ON LOGARITHMIC DERIVATIVES OF FUNCTIONS IN A CLASS OF STARLIKE MAPPINGS

ALAN D. GLUCHOFF

ABSTRACT. The purpose of this paper is to prove some facts about integral means of $(d^2/dz^2)(\log[f(z)/z])$ —or equivalently f''/f, for f in a class of starlike mappings of a "singular" nature. In particular it is noted that the Koebe function is not extremal for the Hardy means $M_p(r,f''/f)$ for functions in this class.

1. **Introduction.** Let S denote the class of functions analytic and univalent in the unit disc \mathbb{D} of the complex plane normalized so that f(0) = f'(0) - 1 = 0, and S^* denote the subclass of S for which $f(\mathbb{D})$ is starlike with respect to the origin; S^* is the class of starlike mappings. If $f \in S^*$, then $\mu(\theta) = \lim_{r \to 1} \arg f(re^{i\theta})$ exists for each θ and is an increasing function with $\mu(\theta) - \theta$ periodic with period 2π , and $\mu(\theta) = \frac{1}{2} [\mu(\theta + 0) + \mu(\theta - 0)]$ for each θ ; see [15], p. 591. Let us call μ the boundary argument function for f.

DEFINITION. A function $f \in S^*$ is said to be in the class S_0^* if there is a closed set $E \subset [0, 2\pi]$ of Lebesgue measure zero such that $[0, 2\pi] - E = \bigcup_k (a_k, b_k)$ with μ constant on each (a_k, b_k) .

Members of S_0^* thus have the property that their boundary argument changes only on a closed set of measure zero. The class S_0^* contains, for example, rotations of the Koebe function $K(z)=z(1-z)^{-2}$ and more generally functions of the form $z\Pi_{j=1}^n(1-ze^{i\theta_j})^{-\alpha_j}$, where $\{\theta_j\}$ are distinct numbers in $[0,2\pi)$ and $\sum_j\alpha_j=2,\alpha_j>0$; these functions map the unit disc onto the plane minus n radial slits making angles $\pi\alpha_j$ with the origin. In fact, since the collection of functions of this form is dense in S^* in the topology of uniform convergence on compact subsets, (see [15], p. 583), it follows that S_0^* is dense in S^* . In Section 3 of this paper it is shown that S_0^* contains some bounded functions, and in Section 4 it is shown that functions in S_0^* are not starlike of order β for any $\beta>0$.

In this paper we will prove some facts about $\log[f(z)/z]$ for functions in this class, in particular we will deal with the growth classes for $(d^2/dz^2)(\log[f(z)/z])$ showing how the Hardy classes H^p to which it belongs is affected by hypotheses on μ , hypotheses which can in some cases be related to the mapping properties of f. (For future reference let us denote $(d^n/dz^n)(\log[f(z)/z])$ by $D_n^n f$ for $f \in S$, and let $f^{(n)}$ be the standard n^{th} derivative, $n \geq 1$.) It is noted in particular that the Koebe function is not extremal for integral mean growth of $D_n^2 f$ for $f \in S_0^*$, where the Hardy p-means, $0 are used to measure the derivative. We also point out a connection between the smoothness of <math>\mu$ as measured by modulus of continuity and the one dimensional Lebesgue measure of the

Received by the editors August 15, 1990.

AMS subject classification: 30C45.

[©] Canadian Mathematical Society 1993.

set $\{\theta: \frac{\partial}{\partial \theta} \arg f(re^{i\theta}) > \beta\}$ for $\beta > 0$, where r is fixed, 0 < r < 1. The main tools in making these connections are the well-known integral representation formula for starlike mappings, see [14], pp. 209–210, and the work of several authors on growth classes for singular inner functions, [1]–[5].

In the following, the class H^p is the usual Hardy class of functions f analytic in $\mathbb D$ with $\sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi} = M_p^p(r,f) < \infty, \quad 0 < p < \infty, \text{ and } M_\infty(r,f) = \max_{\theta} |f(re^{i\theta})|;$ N is the Nevanlinna class of functions f for which

$$\sup_{0 \le r \le 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta < \infty,$$

and N^+ is the subset of N for which $\lim_{r\to 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta = \int_0^{2\pi} \log^+ |f(e^{i\theta})| d\theta$. Recall that $H^P \subset N^+ \subset N$ for all p, and $H^P \subset H^q$ if q < p. See [6] for details.

2. Growth classes for D_L^2f —the main theorem. In this section we prove the main theorem of the paper, which states the relationship between D_L^2f and μ , for $f \in S_0^*$. We first give some background. There have been many attempts to relate the growth of $f \in S^*$ as measured by integral means of $f^{(n)}$ or $D_L^n f$ to properties of f as a mapping and to μ . For example, if μ has a jump of $\pi \alpha$ at $\theta = \theta_0$, then the image of f contains a maximal "sector" of angle $\pi \alpha$ with vertex at 0, see [15] p. 591; in the case in which this is the greatest jump for μ , then $\lim_{r\to 1}\frac{\log M_\infty(r_f)}{\log(1-r)^{-1}}=\alpha$ ([14] p. 211) and $\lim_{r\to 1}(1-r)M_\infty(r,D_L^1f)=\alpha$ ([15] p. 211). In [14] are similar limits involving $M_p(r,f^{(n)})$; see p. 605. One also has that if f is bounded, then μ is continuous [14] p. 211. In [8] the authors show that every $f\in S^*$ with finite image area has $M_2^2(r,f'/f)=O((1-r)^{-1})$.

For the class S_0^* it is $D_L^2 f$ which can most easily be related to μ . We do this in Theorem 1 below indirectly by making reference to the singular inner function associated with μ ; in Section 3 the inner function conditions are replaced by conditions in μ itself in three corollaries. Recall that if σ is a non decreasing function on $[0,2\pi]$ with $\sigma'=0$ a.e., then $S_{\sigma}(z)=\exp\left\{-\int_0^{2\pi}\frac{e^{it}+z}{e^{it}-z}d\sigma(t)\right\}$ is called the *associated singular inner function*, see [6] p. 24 or [11] p. 75. The function $S_{\sigma}(z)$ satisfies $|S_{\sigma}(z)|<1$ in $\mathbb D$ with $\lim_{r\to 1}|S_{\sigma}(re^{i\theta})|=1$ a.e. Note that if $f\in S_0^*$, then $\mu'=0$ a.e.

THEOREM 1. Suppose $f \in S_0^*$ with $\mu(\theta) = \lim_{r \to 1} \arg f(re^{i\theta})$, and $0 . Then <math>D_L^2 f \in H^p$ iff $S'_{\mu} \in H^p$. If $S'_{\mu} \in N$ then $D_L^2 f \in N$, and if $S'_{\mu} \notin N$, then $D_L^2 f \notin H^p$ for all p > 0.

PROOF. With f and μ as above, we have that

$$f(z) = z \exp\left\{\frac{1}{\pi} \int_0^{2\pi} \log \frac{1}{1 - e^{-it}z} d\mu(t)\right\},$$

see [14] pp. 209–210; from above, we can form $S_{\mu}(z) = \exp\{-\int_0^{2\pi} \frac{e^{it}+z}{e^{it}-z} d\mu(t)\}$. Now

$$\begin{split} \frac{S'_{\mu}(z)}{S_{\mu}(z)} &= -2 \int_{0}^{2\pi} \frac{e^{it}}{(e^{it} - z)^{2}} d\mu(t) \\ &= -2 \int_{0}^{2\pi} \frac{d\mu(t)}{(e^{it} - z)} - 2z \int_{0}^{2\pi} \frac{d\mu(t)}{(e^{it} - z)^{2}} \\ &= -2 \int_{0}^{2\pi} \frac{d\mu(t)}{e^{it} - z} - 2z\pi D_{L}^{2} f. \end{split}$$

The first term of this last expression is in H^p for all p, $0 , see [6] p. 39. It follows that <math>D_L^2 f \in H^p$ iff $S'_{\mu}/S_{\mu} \in H^p$. However, by [3] Theorem 4 p. 118, $S'_{\mu}/S_{\mu} \in H^p$ iff $S'_{\mu} \in H^p$, thus the H^p part of the theorem follows. If $S'_{\mu} \in N$, then again by [3] Corollary 4, p. 118, $S'_{\mu}/S_{\mu} \in N^+$, hence in N. Finally, if $S'_{\mu} \notin N$, then by the same corollary, $S'_{\mu}/S_{\mu} \notin N^+$, hence $S'_{\mu}/S_{\mu} \notin H^p$ for all p > 0. The proof is complete.

For purposes of orientation let us note the following: first, for all $f \in S^*$, $\log f(z)/z \in \bigcap_{p < \infty} H^p$. Now if $f \in S^*$, $D_L^1 f = \frac{1}{\pi} \int_0^{2\pi} \frac{d\mu(t)}{(e^{\mu}-z)}$ where μ is the boundary argument function for f, where μ need not be singular [14], pp. 209–210; thus $D_L^1 f \in \bigcap_{p < 1} H^p$. Recall that by a theorem of Hardy and Littlewood ([6] p. 88) $g' \in H^p$, $0 implies <math>g \in H^{\frac{p}{1-p}}$, so $C_1 = \{f : D_L^1 f \in \bigcap_{p < 1} H^p\} \subset \bigcap_{p < \infty} H^p$, and thus any $f \in S^*$ is in the subclass C_1 of $\bigcap_{p < \infty} H^p$. It is then natural to ask whether $S^* \subset C_2 = \{f : D_L^2 f \in \bigcap_{p < 1/2} H^p\} \subset C_1 \subset \bigcap_{p < \infty} H^p$. Theorem 1 and the corollaries in Section 3 will show that the first inclusion does not always hold; counterexamples will be members of S_0^* . Of course, for arbitrary starlike functions one can easily have $D_L^n f \in \bigcap_{p < \infty} H^p$ for any n; take f(z) = z, for example. See also [8] for other subclasses of $\bigcap_{p < \infty} H^p$ to which S or S^* may belong.

We close with some final remarks on the quantity $D_L^2 f$ for $f \in S^*$. Note that $D_L^1 f(z) = f'(z)/f(z) = 1/z$ if $z \neq 0$, and since $D_L^1 f \in \bigcap_{p < 1} H^p$, it follows that $M_p(r,f'/f) < \infty$ as $r \to 1$, for all p < 1. The identity $D_L^2 f(z) = f''(z)/f(z) - [f'(z)/f(z)]^2 + 1/z^2$ for $z \neq 0$ thus gives that $D_L^2 f \in H^p$ iff $M_p(r,f''/f) < \infty$ as $r \to 1$, if $0 . So we may use <math>D_L^2 f$ and f''/f interchangeably in any statements of our theorems. Secondly, we have that $1 + zD_L^1 f = zf'(z)/f(z)$, so $\text{Re}[1 + zD_L^1 f] = \frac{\partial}{\partial \theta} \arg f(re^{i\theta})$ where $z = re^{i\theta}$; this shows that $D_L^1 f$ is related to $\frac{\partial}{\partial \theta} \arg f(re^{i\theta})$. For $D_L^2 f$ we have:

PROPOSITION. Let $f \in S^*$. If $D_L^2 f \in H^p$ for some $0 , then <math>M_p(r,g) < \infty$ as $r \to 1$, where $g(re^{i\theta}) = \frac{\partial^2}{\partial^2 \theta} \arg f(re^{i\theta})$.

PROOF. Differentiating both sides of the identity $1 + zD_L^1 f(z) = zf'(z)/f(z)$ with respect to θ and taking real parts gives

$$\operatorname{Re}[iz^{2}D_{L}^{2}f(z) + izD_{L}^{1}f(z)] = \operatorname{Re}\left[\frac{\partial}{\partial\theta} \frac{zf'(z)}{f(z)}\right] = \frac{\partial}{\partial\theta}\operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] = \frac{\partial^{2}}{\partial\theta^{2}}\operatorname{arg}f(re^{i\theta}).$$

The result follows since $D_L^1 f \in \bigcap_{p<1} H^p$.

Thus a mean growth condition of this sort on $D_L^2 f$ implies one of the same sort on $\frac{\partial^2}{\partial \theta^2} \arg f(re^{i\theta})$.

3. **Corollaries.** We now use the results in [1]–[5] to relate growth classes for S'_{μ} to conditions on μ itself, and thus obtain corollaries relating $D_L^2 f$ to μ directly.

We first assume that μ is continuous. An example of $f \in S_0^*$ with μ continuous is given in [12], Section 5, where μ is the Lebesgue function of the standard Cantor set on $[0, 2\pi]$ normalized so that $\mu(2\pi) - \mu(0) = 2\pi$; similar examples will occur in Corollary 1. Note that this function has an image which contains no angular sectors with vertex at the origin and positive angular spread ([15], p. 591). Also, this function is shown to be bounded in [12].

For arbitrary μ continuous we have the standard modulus of continuity $\omega_{\mu}(t) = \sup_{|x-y| \le t} |\mu(x) - \mu(y)|$; since μ is continuous, $\omega_{\mu}(t) \to 0$ as $t \to 0$, and since μ is singular, $\omega_{\mu}(t)/t \to \infty$ as $t \to 0$ ([1], p. 315). Our first corollary involves a condition on $\omega_{\mu}(t)$:

COROLLARY 1. Suppose that $f \in S_0^*$, μ is continuous and $\omega_{\mu}(t) = O(t^{\alpha})$, for some α , $0 < \alpha < 1$. Then $D_L^2 f \notin H^{\frac{1-\alpha}{2-\alpha}}$. Furthermore, this is best possible in the sense that for each α , $0 < \alpha < 1$, there is an $f_{\alpha} \in S_0^*$ with argument function μ_{α} such that $\omega_{\mu_{\alpha}}(t) = O(t^{\alpha})$ and $f_{\alpha}' \in H^p$ for all $p < \frac{1-\alpha}{2-\alpha}$.

PROOF. Suppose $f \in S_0^*$ with μ continuous and $\omega_{\mu}(t) = O(t^{\alpha})$, for some α , $0 < \alpha < 1$. Then if S_{μ} is the associated singular inner function, we have by [1] p. 341 that $S'_{\mu} \notin H^{\frac{1-\alpha}{2-\alpha}}$, so by our Theorem 1 the first statement follows. For the second part, let $0 < \alpha < 1$ be fixed, and define $\omega_{\alpha}(t) = t^{\alpha}/(2\pi)^{\alpha}$. Then Ahern in [1] pp. 323-326 constructs a Cantor set "of constant ratio $2^{-\frac{1}{\alpha}}$ " whose Lebesgue function λ_{α} has a modulus of continuity $\omega_{\lambda_{\alpha}}(t)$ satisfying $\frac{1}{2}t^{\alpha}/(2\pi)^{\alpha} \le w_{\lambda\alpha}(t) \le 4t^{\alpha}/(2\pi)^{\alpha}$, and thus the associated singular inner function $S_{\lambda_{\alpha}}$ has $S'_{\lambda_{\alpha}} \in H^p$ for all $p < \frac{1-\alpha}{2-\alpha}$ by [1], p. 346. By replacing λ_{α} by $\mu_{\alpha} = 2\pi\lambda_{\alpha}$ we obtain a new singular function $S_{\mu_{\alpha}}$ with modulus of continuity $O(t^{\alpha})$ where $S'_{\mu_{\alpha}} \in H^p$ for all $p < \frac{1-\alpha}{2-\alpha}$ ([3], Theorem 4 can be used to see this last statement). Now define $f_{\alpha}(z) = z \exp\{\frac{1}{\pi}\int_0^{2\pi}\log\frac{1}{1-e^{-iz}z}d\mu_{\alpha}(t)\}$; then $f \in S_0^*$ with $f'_{\alpha} \in H^p$ for all $p < \frac{1-\alpha}{2-\alpha}$ by Theorem 1; it is easy to see that μ_{α} is the boundary argument function for f_{α} . We are done.

COMMENTS. 1) The corollary says that in some sense the more smoothly the set of arguments of f is distributed, the worse the behavior of $D_L^2 f$.

- 2) This shows the existence of $f \in S^*$ for which $f \notin C_2 = \{f : f'' \in \bigcap_{p < 1/2} H^p\} \in \bigcap_{p < \infty} H^p$.
- 3) Given any subclass of S, a problem of considerable interest has been to find extremal functions for integral means for functions f in the class, as well as for $f^{(n)}$ and $D_L^n f$. Baernstein's theorem ([7] p. 215) says that the Koebe function K(z) is extremal for $M_p(r,f)$, $f \in S$, $0 , but for <math>f^{(n)}$, $n \ge 1$ the Koebe function does not necessarily play this role. If p > 2/5, then $M_p(r,f^{(n)}) = O(M_p(r,K^{(n)}))$, $r \to 1$ for all n [10]. It is also known that $M_p(r,f^{(n)}) \le M_p(r,K^{(n)})$, 0 , <math>0 < r < 1, $n \ge 1$ for all f in the close to convex class [13]. For starlike functions the bound $M_2^2(r,D_L^1f) = O(M_2^2(r,D_L^1K))$ was obtained in [8] and in [9] it was shown that $M_p(r,zf'(z)/f(z)) \le M_p(r,zK'(z)/K(z))$

for all f starlike, $0 . Now <math>D_L^2 K \in H^p$ for all p < 1/2, but clearly K cannot be extremal for $M_p(r, D_L^2 f)$, $f \in S^*$ for any p < 1/2 by this corollary. It is interesting that this happens even though $\log f(z)/z$ is subordinate to $\log K(z)/z$ for all $f \in S^*$ ([7], p. 213).

We next remove the requirement that μ be continuous and focus on restrictions on the set $[0, 2\pi] - E = \bigcup_k (a_k, b_k)$.

COROLLARY 2. Suppose $f \in S_0^*$ and $d\mu$ is supported on E, where $[0, 2\pi] - E = \bigcup_k (a_k, b_k)$, and $\mu(\theta) = \lim_{r \to 1} \arg f(re^{i\theta})$. Let $0 < \gamma < 1$. Then

- a) If $\sum_{k} |b_k a_k|^{\gamma} < \infty$, then $D_L^2 f \in H^{\frac{1-\gamma}{2}}$.
- b) If $\sum_{k} |b_k a_k| \log \frac{1}{|b_k a_k|} < \infty$, then $D_L^2 f \in N$.

PROOF. Both of these results follow immediately from [5] Theorem 1, p. 284 and our Theorem 1.

The corollary may be viewed as saying that the faster the lengths of intervals of constant boundary argument for f go to zero, the better the behavior of $D_t^2 f$.

Finally, we turn to boundary argument functions μ which are essentially step functions: assume that $0 < a_1 < b_1 = a_2 < b_2 = a_3 < b_3 = \cdots < 2\pi$ and that μ has a jump of $\pi\lambda_k$ at a_k , where $\lambda_k > 0$. Thus the measure $d\mu$ is purely atomic with weights $\pi\lambda_k$ at a_k ; let us call such an argument function purely atomic also. Recall that if $f \in S_0^*$ has purely atomic boundary argument function, then the image of f contains a maximal sector of angle $\pi\lambda_k$ for each k [actually, the existence of such a sector of argument $\pi\lambda_k$ is an equivalent condition for having a jump $\pi\lambda_k$ in μ] (see [15], p. 591). We also must have $\Sigma_k \lambda_k = 2$.

COROLLARY 3. Suppose $f \in S_0^*$ and $\mu(\theta) = \lim_{r \to 1} \arg f(re^{i\theta})$ is purely atomic with jumps $\pi \lambda_k$ at a_k . Let $0 < \gamma < 1/2$. Then if $\sum_k \lambda_k^{\gamma} < \infty$, we have $D_L^2 f \in H^p$, for all p < 1/2.

PROOF. This follows from [4], see also [1] p. 346.

This corollary may be viewed as saying that if the wedge arguments in the image of f go to zero "faster than $1/k^2$ ", then the behavior of $D_L^2 f$ is the best possible over the class S_0^* . It is perhaps interesting in this regard that ([14] p. 211) if α is the largest wedge argument, then $M_{\infty}(r,f) \geq C(1-r)^{-\alpha}$ for 0 < r < 1, so the smaller the wedge the tamer the maximum modulus is allowed to be.

We conclude this section by noting that in [1] are other results stating conditions on E such that $S'_{\mu} \in H^p$ for some p < 1/2, these relate to the "type" of E defined by $p(\epsilon) =$ Lebesgue measure of $\{\theta: |\theta-E| < \epsilon\}$ and to functions related to $\omega_{\mu}(t)$, see pp. 344–345. These conditions can then be related to $f \in S^*_0$ as we have done in the corollaries.

4. The rate of change of the argument function. In this final section we move from considerations of the quantity $D_L^2 f$ to $\frac{\partial}{\partial \theta} \arg f(re^{i\theta})$. For any starlike function f with

boundary argument function μ the relation

$$\begin{split} \frac{\partial}{\partial \theta} \arg f(re^{i\theta}) &= \operatorname{Re} \left[\int_0^{2\pi} \frac{e^{it} + re^{i\theta}}{e^{it} - re^{i\theta}} \, d\mu(t) \right] \\ &= \int_0^{2\pi} \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2} \, d\mu(t) = P_{\mu}(r, \theta) \end{split}$$

holds, where the next to last expression is the familiar Poisson integral of μ . If $f \in S_0^*$, then μ is singular, so, for example, we have $\lim_{r\to 1} P_\mu(r,\theta) = 0$ a.e., with respect to Lebesgue measure and $\lim_{r\to 1} P_\mu(r,\theta) = \infty$ a.e. $[d\mu]$, see [2] or [11], p. 77. For any $\beta>0$, 0< r<1, we may define $E(r,\beta)=\{\theta:P_\mu(r,\theta)>\beta\}$; if μ has compact support of measure zero (as it will for $f\in S_0^*$) then $|E(r,\beta)|\to 0$ as $r\to 1$, where $|E(r,\beta)|$ denotes the Lebesgue measure of $E(r,\beta)$, see [2], p. 1. In [2] are found bounds from above and below on the rate at which $|E(r,\beta)|\to 0$ as $r\to 1$; thus we have bounds on the rate at which $|\{\theta:\frac{\partial}{\partial \theta}\arg f(re^{i\theta})>\beta\}|\to 0$ as $r\to 1$. Note that the fact that $|E(r,\beta)|\to 0$ for any β as $r\to 1$ says that $f\in S_0^*$ is never starlike of order β for any $\beta>0$.

In Theorem 2 below we state some bounds from below on the rate of decay to zero of $|\{\theta: \partial/\partial\theta \arg f(re^{i\theta}) > \beta\}|$. These bounds are not stated in the most general form, greater generality for bounds from above or below may be obtained by referring to Theorems 2 and 4 in [2].

THEOREM 2. Suppose $f \in S_0^*$. Then for any $\beta > 0$ there is a constant $C = C(\beta, f)$ such that $\left|\left\{\theta: \frac{\partial}{\partial \theta} \arg f(re^{i\theta}) > \beta\right\}\right| \geq C\sqrt{1-r}$ as $r \to 1$. If in addition f has continuous boundary argument μ with modulus of continuity $\omega_{\mu}(t) = O(t^{\alpha})$ for some α , $0 < \alpha < 1$, then for any β there is a constant $C(f, \beta)$ such that

$$\left|\left\{\theta: \frac{\partial}{\partial \theta} \arg f(re^{i\theta}) > \beta\right\}\right| \geq C(1-r)^{\frac{1-\alpha}{2-\alpha}}, \ as \ r \to 1.$$

PROOF. This is [2] Theorems 4 and 5; see also [1] for further details on the calculation of the quantity $\delta(r)$.

REFERENCES

- 1. P. Ahern, *The Mean Modulus and the Derivative of an Inner Function*, Indiana University Mathematics Journal (2) **28**(1979), 311–347.
- 2. _____, The Poisson Integral of a Singular Measure, Canad. J. Math. XXXV(1983), 735-749.
- 3. P. Ahern and D. Clark, On Inner Functions With H^P Derivative, Michigan Math J. 21(1974), 115–127.
- 4. J. G. Caughren and A. Shields, Singular Inner Factors of Analytic Functions, Michigan Math. J. 16(1969), 409–410.
- 5. M. R. Cullen, Derivatives of Singular Inner Functions, Michigan Math J. 18(1971), 283-287.
- **6.** P. L. Duren, *Theory of H^P Spaces*, Academic Press, New York, 1970.
- 7. _____, Univalent Functions, Springer-Verlag, New York and Heidelberg, 1983.
- 8. P. L. Duren and Y. J. Leung, Logarithmic Coefficients of Univalent Functions, Journal d'Analyse Mathematique 36(1979), 36–43.

- 9. M. M. Elhosh, On Integral Means of Derivatives of Univalent Functions, Bull. Korean Math. Soc. (1) 24(1987), 13–17.
- J. Feng and T. H. MacGregor, Estimates on Integral Means of the Derivatives of Univalent Functions, Notices Amer. Math. Soc. 21 August (1974), A-492.
- 11. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- 12. F. R. Keogh, Conformal Mappings of Bounded Star-Shaped Domains, Proc. London Math Society (3) 9(1959), 481–491.
- 13. T. H. MacGregor, Applications of Extreme Point Theory To Univalent Functions, Michigan Math J. (4) 19(1972), 361–376.
- 14. C. Pommerenke, On Starlike and Convex Functions, J. London Math. Soc. 37(1962), 209–224.
- 15. T. Sheil-Small, Starlike Univalent Functions, Proc. London Math. Soc. (3) 21(1970), 577-613.

Villanova University Villanova, Pennsylvania 19085 U.S.A.