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ON LOGARITHMIC DERIVATIVES OF FUNCTIONS IN A CLASS 
OF STARLIKE MAPPINGS 

A L A N D . G L U C H O F F 

ABSTRACT. The purpose of this paper is to prove some facts about integral means 
of (d21dz2)(log\f(z)Iz])—or equivalently/"//, for/ in a class of starlike mappings of 
a "singular" nature. In particular it is noted that the Koebe function is not extremal for 
the Hardy means Mp(r,f"/f) for functions in this class. 

1. Introduction. Let S denote the class of functions analytic and univalent in the 
unit disc B> of the complex plane normalized so that/(0) = /'(())—1 = 0, and S* denote the 
subclass of S for which/(B>) is starlike with respect to the origin; S* is the class of starlike 
mappings. Iff G S*, then \i(Q) = limr_+i argf(rel°) exists for each 0 and is an increasing 
function with /i(#) — 6 periodic with period 27r, and /x(0) = \ [^{0 + 0) + /x(# — 0)] for 
each 0\ see [15], p. 591. Let us call /i the boundary argument function for/. 

DEFINITION. A function/ G S* is said to be in the class S$ if there is a closed set 
E C [0,27r] of Lebesgue measure zero such that [0,2n]—E = \Jk(ak, bk) with [i constant 
on each (a^ b^). 

Members of SQ thus have the property that their boundary argument changes only on 
a closed set of measure zero. The class SQ contains, for example, rotations of the Koebe 
function K{z) = z(\ —z)~2 and more generally functions of the form dl"=1(l — zel9jYa\ 
where {#,} are distinct numbers in [0,2ir) and E/ OCJ — 2, a7 > 0; these functions map 
the unit disc onto the plane minus n radial slits making angles ITCCJ with the origin. In fact, 
since the collection of functions of this form is dense in S* in the topology of uniform 
convergence on compact subsets, (see [15], p. 583), it follows that SQ is dense in 5*. 
In Section 3 of this paper it is shown that S$ contains some bounded functions, and in 
Section 4 it is shown that functions in SQ are not starlike of order (3 for any (3 > 0. 

In this paper we will prove some facts about log\f(z)/z] for functions in this class, in 
particular we will deal with the growth classes for (d2/dz2)(log\f(z)/z]) showing how 
the Hardy classes Hp to which it belongs is affected by hypotheses on /i, hypotheses 
which can in some cases be related to the mapping properties of/. (For future reference 
let us denote (dn/dzn)(\og\f(z)/z\) by DnJ for/ G S, and let/ (n ) be the standard nih 

derivative, n > 1.) It is noted in particular that the Koebe function is not extremal for 
integral mean growth of Djf for/ G SQ, where the Hardy p-means, 0 < p < \ are used 
to measure the derivative. We also point out a connection between the smoothness of [i 
as measured by modulus of continuity and the one dimensional Lebesgue measure of the 
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set [O : | argf(reie) > /?} for /? > 0, where r is fixed, 0 < r < 1. The main tools in 
making these connections are the well-known integral representation formula for star­
like mappings, see [14], pp. 209-210, and the work of several authors on growth classes 
for singular inner functions, [l]-[5]. 

In the following, the class Hp is the usual Hardy class of functions/ analytic in D> with 
sup0<,<i j f lf(rei9)\pi = Mp

p{rJ) < oo, 0 < p < oo, and M^rJ) = max, [f(rew)\; 
N is the Nevanlinna class of functions/ for which 

sup / log+\f(rei6)\d6 < 00, 
0<r<l Jo 

and N+ is the subset of N for which limr_i J0
2?r log+ \f(rew)\dd = $* log+ \f(ew)\dO. Re­

call that Hp CN+ CN for all p, and Hp CHqiiq< p. See [6] for details. 

2. Growth classes for D]f—the main theorem. In this section we prove the main 
theorem of the paper, which states the relationship between Djf and //, for / G SQ. 
We first give some background. There have been many attempts to relate the growth 
of/ G S* as measured by integral means of/(w) or U\f to properties of/ as a map­
ping and to [i. For example, if /i has a jump of ira at 6 = #o, then the image of/ 
contains a maximal "sector" of angle na with vertex at 0, see [15] p. 591; in the case 
in which this is the greatest jump for ^, then limr_+i ^ l ^ f f i = a (t14J P- 2 1 1 ) ^ ^ 
linv_^i(l — r)Mœ(r,Dlf) — a ([15] p. 211). In [14] are similar limits involving 
Mp{r,f{n))\ see p. 605. One also has that if/ is bounded, then p, is continuous [14] p. 211. 
In [8] the authors show that every/ G S* with finite image area has M\(rj'/f) = 
0((l-rrl). 

For the class SQ it is Djf which can most easily be related to fi. We do this in Theorem 1 
below indirectly by making reference to the singular inner function associated with /x; 
in Section 3 the inner function conditions are replaced by conditions in \x itself in three 
corollaries. Recall that if a is a non decreasing function on [0, lit] with a' = 0 a.e., then 
Sa(z) = expj — So* jtrrzd(r(t)} is called the associated singular inner function, see [6] 
p. 24 or [11] p. 75. The function Sa(z) satisfies \Sa(z)\ < 1 in P with limr_^ \Sa(reie)\ = 1 
a.e. Note that if/ G SJj, then p! = 0 a.e. 

THEOREM 1. Suppose/ G SQ with /i(0) = limr_i argf(rew), and 0 < p < 1. 77*é?« 
£>!/" € ^ # F ^ € ^ IfS'^ G TV f/œw Dj^ G M arcd */S^ £ N, then Djf £ HP for all 
p>0. 

PROOF. With/ and p as above, we have that 

/(z) = ,exp{i/^logr-i— «/„(,)), 
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see [14] pp. 209-210; from above, we can form S^(z) = exp{- $" ^ d 11(f)). Now 

h (eif-z) ZJo (eh-z)2 

'27T djl(t) 

elt - z Jo elt - z u 

The first term of this last expression is in Hp for all /?, 0 < p < 1, see [6] p. 39. It 
follows that Djf G #? iff ^ / ^ G / F . However, by [3] Theorem 4 p. 118, 5^/5^ G //^ 
iff 5^ G IP, thus the / F part of the theorem follows. If S'^ G N, then again by [3] 
Corollary 4, p. 118, S'^/S^ G N+, hence in N. Finally, if ^ £ W, then by the same 
corollary, S'^/S^ £ 7V+, hence S'^/S^ £ Hp for all/? > 0. The proof is complete. • 

For purposes of orientation let us note the following: first, for all / G S*, \ogf(z)/z G 
flpoo #p- N o w iff € 5*, D[f = \ $" ^f^ where \i is the boundary argument function 
for/, where // need not be singular [14], pp. 209-210; thus D}f G C\P<\ Hp- Recall that 
by a theorem of Hardy and Littlewood ([6] p. 88) g' G Hp, 0 < p < 1 implies g e H*-p, 
so Ci = {/ : D | / G np<i # p } C np<oo^/7^ and thus any/ G 5* is in the subclass C{ of 
f)p<ooHP- It is then natural to ask whether 5* C C2 = {/" : D 2 / G f"V<i/2#p} C Ci C 
p| /7<00// /?. Theorem 1 and the corollaries in Section 3 will show that the first inclusion 
does not always hold; counterexamples will be members of SQ. Of course, for arbitrary 
starlike functions one can easily have DnJ G Ç]p<OQHp for any n\ take/(z) = z, for 
example. See also [8] for other subclasses of f]P<oo Hp t 0 which S or S* may belong. 

We close with some final remarks on the quantity Djf for/ G S*. Note that D\f(z) — 
f(z)/f(z) =l/zifz^0, and since D]f G np<i Hp, it follows that Mp(rJf/f) < 00 as 
r -> 1, for all/7 < 1. The identity Djf(z) = f"(z)/f(z) - \ff(z)/f(z)]2 + 1/z2 for z ^ 0 
thus gives that D]f G Hp iff Mp(rJ"/f) < 00 as r —• 1, if 0 < p < 1 /2 . So we may 
use Djf and / " / / interchangeably in any statements of our theorems. Secondly, we have 
that 1 + zD\f = zf\z)/f(z\ so Re[l + zDJf] = | zrgf{reiB) where z = reid\ this shows 
that D]f is related to Jj arg/(r<?^). For D 2 / we have: 

PROPOSITION. Letf e S*. IfDjf e Hp far some 0 < p < 1, î/ien Mp(r,g) < oo as 
r —> 1, vv/zere g(re'e) = J^ aigf(re'e). 

PROOF. Differentiating both sides of the identity 1 + zD\f(z) = zf'(z)/f(z) with 
respect to 9 and taking real parts gives 

Re[izzDif(z) + izDlf(z)] = Re 
9 zf'(z) 

[de f{z) ^ R e 
zf'(z) 
fiz) 

,2 
^ a r g / ( r e " ) . 

The result follows since D\f G flP<i #p- • 
Thus a mean growth condition of this sort on Djf implies one of the same sort on 

&arg/(re»). 
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3. Corollaries. We now use the results in [l]-[5] to relate growth classes for S^ to 
conditions on /i itself, and thus obtain corollaries relating Djf to fi directly. 

We first assume that /i is continuous. An example of/ G SQ with \i continuous is given 
in [12], Section 5, where fi is the Lebesgue function of the standard Cantor set on [0,2ir] 
normalized so that II(2TT) — /i(0) = 2TT; similar examples will occur in Corollary 1. Note 
that this function has an image which contains no angular sectors with vertex at the origin 
and positive angular spread ([15], p. 591). Also, this function is shown to be bounded in 
[12]. 

For arbitrary fi continuous we have the standard modulus of continuity uj^{t) = 
sup|JC_>7|<:r |/X(JC) — fi(y)\; since /x is continuous, u;^(t) —> 0 as t —• 0, and since \x is 
singular, u^fjO/t —• oo as t —> 0 ([1], p. 315). Our first corollary involves a condition on 

COROLLARY 1. Suppose that f G SQ, fi is continuous and uj^{t) = 0(ta), for some 
a, 0 < a < 1. Then Djf (£ H^. Furthermore, this is best possible in the sense that 
for each a, 0 < a < 1, there is an fa G SQ with argument function fia such that 
uj,a(t) = Oif) andf'a G Wforallp < ^ . 

PROOF. Suppose/ G SQ with /i continuous and u^{f) = 0(ta), for some a, 0 < a < 
1. Then if 5^ is the associated singular inner function, we have by [1] p. 341 that S^ ^ 
/J2=§, so by our Theorem 1 the first statement follows. For the second part, let 0 < a < 1 
be fixed, and define ua(t) = ta /(27r)a. Then Ahern in [1] pp. 323-326 constructs a Cantor 
set "of constant ratio 2~«" whose Lebesgue function Xa has a modulus of continuity 
uj\a(t) satisfying ^ta/(27r)a < w\a(t) < 4ta/(2ir)a, and thus the associated singular 
inner function S\a has S'Xa G Hp for all p < ^ by [1], p. 346. By replacing Xa by 
lia = 2nXa we obtain a new singular function S^a with modulus of continuity 0(ta) 
where S'^ G FF for all/? < —^ ([3], Theorem 4 can be used to see this last statement). 
Now define fa(z) = zexp{^ j g M o g ^ dfjLa(t)}; then/ G 5J with/; G ff> for all 
P < jE% by Theorem 1 ; it is easy to see that iia is the boundary argument function for 
fa. We are done. • 

COMMENTS. 1) The corollary says that in some sense the more smoothly the set of 
arguments of/ is distributed, the worse the behavior of Djf. 

2) This shows the existence of/ G 5* for which/ £ C2 = {/ : / " G n p < i / 2 ^ } £ 

a<oo^. 
3) Given any subclass of S, a problem of considerable interest has been to find ex­

tremal functions for integral means for functions/ in the class, as well as for/(w) and 
DnJ. Baernstein's theorem ([7] p. 215) says that the Koebe function K(z) is extremal for 
Mp(r,f), / G 5, 0 < p < oo, but for/(n), n > 1 the Koebe function does not necessarily 
play this role. If/? > 2/5, then Mp(rJ{n)) = 0(Mp(r,K{n))),r -+ 1 for all n [10]. It is 
also known that Mp(rJ(n)) < Mp(r, K(n)l 0 < /? < oo, 0 < r < 1, « > 1 for al l / in the 
close to convex class [13]. For starlike functions the boundM\{r, D\f) — 0{M\(r, Dl

LFCf) 
was obtained in [8] and in [9] it was shown that Mp(r, zff(z)/f(z)) < Mp(r, zK'(z)/K(z)) 
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for a l l / starlike, 0 < p < oo. Now D\K G Hp for all p < 1 /2 , but clearly £ cannot 
be extremal forMp(r,Djf),f G 5* for any/? < 1/2 by this corollary. It is interesting 
that this happens even though log/(z)/z is subordinate to log K(z)/z for a l l / G 5* ([7], 
p. 213). 

We next remove the requirement that /i be continuous and focus on restrictions on the 

set[Q,2n]-E=\Jk(ak,bk). 

COROLLARY 2. Suppose/ G S$ tfftd d/i is supported on E, where [0,27r] — E — 

Uk(ak,bk), andpiO) = limr_^i arg/(r^). Lef 0 < 7 < 1. 77ien 

«) #"E* \h - a*|7 < oo, then Djf G 7/1?. 

fcJ / /E* |&* - flikl log | ^ < oo, rten D£/ G M 

PROOF. Both of these results follow immediately from [5] Theorem 1, p. 284 and 
our Theorem 1. • 

The corollary may be viewed as saying that the faster the lengths of intervals of con­
stant boundary argument for/ go to zero, the better the behavior of Djf. 

Finally, we turn to boundary argument functions fi which are essentially step func­
tions: assume that 0 < a\ < b\ = ai < bi = «3 < h = • • • < 2TT and that \i has a 
jump of 7rAfc at ak, where Â  > 0. Thus the measure dji is purely atomic with weights 
7rAjt at dk\ let us call such an argument function purely atomic also. Recall that if/ G SQ 
has purely atomic boundary argument function, then the image of/ contains a maximal 
sector of angle 7r\k for each k [actually, the existence of such a sector of argument nXk 

is an equivalent condition for having a jump nXk in //] (see [15], p. 591). We also must 
have £* Xk — 2. 

COROLLARY 3. Suppose/ G SQ and p,(0) = limr_+i arg/(rel9) is purely atomic with 
jumps nXk at ak. Let 0 < 7 < 1/2. Then i/T,k^l < °°> we nave ^if ^ HP> for a^ 
p<l/2. 

PROOF. This follows from [4], see also [1] p. 346. • 

This corollary may be viewed as saying that if the wedge arguments in the image of 
/ go to zero "faster than 1/fc2", then the behavior of Djf is the best possible over the 
class SQ. It is perhaps interesting in this regard that ([14] p. 211 ) if a is the largest wedge 
argument, then Moo(r,/) > C(l — r)~a for 0 < r < 1, so the smaller the wedge the tamer 
the maximum modulus is allowed to be. 

We conclude this section by noting that in [1] are other results stating conditions on 
E such that 5^ G Hp for some/? < 1/2, these relate to the "type" of E defined by p(e) = 
Lebesgue measure of {6 : \0—E\ < e} and to functions related to uj^t), see pp. 344-345. 
These conditions can then be related t o / G SQ as we have done in the corollaries. 

4. The rate of change of the argument function. In this final section we move 
from considerations of the quantity Djf to ^ arg/(rel°). For any starlike function/ with 
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boundary argument function p the relation 

^ arg/(r^) - Re 
r2iT e

lt + rew 

rziT e- + re~ 

/•27T 1 - r2 

Jo 1 — 2rcos(u — t) + rz 

holds, where the next to last expression is the familiar Poisson integral of p. Iff G SQ, 
then p is singular, so, for example, we have limr_+i P^{r,0) = 0 a.e., with respect to 
Lebesgue measure and limr_>i P^(r,9) = oo a.e. [dp], see [2] or [11], p. 77. For any 
(3 > 0, 0 < r < 1, we may define £(r,/3) = {0 : /^(r.fl) > £}; if/x has compact 
support of measure zero (as it will for/ G SQ) then |Zs(r,/?)| —-> Oas r -> 1, where 
|2s(r,/?)| denotes the Lebesgue measure of E(r,(3), see [2], p. 1. In [2] are found bounds 
from above and below on the rate at which \E(r, (3)\ —» 0 as r —+ 1 ; thus we have bounds 
on the rate at which |{0 : ^ argf(rew) > /?} | —• 0 as r —• 1. Note that the fact that 
\E(r, /5f)| —• 0 for any /3 as r —• 1 says that/ G SQ is never starlike of order (3 for any 
/ ? > 0 . 

In Theorem 2 below we state some bounds from below on the rate of decay to zero of 
\{0 : d/d6argf(reld) > (3} |. These bounds are not stated in the most general form, greater 
generality for bounds from above or below may be obtained by referring to Theorems 2 
and 4 in [2]. 

THEOREM 2. Suppose f G SQ. Then for any (3 > 0 there is a constant C = C(f3,f) 
such that J 6 : ^ argf(reie) > /3j\ > Cy/\ — r as r —• 1. If in addition f has continuous 
boundary argument p with modulus of continuity uj^i) = 0(ta) for some a, 0 < a < 1, 
then for any (3 there is a constant C(f, /3) such that 

: ^ arg f(rei9)>f3 > C ( l - r ) ^ , asr-

PROOF. This is [2] Theorems 4 and 5; see also [1] for further details on the calcula­
tion of the quantity 8(r). m 
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