
below.

A point x is a weak homoclinic point if for some N there is a fixed point p of fN

such that x^p , p is in the /N-orbit of x, and xe Wu(q,fN, S) for some q in the
/-orbit of p and some side S. It follows from lemma 4 that any point in Cl(f) - Per (/)
with a finite orbit is a weak homoclinic point. Conversely, a non-wandering weak
homoclinic point has a finite orbit but is not periodic. The distinction between strong
and weak homoclinic points is illustrated by the following example.
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Example 1. Let / be a map of the circle with the following properties: / has a
periodic orbit {p, q) of period 2 with p and q diametrically opposite; / maps [p, q]
isometrically onto [q, p] preserving orientation; and for some xe{q,p),f collapses
[q, x] to p and uniformly stretches [x, p] onto [p, q] preserving orientation. Then x
is a weak homoclinic point but there are no strong homoclinic points.

We note in passing that this example shows that on the circle, unlike the interval
[6], [8], [11], the existence of a weak homoclinic point does not imply the existence
of a strong homoclinic point.

We say that / has a horseshoe if for some N there are disjoint closed intervals /
and K such that each of / and K fN- covers both / and K. When / has a horseshoe
as above, the /"-invariant set

i=0

the set of points whose fN- orbit lies in J<uK, has the full one-sided shift on two
symbols as a continuous factor, via the map that assigns to each point in H its
itinerary under /". This factor map takes the periodic points of fN \H onto the
periodic points of the shift, as a consequence of the fact that any interval which
/'-covers itself contains a fixed point of /'.

The Homoclinic Point Theorem [1], [9], [10] states (in part) that a map of the
interval (or the reals) which has a strong homoclinic point also has a horseshoe.

It is easy to construct a map of the circle with a strong homoclinic point but no
horseshoes.

Example 2. Let / be a map of the circle with the following properties: / has a fixed
point p, XT*P, f collapses [x, p] to p and homeomorphically stretches (p, x) onto
the complement of p, with every point moving a positive distance forward. Then x
is homoclinic to p but / cannot have a horseshoe, since for any closed interval J
which does not contain p, and for any n, / " ( / ) does not contain J.

We will prove the two implications of theorem B separately. The easier implication
is:

PROPOSITION 1. If f has a horseshoe, then it has a non-wandering homoclinic point.

A preliminary technical observation will streamline our proof. If //-covers K, it is
clear that we can choose the subinterval / ' for which f(J') = K so that its endpoints
map onto the endpoints of K. We then refer to / ' as a precise pre-image of K in
/. If J' = [a,b] is a precise pre-image of K=[c,d] then / either preserves the
endpoint order (/(a) = c,f(b) = d) or reverses it (/(a) = d,f(b) = c).

LEMMA 8. Suppose Jf-covers K and J' is a precise pre-image ofK in J. Iff preserves
{respectively reverses) the endpoint order on J', then every sub-interval L of K has a
precise pre-image in J' on which fpreserves (respectively reverses) the endpoint order.

We omit the straightforward proof.
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Proof of proposition 1. Suppose / has a horseshoe, exhibited by J = [a0, b0], K, and
/N. Since a non-wandering point for fN is non-wandering for /, we may assume that
N = l.

In particular, J /-covers itself, and hence it f2 -covers itself as well. A precise
pre-image / ' of J which reverses endpoint order must, by lemma 8, contain a precise
pre-image /" of J' on which / also reverses endpoint order. But then f2 maps J"
onto J preserving endpoint order. Thus (replacing / by f2 if necessary) we can
assume that Ji = [al,b1] is a precise pre-image of / in J on which / preserves
endpoint order. Invoking lemma 8 inductively, we find a nested sequence of intervals
Jm = [<*m> bm] such that Jm is a precise pre-image of Jm_i in Jm_! on which / preserves
endpoint order. In particular, we have

am_! = / ( a m ) s a B < bm<f(bm) = bm^,

so that the sequences am and bm converge monotonically to fixed points, say a
and b, of /. Furthermore, given a negative half-neighbourhood U of a and a
positive half-neighbourhood V of b, ameU and d B e V for all sufficiently large m.
This implies that a, e W(a , /, - ) and b, e W(b, f, +) for i = 0,1,2, Now, since
[a0, ft0] /-covers K and

either [a0, a j or [bx, b0] /-covers K Without loss of generality, we assume the
latter. Then, since the /-invariant set Wu(b,f, +) contains [b, b0], it contains K as
well.

On the other hand, K/-covers J, so there is a point x&K such that f(x) = b and
the image of every neighbourhood of x contains a positive half-neighbourhood of
b. Then x is non-wandering and homoclinic to b. •

An examination of the proof of the Homoclinic Point Theorem in [1] reveals that,
for maps of the interval or the reals, the intervals exhibiting the horseshoe can be
chosen to lie inside any pre-assigned neighbourhood of the periodic point involved.
In particular, if some lift F of / has a homoclinic point, then F has a horseshoe
exhibited by intervals which are contained in an interval of length less than one,
and hence which project under IT to disjoint intervals on the circle. These latter
intervals exhibit a horseshoe for /. Thus we have

LEMMA 9. / / some lift of f has a homoclinic point, then f has a horseshoe.

We will make use of the following fact, which (for maps of the interval) is implicit
in [1] and explicit in [8] and [11].

LEMMA 10. Let F be a map of the interval or reals. If there is a fixed point P of F
and apointX>Pwith X e W{P, F, -) - W"(P, F, +), then F has a homoclinic point.

We formulate a strengthened converse of proposition 1 as

PROPOSITION 2. // a map of the circle has a non-periodic non-wandering point with
a finite orbit, then it has a horseshoe.

We first prove a special case.

https://doi.org/10.1017/S014338570000211X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000211X


528 L. Block, E. Coven, I. Mulvey and Z. Nitecki

LEMMA 11. If xeil(f) is not a fixed point, but has a fixed point in its orbit, then f
has a horseshoe.

Proof. We may assume that f{x) = v(0) is a fixed point and choose a lift F of / such
that F(0) = 0. By lemma 9, we may assume that F has no homoclinic points. Let
X be the unique point between 0 and 1 such that TT(X) = x. Then either AT or X - 1
belongs to

Wu(0,F,+)u W(0,F,-).

We assume that it is X, noting that the proof in the other case is similar. Then by
lemma 10, X e W(0, F, +), for otherwise F has a homoclinic point.

To show that / has a horseshoe, it suffices to show

W"(0, F, +) contains some Y > 1. (*)

To see this, note first that we may assume that Y < 2. There exist m > 0 and points

0 < X 0 < X 1 < X 2 < Y - 1

such that

Fm(X2)=Y, Fm(X1) = l and Fm(X0)=X2.

Then the intervals TT[0, XO] and ir[Xu X2] are disjoint and each /m-covers both.
To prove (*), note that since f(x) = TT(0) is a fixed point, F(X) must be an integer,

which is non-zero since otherwise X is homoclinic to 0. Furthermore, if F(X) > 1,
then (*) holds with Y = F(X). Thus we have two cases: F(X) = 1 and F(X)<0.

Case 1. F(X) = 1.
We may assume that F(l) = 1; for if F(l) < 0, then some point in (X, 1) is homoclinic
to 0; if F ( l )=0 , then 1 is homoclinic to 0; and if F(1)> 1, then (*) holds with
y = F(l) . Thus we have F(X) = F(l) = 1. For every neighbourhood U of X, F( U)
contains at least a half-neighbourhood of 1, otherwise x£ il(f). In fact, it contains
a positive half-neighbourhood, since if F( U) is a negative half-neighbourhood of
1, then by lemma 2, Xe W"(l,F, —), making X homoclinic to 1. But since F(U)
contains a positive half-neighbourhood of 1, (*) holds for some YeF(U).

Case 2. F(X)<0.
If F 2 (X)<0 as well, then deg( / )>0 and hence F m (X)<0 for all rn>l. Now
F[0, X] contains no point to the right of 0, since otherwise some point in [0, X] is
homoclinic to 0. Similarly, for all m > 1, Fm[0, X] contains no point to the right
of 0 and hence X£ W"(0, F, +).

Suppose then that F2(X) > 0. If F2(X) = 0, then X is homoclinic to 0. If F2(X) =
1, then F(X) = - 1 , so deg(/) = - l and hence F ( X - l ) = 0, making X - 1 homo-
clinic to 0. This leaves only F2(X) > 1, and so (*) holds with Y = F2(X). This proves
(*) and hence the lemma. •

Proof of proposition 2. Let xeftjf) be non-periodic and suppose fkN(x) = p is a
fixed point of fN. If xePer (/), then xeD,(fN). By lemma 11, fN has a horseshoe
and hence so does /.

Suppose then that xi Per (/). Using the notation of lemma 4, we have x e Wt for
some /, 0 ^ / s i V - l . If xe WO, then xeil(fN) and / has a horseshoe as in the
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preceding paragraph. Suppose then that xi Wo and xeWj where 1 •& i < N— 1. As
in the proof of lemma 7, the endpoints of W, are x and p. Thus W, is a compact,
fN-invariant, proper sub-interval of the circle. Let q^f'ip) and suppose without
loss of generality that S, = + and hence that Wt = W"(q,fN, +).

If Wt = [p, x], (hen f'N{y) = x for some ye(q,x) and some/3= k. Since/;N(x) = p,
there exists ze(y,x) such that f'N(z)=q. But then z is a homoclinic point for
fN | Wj. By the Homoclinic Point Theorem, fN \ Wt has a horseshoe, and hence /
has one as well.

If Wt = [x, p], then by lemma 10, either fN\ Wt has a homoclinic point or xe
W*(q,fN\ Wj> - ) . In either case, as in the preceding paragraph, / has a horseshoe.

•
Note that we have proved a stronger version of theorem B, analogous to the
proposition in [8].

THEOREM B+. For a continuous map f of the circle, the following are equivalent:
(1) f has a horseshoe;
(2) f has a non-wandering (strong) homoclinic point;
(3a) / has a non-wandering weak homoclinic point;
(3b) / has a non-periodic non-wandering point with a finite orbit.

We remark that these conditions are also equivalent to each of the following:
(4) / has positive topological entropy;
(5) / has periodic points with least periods n<m where m/ n is not a power of 2.

(1) implies (5) follows from the fact that the factor map from the horseshoe preserves
periods, (5) implies (4) from [2], and (4) implies (1) from [5].

6. Maps with closed periodic set: theorem C
Our proof of theorem C will follow from an analysis of the non-wandering set for
maps with no horseshoes. That this is the right situation to look at follows from

LEMMA 12. If f has a horseshoe, then Per (/) is not closed.

Proof. Recall from the earlier discussion of horseshoes that for some N there is a
compact /'"'-invariant set H such that fN\H has the full one-sided shift on two
symbols as a continuous factor. Furthermore, Per (fN\H) maps onto the set of
periodic points of the shift. If Per (/) is closed, then so is Per (fN\H) and hence
also the set of periodic points of the shift. But this last set is not closed. •

LEMMA 13. If for some lift F of f, there is an interval / c [0,1] of length less than
one such that for some m > 1, Fm{J) contains three consecutive integers, then f has
a horseshoe.

The proof of lemma 13 is straightforward (see lemma 5.10 of [6]).
Lemmas 12 and 13 allow us to concentrate on maps of degree 0 or ±1. We handle
these cases separately.

https://doi.org/10.1017/S014338570000211X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000211X


530 L. Block, E. Coven, I. Mulvey and Z. Nitecki

PROPOSITION 3. Suppose f has degree zero and F is a lift of f. We have
(1) 7r[O(F)] = ft(/);
(2) if Per (/) is closed, then so is Per (F).

Proof. Since the range of F is compact, F has a fixed point, and so we can assume
without loss of generality that F(0) = 0. Let / be a compact interval which contains
the range of F and has (distinct) integer endpoints. Then ft(F) = il(F \ I) and V | /
is a finite-to-one factor map of F \ I onto /. We will abuse notation slightly by using
F in place of F \ I and TT in place of TT\I.

To show (1), we need only show that £i(/)c 7r[fl(F)]. Given xeCl{f), we may
assume that 0g TT~1(X), since otherwise xe 7r[n(F)]. Let

observe that X(/) e int (/) for all /. By lemma 2, there exist xt -> x and nt > 1 such
that /"'(*,) = x. We may assume that 0 i. tr~l(Xi) and hence that each TT~l{Xi) consists
of exactly m points in /,

We can label these points so that X<;> -» Xu) for each /. Note that F(X\0) depends
on i but not on /, since / has degree zero.

Now ir[F"> (X\i})] = x for all i and all j , and ir~\x) is finite while Fn'{X{p) is
independent of j . It follows that for some k,

for infinitely many i and all j , and hence that

This proves (1).
To show (2), suppose Xe Per (F)-Per (F). Then ir{X) e Per (/) = Per (/). Thus

TT(X) has a finite orbit and so X does too. This makes X a weak homoclinic point.
Then F must have a strong homoclinic point as well (see [6], [8] or [11]). Hence
by lemma 9, / has a horseshoe and then by lemma 12, Per (/) is not closed. •

To obtain the analogue of proposition 3 for maps of degree one we need to assume
more.

PROPOSITION 4. Suppose f is a map of degree one which has no horseshoes. If F is
a lift of f which has a fixed point, then

(1) Per(F) = 77-1[Per(/)];
(2) n(F) = 7r-1[fl(/)].

Proof. We may assume that 0 is a fixed point of F. We first establish

X-KFn(X)<X + l for all X and all n. (*)

Since deg (/) = 1, Fn(X + k) = Fn{X) + k, so we need prove (*) only for X e (0,1).
If

F2n[0, X] => F"[0, X +1] => [0, X + 2],
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and so by lemma 13 / has a horseshoe. Similarly, if F"(X)<X — 1, then

F2"[X,1]2[X-2,1] ,

and again / has a horseshoe. This proves (*).
To prove (1), it suffices to show that if ir(X)€Per (/), then XePer(F) . If

ir(X) € Per (/), say /"(ir(X)) = ir(X), then Fn(X) = X + k for some integer fc. By
(*), fc = 0 and hence X 6 Per (F).

To prove (2), it suffices to show that if x = ir(X)e(l(f), then Xeft(F). Since
x e ft(/), lemma 2 implies that there exist xt -*• x and n, > 1 such that /"'(at,-) = x Let
X be the point closest to X in ir~l{Xi). Then X, -» X and F"'(Xj) = X + fc, for some
integer fc,. The convergence of Xt to X together with (*) imply that for i sufficiently
large, fc, = - l , 0, or 1. Thus, for a subsequence of X* (which we still denote X)
F"'(X,) is constant and equals X - l , X, or X + l.

Suppose F"'(Xj) = X + l. If F(X)<X, then for some 8>0 and all sufficiently
large i, F(Xj)<X-5. Using (*) again, for these i we have

contradicting the assumption that Fn> (X) = X +1. Using the fact that

F" '+ 1(X)=F(X) + 1,

similar arguments lead to a contradiction when F(X) > X. Hence F(X) = X and
X e a ( F ) .

In the same way, if F"'(X) = X - 1 , then F(X) = X and 'Xea(F) . Finally, if
F"' (X;) = X, then X € ft(F) by definition. •

We now assemble a proof of theorem C. Suppose Per (/) is closed and non-empty.
By lemma 12, / has no horseshoes. It follows from lemma 13 that deg (/) = 0 or
±1. If deg(/) = 0, then by proposition 3, for a lift F of /, Per (F) is closed and
non-empty. Then by [8], ft(F) = Per (F), and by proposition 3 again,

If deg(/) = ±l and xeCl(f) —Per (/), then x must have an infinite orbit, since
otherwise by theorem B / has a horseshoe. But then by lemma 3, x e £l(f) for all
n. Choose n even (so that / " has degree one) and such that / " has a fixed point.
Let G be a lift of / " which has a fixed point. Since / " has no horseshoes, it follows
from proposition 4 that Per (G) is closed and non-empty, and hence by [8] again
that fl(G) = Per (G). But then

x 6 «(/») = TT[O(G)] = 7r[Per (G)] = Per (/") = Per (/).

The proof is complete. •

REFERENCES

[1] L. Block. Homoclinic points of mappings of the interval. Proc. Amer. Math. Soc. 72 (1978), 576-580.
[2] L. Block, E. M. Coven & Z. Nitecki. Minimizing topological entropy for maps of the circle. Ergod.

Th. & Dynam. Sys. 1 (1981), 145-149.
[3] E. M. Coven & Z. Nitecki. Non-wandering sets of the powers of maps of the interval. Ergod. Th.

& Dynam. Sys. 1 (1981), 9-31.

https://doi.org/10.1017/S014338570000211X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000211X


532 L. Block, E. Coven, I. Mulvey and Z. Nitecki

[4] V. V. Fedorenko & A. N. Sarkovskii. Continuous mappings of the interval with closed sets of
periodic points. In Introduction to Differential and Differential-difference Equations, pp. 137-145.
Kiev, 1980. (Russian)

[5] M. Misiurewicz. Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. Ser. Sci. Math.
27 (1979), 167-169.

[6] I. Mulvey. Periodic, recurrent and non-wandering points for continuous maps of the circle. Ph.D.
thesis. Wesleyan University, Middletown, Conn. (1982).

[7] Z. Nitecki. Topological dynamics on the interval. In Ergodic Theory and Dynamical Systems II,
pp. 1-73. College Park, Md., 1979-80, Progr. Math. vol. 21. Birkhauser: Boston, 1982.

[8] Z. Nitecki. Maps of the interval with closed periodic set. Proc. Amer. Math. Soc. 85 (1982), 451-456.
[9] A. N. Sarkovskii. On cycles and structure of continuous mappings. Ukrain. Mat. Z. 17 (1965),

104-111. (Russian)
[10] A. N. Sarkovskii. On the problem of isomorphism of dynamical systems. In Proceedings of the

International Conference on Nonlinear Trajectories, vol. 2, pp. 541-545. Kiev, 1970. (Russian)
[11] J.-C. Xiong. Continuous self-maps of the closed interval whose periodic points form a closed set.

J. China University of Science and Technology 11 (1981), 14-23.

https://doi.org/10.1017/S014338570000211X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000211X

