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ON LOGARITHMIC DERIVATIVES OF FUNCTIONS IN A CLASS
OF STARLIKE MAPPINGS

ALAN D. GLUCHOFF

ABSTRACT.  The purpose of this paper is to prove some facts about integral means
of (d? /dz*)(log{f(z) / z])—or equivalently f”' /f, for f in a class of starlike mappings of
a “singular” nature. In particular it is noted that the Koebe function is not extremal for
the Hardy means M,(r, "’ /f) for functions in this class.

1. Introduction. Let S denote the class of functions analytic and univalent in the
unit disc D of the complex plane normalized so thatf(0) = f'(0)—1 = 0, and $* denote the
subclass of S for which f(D) is starlike with respect to the origin; S* is the class of starlike
mappings. If f € S*, then u(f) = lim,_,; arg f(re®) exists for each 6 and is an increasing
function with () — 4 periodic with period 27, and () = % [ +0) + (@ — 0)] for
each 6; see [15], p. 591. Let us call i the boundary argument function for f.

DEFINITION. A function f € S* is said to be in the class Sy if there is a closed set
E C [0, 27] of Lebesgue measure zero such that [0, 27] — E = | J(ax, by) with p constant
on each (ay, by).

Members of S thus have the property that their boundary argument changes only on
a closed set of measure zero. The class Sj contains, for example, rotations of the Koebe
function K(z) = z(1 —z)~? and more generally functions of the form AT, (1 — 7€)%,
where {Bj} are distinct numbers in [0,27) and ¥; a; = 2, a; > 0; these functions map
the unit disc onto the plane minus n radial slits making angles wa; with the origin. In fact,
since the collection of functions of this form is dense in S* in the topology of uniform
convergence on compact subsets, (see [15], p. 583), it follows that S is dense in S*.
In Section 3 of this paper it is shown that S;; contains some bounded functions, and in
Section 4 it is shown that functions in Sjj are not starlike of order 3 for any 3 > 0.

In this paper we will prove some facts about log[f(z)/z] for functions in this class, in
particular we will deal with the growth classes for (d?/ dzz)(log[f(z) / z]) showing how
the Hardy classes HP to which it belongs is affected by hypotheses on p, hypotheses
which can in some cases be related to the mapping properties of f. (For future reference
let us denote (d"/ dz")(log[f(z) / z]) by Dif for f € S, and let f be the standard n'"
derivative, n > 1.) It is noted in particular that the Koebe function is not extremal for
integral mean growth of Df for f € Sj, where the Hardy p-means, 0 < p < % are used
to measure the derivative. We also point out a connection between the smoothness of
as measured by modulus of continuity and the one dimensional Lebesgue measure of the
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set {6’ : 5% argf(reia) > [3} for 3 > 0, where r is fixed, 0 < r < 1. The main tools in
making these connections are the well-known integral representation formula for star-
like mappings, see [14], pp. 209-210, and the work of several authors on growth classes
for singular inner functions, [1]-[5].

In the following, the class H? is the usual Hardy class of functions f analytic in D with
SUPg< <t 3" [f(re®)|P L2 = ME(r.f) < 00, 0 < p < 00, and Muo(r,f) = maxy |[f(re?)];
N is the Nevanlinna class of functions f for which

sup / log* |f(re?)|df < oo,
0<r<l

and N* is the subset of N for which lim,_,; [Z™log® |[f(r¢?)|d0 = 2™ log* |f(e")|db. Re-
call that H® C N* C N for all p, and H? C HY if ¢ < p. See [6] for details.

2. Growth classes for Df—the main theorem. In this section we prove the main
theorem of the paper, which states the relationship between D2f and u, for f € S.
We first give some background. There have been many attempts to relate the growth
of f € S* as measured by integral means of f™ or D}f to properties of f as a map-
ping and to u. For example, if u has a jump of ma at § = 6y, then the image of f
contains a maximal “sector” of angle ma with vertex at 0, see [15] p. 591; in the case
in which this is the greatest jump for g, then lim,_,; T&%ﬁl = o« ([14] p. 211) and
lim,; (1 — PHMyo(r, DLf) a ([15] p. 211). In [14] are similar limits involving
M, (r,f™); see p. 605. One also has that if f is bounded, then y is continuous [14] p. 211.
In [8] the authors show that every f € S§* with finite image area has M%(r, /) =
o(d—n7").

For the class Sj it is D2f which can most easily be related to u. We do this in Theorem 1
below indirectly by making reference to the singular inner function associated with p;
in Section 3 the inner function conditions are replaced by conditions in y itself in three
corollaries. Recall that if o is a non decreasing function on [0, 27] with ¢’ = 0 a.e., then
So(z2) = exp{ fg” f,,*z da(t)} is called the associated singular inner function, see [6]
p. 24 or [11] p. 75. The function S, (z) satisfies |S,(z)| < 1in D withlim,_; [S,(re?)| = 1
a.e. Note thatif f € S7, then ' = 0 a.e.

THEOREM 1. Suppose f € Sj with u(0) = lim,,; argf(ré®), and 0 < p < 1. Then
Dif € HP iff S|, € HP. If S, € N then Dif € N, and if S}, ¢ N, then Dif ¢ HP for all
p>0.

PROOF. With f and p as above, we have that

1
1) = zexp~ [ tog - auto |,
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see [14] pp. 209-210; from above, we can form S, (z) = exp{— Jor g d,u(t)} Now

(z)
S0 2 [ - )2 aule)
Y U 0
(e”—z) 0 (et — )2
e
- 2./0 i~ 2nDif.

The first term of this last expression is in H” for all p, 0 < p < 1, see [6] p. 39. It
follows that Dif € HP iff S, /S, € H”. However, by [3] Theorem 4 p. 118, 5], /S, € H”
iff SL € HP, thus the HP part of the theorem follows. If SL € N, then again by [3]
Corollary 4, p. 118, S}, /S, € N*, hence in N. Finally, if §|, ¢ N, then by the same
corollary, S}, /S, ¢ N*, hence S}, /S,, ¢ HP for all p > 0. The proof is complete. .

For purposes of orientation let us note the following: first, for all f € $*, logf(z)/z €
Np<oo H”. Now if f € S7, Dif = g" (—j,é% where p is the boundary argument function
for f, where p need not be smgula.r [14], pp. 209-210; thus D}f € (p<1 H. Recall that
by a theorem of Hardy and Littlewood ([6] p. 88) g’ € H”, 0 < p < 1l impliesg € H'S,
soC, = {f:D}f € Mp<i H'} C Np<oo H?, and thus any f € $* is in the subclass C; of
(p<oo HP. Tt is then natural to ask whether §* C C;, = {f : Dif € Mp<1/2H'} C G C
(p<oo HP. Theorem 1 and the corollaries in Section 3 will show that the first inclusion
does not always hold; counterexamples will be members of Sj. Of course, for arbitrary
starlike functions one can easily have Djf € (1, H" for any n; take f(z) = z, for
example. See also [8] for other subclasses of ,., H” to which S or §* may belong.

We close with some final remarks on the quantity Dif for f € S*. Note that D}f(z) =
f'(2)/f(z) = 1/zif z # 0, and since D}f € M,<; HP, it follows that M,(r,f" /f) < 00 as
r— 1, forall p < 1. The identity D}f(z) = f"(2)/f(2) — [f'(2) [f(@)> + 1/z* forz # 0
thus gives that D}f € HP iff M, (r,f"/f) < ooasr— 1,if 0 < p < 1/2. So we may
use Dif and f” /f interchangeably in any statements of our theorems. Secondly, we have
that 1 +zD}f = 7f'(2) /f(2), so Re[1 + zD}f] = & argf(re®) where z = re’; this shows
that D}f is related to 3 arg f(re”). For D}f we have:

PROPOSITION. Let f € S*. If Dif € HP for some 0 < p < 1, then My(r,g) < ooas
r— 1, where g(re?) = % arg f(re'?).

PROOF. Differentiating both sides of the identity 1 + zD}f(z) = zf'(2)/f(2) with
respect to 6 and taking real parts gives

.22 .l _ _a_ Zf/(z)jl [ﬁf(z)jl 0* i0
Reliz"Dif(2) + izD;f (2)] = Re[ag Q) 3 Re 0 30 arg f(re").

The result follows since Dif € (<, H". .
Thus a mean growth condition of this sort on D3f implies one of the same sort on
2 arg f(re').
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3. Corollaries. We now use the results in [1]-[5] to relate growth classes for S/’t to
conditions on y itself, and thus obtain corollaries relating D2f to u directly.

We first assume that y is continuous. An example of f € S with y1 continuous is given
in [12], Section 5, where p is the Lebesgue function of the standard Cantor set on [0, 27)
normalized so that u(2m) — pu(0) = 2; similar examples will occur in Corollary 1. Note
that this function has an image which contains no angular sectors with vertex at the origin
and positive angular spread ([15], p. 591). Also, this function is shown to be bounded in
[12].

For arbitrary p continuous we have the standard modulus of continuity w,(f) =
SUp|,_yj< |(x) — p(y)|; since p is continuous, w,(r) — 0 as t — 0, and since p is
singular, w,(¢)/t — oo as t — 0 ([1], p. 315). Our first corollary involves a condition on
wy(D):

COROLLARY 1. Suppose that f € S}, i is continuous and w,(t) = O(t*), for some
a, 0 < a <1 Then D%f gé Hre, Furthermore, this is best possible in the sense that
foreach o, 0 < o < 1, there is an f, € S; with argument function (o such that
W, (1) = O*) and f}, € HP forall p < 1=2.

PROOF. Supposef € Sj with i1 continuous and w,(f) = O(t%), forsome a, 0 < a <
1. Then if S, is the associated singular inner function, we have by [1] p. 341 that SL ¢
HT: 50 by our Theorem 1 the first statement follows. For the second part, let 0 < o < 1
be fixed, and define wq(r) = t*/(27m)*. Then Ahernin [1] pp. 323-326 constructs a Cantor
set “of constant ratio 2~«” whose Lebesgue function A\, has a modulus of continuity
wy, (?) satisfying %t" JQRO* < wy(t) < 4 /(2m)%, and thus the associated singular

inner function S, has S\ € HP for all p < ;—E‘;j by [1], p. 346. By replacing A\, by
e = 2mAo we obtain a new singular function S,,, with modulus of continuity O(t%)
where SLQ € HP forallp < %:—‘; ([3], Theorem 4 can be used to see this last statement).
Now define f,(z) = zexp{%fg" log #,Z dpa(t)}; then f € S§ with f;, € HP for all
p < '2%(‘;‘ by Theorem 1; it is easy to see that u, is the boundary argument function for
Jf«- We are done. [

COMMENTS. 1) The corollary says that in some sense the more smoothly the set of
arguments of f is distributed, the worse the behavior of D?f.

2) This shows the existence of f € S* for whichf ¢ Cy = {f : f" € 1 p H'} €
Moo 7.

3) Given any subclass of S, a problem of considerable interest has been to find ex-
tremal functions for integral means for functions f in the class, as well as for f™ and
Djf. Baernstein’s theorem ([7] p. 215) says that the Koebe function K(z) is extremal for
My(r,f), f €S, 0<p < oo,butforf™, n > 1the Koebe function does not necessarily
play this role. If p > 2/5, then M,(r,f™) = O(M,,(r, K(”))), r — 1 for all n [10]. It is
also known that M, (r, f™) < M,(r,K™), 0 <p <00, 0 <r<1,n> 1forallfinthe
close to convex class [13]. For starlike functions the bound M3(r, D.f) = O(M%(r, DiK))
was obtained in [8] and in [9] it was shown that Mp(r, zf’(Z)/f(Z)) < M,,(r, zK’(z)/K(z))
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for all f starlike, 0 < p < co. Now D?K € HP for all p < 1/2, but clearly K cannot
be extremal for M,(r, Dif),f € §* for any p < 1/2 by this corollary. It is interesting
that this happens even though logf(z)/z is subordinate to log K(z) / z for all f € §* ([7],
p. 213).

We next remove the requirement that u be continuous and focus on restrictions on the
set [0, 27] — E = Ug(ay, by)-

COROLLARY 2. Suppose f € S; and dp is supported on E, where [0,2n] — E =
Ur(ax, br), and () = lim,_; arg f(re?). Let 0 <Y < 1. Then
a) If Si|bk — a” < 00, then Dif € H'=.
b) If S |bx — ax| log m-}a— < 00, then Dif € N.

il

PROOF. Both of these results follow immediately from [5] Theorem 1, p. 284 and
our Theorem 1. L]

The corollary may be viewed as saying that the faster the lengths of intervals of con-
stant boundary argument for f go to zero, the better the behavior of Df.

Finally, we turn to boundary argument functions p which are essentially step func-
tions: assume that 0 < a; < by = a; < b, = a3 < by = --- < 27 and that y has a
jump of wA, at a;, where Ay > 0. Thus the measure dy is purely atomic with weights
Tk at ai; let us call such an argument function purely atomic also. Recall that if f € S
has purely atomic boundary argument function, then the image of f contains a maximal
sector of angle 7\, for each k [actually, the existence of such a sector of argument 7
is an equivalent condition for having a jump 7\, in u] (see [15], p. 591). We also must
have Y, Ay = 2.

COROLLARY 3. Suppose f € Sj and p(0) = lim,_,, arg f(re') is purely atomic with
jumps Ty at ay. Let 0 < v < 1/2. Then if ¥4 \] < 00, we have Dif € HP, for all
p<l1/2

PROOF. This follows from [4], see also [1] p. 346. [

This corollary may be viewed as saying that if the wedge arguments in the image of
f go to zero “faster than 1/ k%", then the behavior of D3f is the best possible over the
class S5 It is perhaps interesting in this regard that ([14] p. 211) if « is the largest wedge
argument, then Mo(r,f) > C(1 —r)"%for 0 < r < 1, so the smaller the wedge the tamer
the maximum modulus is allowed to be.

We conclude this section by noting that in [1] are other results stating conditions on
E such that S}, € H? for some p < | /2, these relate to the “type” of E defined by p(¢) =
Lebesgue measure of {6 : | —E| < e} and to functions related to w, (), see pp. 344-345.
These conditions can then be related to f € S as we have done in the corollaries.

4. The rate of change of the argument function. In this final section we move
from considerations of the quantity D2f to 2 arg f(re). For any starlike function f with
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boundary argument function y the relation

0 " 2 et + e
3% arg f(re"”) = Re[/o Tl du(r)
2 1-r

“h 1= 2rcos(@ — 1) + 12 du(t) = P, (1, 6)

holds, where the next to last expression is the familiar Poisson integral of p. If f € S,
then p is singular, so, for example, we have lim,_; P,(r,0) = 0 a.e., with respect to
Lebesgue measure and lim,; P,(r,0) = oo a.e. [du], see [2] or [11], p. 77. For any
B >0, 0<r <1, wemay define E(r,5) = {6 : P,(r,0) > (}; if u has compact
support of measure zero (as it will for f € Sj) then |E(r,8)] — 0as r — 1, where
|E(r, 8)| denotes the Lebesgue measure of E(r, 3), see [2], p. 1. In [2] are found bounds
from above and below on the rate at which |E(r, 3)] — 0 as r — 1; thus we have bounds
on the rate at which |{0 : % arg f(re’”) > ﬂ}‘ — 0as r — 1. Note that the fact that
|E(r, 3)] — O for any 8 as r — 1 says that f € S} is never starlike of order 3 for any
3>0.

In Theorem 2 below we state some bounds from below on the rate of decay to zero of
[{6 : 9/00 argf(re®) > 3}|. These bounds are not stated in the most general form, greater
generality for bounds from above or below may be obtained by referring to Theorems 2
and 4 in [2].

THEOREM 2. Suppose f € S. Then for any 3 > 0 there is a constant C = C(8,f)
such that I{B : % argf(reig) > ,8} > CV1 —rasr— 1. Ifinadditionf has continuous
boundary argument y with modulus of continuity w,,(t) = O(t%) for some o, 0 < @ < 1,
then for any 3 there is a constant C(f, 3) such that

|{0: %argf(reia) >5H > C(1—n¥s, asr— 1.

PROOF. This is [2] Theorems 4 and 5; see also [1] for further details on the calcula-
tion of the quantity 6(r). [
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