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Special cube complexes revisited: a
quasi-median generalization
Anthony Genevois
Abstract. In this article, we generalize Haglund and Wise’s theory of special cube complexes to
groups acting on quasi-median graphs. More precisely, we define special actions on quasi-median
graphs, and we show that a group which acts specially on a quasi-median graph with finitely many
orbits of vertices must embed as a virtual retract into a graph product of finite extensions of clique-
stabilizers. In the second part of the article, we apply the theory to fundamental groups of some
graphs of groups called right-angled graphs of groups.

1 Introduction

Haglund and Wise’s theory of special cube complexes [40] is one of the major
contributions of the study of groups acting on CAT(0) cube complexes. The key point
of the theory is that, if a group G can be described as the fundamental group of a
nonpositively curved cube complex X, then there exists a simple and natural condition
about X which implies that G can be embedded into a right-angled Artin group A. As
a consequence, all the properties which are satisfied by right-angled Artin groups and
which are stable under taking subgroups are automatically satisfied by our group G,
providing valuable information about it. Such properties include:
• two-generated subgroups are either free abelian or free nonabelian [9];
• any subgroup either is free abelian or surjects onto F2 [6, Corollary 1.6];
• being bi-orderable [25, 26];
• being linear (and, in particular, residually finite) [44];
• being residually torsion-free nilpotent [23, 25, 51].
Even better, as soon as the cube complex X is compact, the theory does not only show
that G embeds into A, it shows that it embeds in a very specific way: the image of G
in A is a virtual retract, i.e., there exists a finite-index subgroup H ≤ A containing G
and a morphism r ∶ H → G such that r∣G = IdG . This additional information provides
other automatic properties satisfied by our group, including:
• two-generated subgroups are undistorted [16];
• infinite cyclic subgroups are separable [45];
• being conjugacy separable [46].
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744 A. Genevois

One of the most impressive applications of the theory of special cube complexes is
Agol’s proof of the virtual Haken conjecture [1], showing that any cubulable hyperbolic
group must be cocompact special. However, the scope of the theory is not restricted to
hyperbolic groups and encompasses a large diversity of groups (possibly up to finite
index), such as Coxeter groups [41], many 3-manifold groups [38, 50], and graph braid
groups [21, 33].

In this article, our goal is to generalize Haglund and Wise’s theory by replacing
CAT(0) cube complexes with quasi-median graphs and right-angled Artin groups with
graph products of groups.

As shown in [7], quasi-median graphs, a family of graphs generalizing median
graphs (or equivalently, one-skeleta of CAT(0) cube complexes) have a long history
in metric graph theory. In [28], we introduced them into geometric group theory
by showing how they can be exploited in the study of graph products of groups,
lamplighter groups, and Thompson-like groups (see also [31]). It turned out that quasi-
median graphs provide a particularly relevant point of view in order to study graph
products of groups [30, 34, 35].

Recall from [36] that, given a simplicial graph Γ and a family of groups G = {Gu ∣
u ∈ V(Γ)} indexed by the vertices of Γ, the graph product ΓG is the quotient

( ∗
u∈V(Γ)

Gu)/⟨⟨[g , h] = 1, g ∈ Gu , h ∈ Gv , {u, v} ∈ E(Γ)⟩⟩,

where V(Γ) and E(Γ) denote the vertex and edge sets of Γ. For instance, if the groups
in G are all infinite cyclic, then ΓG coincides with the right-angled Artin group AΓ ;
and if all the groups in G are cyclic of order 2, then ΓG coincides with the right-angled
Coxeter group CΓ . In the same way that the Cayley graphs of AΓ and CΓ constructed
from the generating set V(Γ) are median graphs (or equivalently, that their cube
completions are CAT(0) cube complexes), the Cayley graph

QM(Γ,G) ∶= Cayl
⎛
⎝

ΓG, ⋃
u∈V(Γ)

Gu/{1}
⎞
⎠

of ΓG turns out to be a quasi-median graph.
So, given a group G acting on a quasi-median graph X, we want to identify a simple

condition on the action G ↷ X which implies that G naturally embeds into a graph
product, possibly as a virtual retract. As shown in Sections 3.1 and 3.2, the following
definition includes naturally the groups considered in Haglund and Wise’s theory.

Definition 1.1 Let G be a group acting faithfully on a quasi-median graph X. The
action is hyperplane-special if:
• for every hyperplane J and every element g ∈ G, J and gJ are neither transverse nor

tangent;
• for all hyperplanes J1 , J2 and every element g ∈ G, if J1 and J2 are transverse, then

J1 and gJ2 cannot be tangent.
The action is special if, in addition, the action S(J) ↷ S (J) is free for every hyper-
plane J of X. (Here, S (J) denotes the collection of all the sectors delimited by J, i.e.,
the connected components of the graph obtained from X by removing the interiors
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Special cube complexes revisited 745

of all the edges dual to J; and S(J) denotes the image of stab(J) in the permutation
group of S (J).)

The main result of this article is the following embedding theorem. (We refer to
Theorems 1.4 and 1.5 for more precise statements.)

Theorem 1.1 Let G be a group which acts specially on a quasi-median graph with finitely
many orbits of vertices. Then G embeds as a virtual retract into a graph product of virtual
clique-stabilizers.

As in Haglund and Wise’s theory, knowing that the group we are studying is a
subgroup of a graph product provides valuable information about it. For instance:

Corollary 1.2 Let G be a group which acts specially on a quasi-median graph with
finitely many orbits of vertices. Then the following assertions hold.
• Assume that clique-stabilizers satisfy the Tits alternative, i.e., every subgroup either

contains a nonabelian free subgroup or is virtually solvable. Then G also satisfies the
Tits alternative [6].

• If clique-stabilizers are linear (resp. residually finite), then so is G [10, 36].
• If clique-stabilizers are a-T-menable (resp. weakly amenable), then so is G [5, 28, 47].

Proof Let P be one of the group properties under consideration. If clique-stabilizers
satisfy P, then G embeds in a graph product of groups satisfying P according to
Theorem 1.1 (and becauseP is preserved by commensurability). SinceP is stable under
graph products, as a consequence of the references given above, and under taking
subgroups, we conclude that G satisfies P. ∎

The fact that the image of our embedding is a virtual retract also provides additional
information.

Corollary 1.3 Let G be a group which acts specially on a quasi-median graph with
finitely many orbits of vertices. Then the following assertions hold.
• For every n ≥ 1, if clique-stabilizers are of type Fn , then so is G [3, 4, 19]. In particular,

if clique-stabilizers are finitely generated (resp. finitely presented), then so is G.
• If clique-stabilizers are finitely presented, then the coarse inequality

δG ≺ max{n ↦ n2 , δstab(C) (C clique)}

between Dehn functions holds, where

f ∶ n ↦ max{
k
∑
i=1

f (n i) ∣ k ≥ 1,
k
∑
i=1

n i = n}

denotes the subnegative closure of the function f [2, 4, 20, 32].
• If clique-stabilizers are conjugacy separable, then so is G [27].
• If clique-stabilizers have their cyclic subgroups separable, then cyclic subgroups of G

are separable [11].
• If clique-stabilizers are finitely generated and have their infinite cyclic subgroups

undistorted, then infinite cyclic subgroups in G are undistorted.
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746 A. Genevois

Proof The proof of the first four items is similar to the argument used to prove
Corollary 1.2, with the stability under taking subgroups replaced with the stability
under retraction. This stability is proved in the associated references for the first two
items, and for the third and fourth items, it follows from the observation that the image
of a retraction in a Hausdorff topological space is necessarily closed and that being
separable in group amounts to being closed with respect to the profinite topology.

Finally, let us prove the fifth item. So, we assume that clique-stabilizers are finitely
generated and have their infinite cyclic subgroups undistorted. Let g ∈ G be an infinite-
order element. We anticipate on Section 2 and consider the action of ΓG on its quasi-
median graph QM(Γ,G), where ΓG is the graph product containing G as given by
Theorem 1.1. If g has unbounded orbits in QM(Γ,G), then one can use the translation
length and deduce that g is undistorted in G. (For instance, combine [28, Proposition
4.16] and [39, Theorem 1.5].) Otherwise, it follows from [28, Theorem 2.115] that g
stabilizes a prism of QM(Γ,G), and hence g ∈ h⟨Λ⟩h−1 for some element h ∈ ΓG and
some complete subgraph Λ ⊂ Γ according to Lemma 2.9. For convenience, set H ∶=
h⟨Λ⟩h−1. Because H is isomorphic to a product of vertex groups, we know that g is
undistorted in H. However, H, as a retract of ΓG (a retraction ΓG→ H being given by
conjugating the projection ΓG→ ⟨Λ⟩ that kills the vertex groups indexed by vertices
not in Λ), is undistorted in ΓG. We also know that G is a retract in ΓG, so the metric
of G induced by ΓG is coarsely equivalent to the metric of G. We conclude that ⟨g⟩ is
quasi-isometrically embedded in G. ∎

1.1 A word about the proof of the theorem

In Section 3.1, we explain how the fundamental group G of a special cube complex X
can be embedded into a right-angled Artin group by looking at the action of G on the
universal cover of X, instead of looking for a local isometry of X to the Salvetti complex
of a right-angled Artin group. This construction is next generalized to arbitrary quasi-
median graphs in Section 3.2 in order to prove the following theorem.

Theorem 1.4 Let G be a group acting specially on a quasi-median graph X.
• Fix representatives {J i ∣ i ∈ I} of hyperplanes of X modulo the action of G.
• Let Γ denote the graph whose vertex set is {J i ∣ i ∈ I} and whose edges link two

hyperplanes if they have two transverse G-translates.
• For every i ∈ I, let G i denote the group S(J i) ⊕ K i , where K i is an arbitrary group of

cardinality the number of orbits of S(J i) ↷ S (J i).
Then there exists an injective morphism φ ∶ G ↪ ΓG, where G = {G i ∣ i ∈ I}, and a
φ-equivariant embedding X ↪ QM(Γ,G) whose image is gated.

Notice that, compared to Theorem 1.1, we do not require the action to have only
finitely many orbits of vertices. Under this additional assumption, we observe in
Corollary 3.19 that each G i contains a clique-stabilizer as a finite-index subgroup,
concluding the first step toward the proof of Theorem 1.1.

The next step is to show that the image of our embedding is a virtual retract. The
key point is that the image of X ↪ QM(Γ,G) in Theorem 1.4 is gated, which is a strong
convexity condition. Combined with the next statement, the proof of Theorem 1.1
follows.
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Theorem 1.5 Let Γ be a simplicial graph, and G a collection of groups indexed by V(Γ).
A gated-cocompact subgroup H ≤ ΓG is a virtual retract.

Here, a subgroup H ≤ ΓG is gated-cocompact if there exists a gated subgraph in
QM(Γ,G) on which H acts with finitely many orbits of vertices. It is worth noticing
that, combined with Theorem 1.4, Theorem 1.5 implies more generally that gated-
cocompact subgroups are virtual retracts in arbitrary groups acting specially on quasi-
median graphs with finitely many vertices (see Corollary 3.24), generalizing the fact
that convex-cocompact subgroups are virtual retracts in cocompact special groups
[40].

1.2 Applications

In the second part of the article, we apply the theory of groups acting specially
on quasi-median graphs to a specific family of groups originating in [28], namely
fundamental groups of right-angled graphs of groups. We refer to Section 4.1 for a
precise definition, but, roughly speaking, a graph of groups is said right-angled if its
vertex groups are graph products and if its edge groups are subgraph products. In
Section 4.3, we characterize precisely when the action of the fundamental group of
such a graph of groups on the quasi-median graph constructed in [28] is special.

In order to illustrate how special actions on quasi-median graphs can be exploited,
let us conclude this introduction by considering an explicit example (detailed in
Section 4.4).

Given a group A, define A⋊ by the relative presentation

⟨A, t ∣ [a, tat−1] = 1, a ∈ A⟩.

Notice that, if A is infinite cyclic, we recover the group introduced in [15], which
was the first example of a fundamental group of a 3-manifold which is not subgroup
separable. A⋊ is an example of a fundamental group of a right-angled graph of groups.
It acts on a quasi-median graph, but this action is not special. Such a negative result is
not a flaw in the strategy: as a two-generated group which is neither abelian nor free,
Z
⋊ cannot be embedded into a right-angled Artin group. Nevertheless, considering a

finite cover of the graph of groups defining A⋊ naturally leads to a new group, denoted
by A◻ A and admitting

⟨A1 , A2 , t ∣ [a1 , a2] = [a1 , ta2 t−1] = 1, a1 ∈ A1 , a2 ∈ A2⟩,

as a relative presentation, where A1 and A2 are two copies of A. Then A◻ A is a
subgroup of A⋊ of index 2. Now, as the fundamental group of a right-angled graph
of groups, A◻ A acts specially on a quasi-median graph. By a careful application of
Theorem 1.4, we find that A◻ A embeds (as a virtual retract) into the graph product

G ∶= Z2 — A1 — A2 — Z2 ,

by sending A1 ⊂ A◻ A to A1 ⊂ G, A2 ⊂ A◻ A to A2 ⊂ G, and t ∈ A◻ A to x y ∈ G,
where x and y are generators of the two Z2.
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748 A. Genevois

Figure 1: Triangle and quadrangle conditions.

2 Preliminaries

In this section, we give the basic definitions and properties of quasi-median graphs
and graph products of groups which will be needed in the rest of the article.

2.1 Quasi-median graphs

There exist several equivalent definitions of quasi-median graphs; see, for instance, [7].
Below is the definition used in [28].

Definition 2.1 A connected graph X is quasi-median if it does not contain K−4 and
K3,2 as induced subgraphs, and it satisfies the following two conditions:
(Triangle condition) for all vertices a, x , y ∈ X, if x and y are adjacent and if d(a, x) =
d(a, y), then there exists a vertex z ∈ X which adjacent to both x and y and which
satisfies d(a, z) = d(a, x) − 1;

(Quadrangle condition) for all vertices a, x , y, z ∈ X, if z is adjacent to both x and y
and if d(a, x) = d(a, y) = d(a, z) − 1, then there exists a vertex w ∈ X which adjacent
to both x and y and which satisfies d(a, w) = d(a, z) − 2.

The graph K3,2 is the bipartite complete graph, corresponding to two squares glued
along two adjacent edges; and K−4 is the complete graph on four vertices minus an
edge, corresponding to two triangles glued along an edge. The triangle and quadrangle
conditions are illustrated in Figure 1.

Definition 2.2 Let X be a graph, and let Y ⊂ X be a subgraph. A vertex y ∈ Y is a
gate of another vertex x ∈ X if, for every z ∈ Y , there exists a geodesic between x and z
passing through y. If every vertex of X admits a gate in Y, then Y is gated.

It is worth noticing that the gate of x in Y, when it exists, is unique and coincides
with the (unique) vertex that minimizes the distance to x in Y. As a consequence, it
may be referred to as the projection of x onto Y. Gated subgraphs in quasi-median
graphs play the role of convex subcomplexes in CAT(0) cube complexes. We record
the following useful criterion for future use; a proof can be found in [17] (see also [28,
Proposition 2.6]).

Lemma 2.1 Let X be a quasi-median graph, and let Y ⊂ X be a connected subgraph.
Then Y is gated if and only if it is locally convex (i.e., any four-cycle in X with two adjacent
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edges contained in Y necessarily lies in Y) and if it contains its triangles (i.e., any three-
cycle which shares an edge with Y necessarily lies in Y).

Recall that a clique is a maximal complete subgraph, and that cliques in quasi-
median graphs are gated [7]. A prism is, roughly speaking, a subgraph which is a
product of cliques; more precisely, it is an induced subgraph that decomposes as a
Cartesian product of complete graphs such that its cliques are also cliques in the whole
graph.

Lemma 2.2 Let X be a quasi-median graph, x , y ∈ X two vertices, and γ1 , γ2 two
paths between x and y. Then γ2 can be obtained from γ1 by flipping squares, shortening
triangles, removing backtracks, and inverses of these operations.

Our lemma requires a few definitions. Given an oriented path γ in our graph X,
which we decompose as a concatenation of oriented edges e1⋯en , one says that γ′ is
obtained from γ by:
• flipping a square, if there exists some 1 ≤ i ≤ n − 1 such that

γ′ = e1⋯e i−1 ⋅ a ⋅ b ⋅ e i+2⋯en ,

where e i , e i+1 , b, a define an unoriented four-cycle in X;
• shortening a triangle, if there exists some 1 ≤ i ≤ n − 1 such that

γ′ = e1⋯e i−1 ⋅ a ⋅ e i+2⋯en ,

where e i , e i+1 , a define an unoriented three-cycle in X;
• removing a backtrack, if there exists some 1 ≤ i ≤ n − 1 such that

γ′ = e1⋯e i−1 ⋅ e i+2⋯en ,

where e i+1 is the inverse of e i .
Lemma 2.2 follows from the simple connectivity of triangle-square complex obtained
from X by filling three- and four-cycles (which is an easy consequence of the triangle
and quadrangle conditions; see [13, Lemma 5.5] for details) combined either with a
standard argument based on disc diagrams or with observation that flipping squares
and shortening triangles provide the relations of the fundamental groupoid of X (see
[14, Statement 9.1.6] for details).

2.2 Median graphs

A graph X is a median graph if, for all vertices x , y, z ∈ X, there exists a unique vertex
m ∈ X such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(x , y) = d(x , m) + d(m, y),
d(x , z) = d(x , m) + d(m, z),
d(y, z) = d(y, m) + d(m, z).

The point m is referred to as the median point of the triple x , y, z. Median graphs are
known to define the same objects as CAT(0) cube complexes. Indeed, the one-skeleton
of a CAT(0) cube complex is a median graph, and the cube-completion of a median
graph, namely the cube complex obtained by filling in all the one-skeleta of cubes in
the graph with cubes, is a CAT(0) cube complex. We refer to [18] for more information.
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750 A. Genevois

Figure 2: A quasi-median graph and four of its hyperplanes (in orange, red, blue, and green).

2.3 Hyperplanes

Similarly to CAT(0) cube complexes, the notion of hyperplanes is fundamental in the
study of quasi-median graphs.

Definition 2.3 Let X be a graph. A hyperplane J is an equivalence class of edges with
respect to the transitive closure of the relation saying that two edges are equivalent
whenever they belong to a common triangle or are opposite sides of a square. We
denote by X//J the graph obtained from X by removing the interiors of all the edges
of J. A connected component of X//J is a sector. The carrier of J, denoted by N(J), is
the subgraph induced by all the vertices in the edges of J. Two hyperplanes J1 and J2
are transverse if there exist two edges e1 ⊂ J1 and e2 ⊂ J2 spanning a square in X, and
they are tangent if they are not transverse, but N(J1) ∩ N(J2) ≠ ∅.

See Figure 2 for examples of hyperplanes in a quasi-median graph. A key observa-
tion is that hyperplanes in quasi-median graphs always delimit at least two sectors.

Theorem 2.3 [28, Proposition 2.15]; see also [31, Theorem A.1] Let X be a quasi-
median graph and J a hyperplane. The graph X//J is disconnected, and the carrier and
the sectors of J are gated.

We refer to [28, Section 2.2] (and more particularly to [28, Proposition 2.30])
for more information about the (fundamental) connection between the geometry of
quasi-median graphs and their hyperplanes.

We record the following lemmas for future use.

Lemma 2.4 [28, Lemma 2.25]; see also [31, Lemma A.5] In a quasi-median graph,
two distinct cliques which are dual to the same hyperplane must be disjoint.

Lemma 2.5 [28, Fact 2.75] Let X be a quasi-median graph and e1 , e2 ⊂ X two edges
sharing their initial point. If the hyperplanes dual to e1 and e2 are transverse, then e1 and
e2 span a square.

Lemma 2.6 Let X be a quasi-median graph, x , y ∈ X two vertices, and [x , y] a geodesic
from x to y. Let J1 , . . . , Jn denote the hyperplanes crossed by [x , y] in that order. If J i and
J i+1 are transverse for some 1 ≤ i ≤ n − 1, then there exists a geodesic from x to y crossing
the hyperplanes J1 , . . . , J i−1 , J i+1 , J i , J i+2 , . . . , Jn in that order.
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Proof Decompose the geodesic [x , y] as a concatenation of edges e1⋯en . So, for
every 1 ≤ j ≤ n, e j is dual to the hyperplane J j . As a consequence of Lemma 2.5, the
edges e i and e i+1 span a square. Flipping this square (i.e., replacing e i and e i+1 with
their opposite edges in our square) produces a new path between x and y which has
the same length as [x , y] (and so is a geodesic) and which crosses the hyperplanes
J1 , . . . , J i−1 , J i+1 , J i , J i+2 , . . . , Jn in that order. ∎

2.4 Graph products

We conclude our preliminary section by considering graph products of groups and
their quasi-median graphs.

Let Γ be a simplicial graph, and let G = {Gu ∣ u ∈ V(Γ)} be a collection of groups
indexed by the vertex set V(Γ) of Γ. The graph product ΓG is defined as the quotient

( ∗
u∈V(Γ)

Gu)/⟨⟨[g , h] = 1 ∣ g ∈ Gu , h ∈ Gv , {u, v} ∈ E(Γ)⟩⟩,

where E(Γ) denotes the edge set of Γ. The groups in G are referred to as vertex groups.

2.5 Convention

In the entire article, we will assume for convenience that the groups inG are nontrivial.
Notice that it is not a restrictive assumption, since a graph product with some trivial
factors can be described as a graph product over a smaller graph all of whose factors
are nontrivial.

A word in ΓG is a product g1⋯gn where n ≥ 0 and where, for every 1 ≤ i ≤ n, g i ∈ G
for some G ∈ G; the g i are the syllables of the word, and n is the length of the word.
Clearly, the following operations on a word does not modify the element of ΓG it
represents:

Cancellation: delete the syllable g i = 1;
Amalgamation: if g i , g i+1 ∈ G for some G ∈ G, replace the two syllables g i and g i+1
by the single syllable g i g i+1 ∈ G;
Shuffling: if g i and g i+1 belong to two adjacent vertex groups, switch them.

A word is graphically reduced if its length cannot be shortened by applying these
elementary moves. Every element of ΓG can be represented by a graphically reduced
word, and this word is unique up to the shuffling operation. This allows us to define the
length of an element g ∈ ΓG, denoted by ∣g∣, as the length of any graphically reduced
word representing g. For more information on graphically reduced words, we refer to
[36] (see also [32, 43]).

We record the following definition for future use.

Definition 2.4 The tail of a graphically reduced word g = g1⋯gn is the set of syllables
that can be shuffled to the end of the word. More precisely, the syllable g i belongs to
the tail of g if the vertex group containing g i is adjacent to the vertex group containing
g j for every j > i. Observe that applying a shuffling to a graphically reduced word does
not modify its tail, so, because an element of ΓG is represented by a unique graphically
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reduced word up to the shuffling operation, one can define the tail of an element of
ΓG as the tail of any graphically reduced word representing it.

The connection between graph products and quasi-median graphs is made explicit
by the following statement [28, Proposition 8.2].
Theorem 2.7 Let Γ be a simplicial graph and G a collection of groups indexed by V(Γ).

The Cayley graph QM(Γ,G) ∶= Cay(ΓG, ⋃
G∈G

G/{1}) is a quasi-median graph.

Notice that the graph product ΓG naturally acts by isometries on QM(Γ,G) by
left multiplication. We refer to [28, Section 8.1] (and [35, Section 2.2]) for more
information about the geometry of QM(Γ,G). Here, we only mention the following
two statements, which describe the cliques and the prisms of QM(Γ,G).
Lemma 2.8 [28, Lemma 8.6]; see also [35, Lemma 2.4] Let Γ be a simplicial graph and
G a collection of groups indexed by V(Γ). The cliques of QM(Γ,G) are the subgraphs
induced by the vertices in the cosets of the form gGu , where g ∈ ΓG and u ∈ V(Γ).
Lemma 2.9 [28, Corollary 8.7]; see also [35, Lemma 2.6] Let Γ be a simplicial graph
andG a collection of groups indexed by V(Γ). The prisms of QM(Γ,G) are the subgraphs
induced by the vertices in the cosets of the form g⟨Λ⟩, where g ∈ ΓG, where Λ is a complete
subgraph of Γ, and where ⟨Λ⟩ denotes the subgroup of ΓG generated by the vertex groups
labeling the vertices of Λ.

3 Special actions on quasi-median graphs

3.1 Warm up: special cube complexes revisited

As introduced in [40], special cube complexes are nonpositively curved cube com-
plexes which do not contain configurations of hyperplanes referred to as pathological.
Then, the key observation is that, given such a cube complex X, there exists a graph
Γ (namely, the crossing graph of the hyperplanes in X) and a local isometry X ↪ XΓ ,
where XΓ is a nonpositively curved cube complex with the right-angled Artin group
AΓ as fundamental group (namely, a Salvetti complex). As local isometries between
nonpositively curved cube complexes are π1-injective, it follows that π1(X) is a sub-
group of AΓ . Similar arguments can be conducted when AΓ is replaced with the right-
angled Coxeter group CΓ , but considering either AΓ or CΓ is essentially equivalent
because a right-angled Artin groups always embeds as a finite-index subgroup into a
right-angled Coxeter group [22].

In this section, we sketch an alternative approach which illustrates the more general
arguments from the next section. So, we fix a group G which acts specially on a CAT(0)
cube complex X, i.e.,
• for every hyperplane J and every element g ∈ G, J and gJ are neither transverse nor

tangent;
• for all hyperplanes J1 , J2 and every element g ∈ G, if J1 and J2 are transverse, then

J1 and gJ2 cannot be tangent.
Observe that this definition is compatible with the terminology introduced by
Definition 1.1 from the introduction: because a hyperplane in a CAT(0) cube complex
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always delimits exactly two subspaces, and the action S(J) ↷ S (J) is automatically
free for every hyperplane J, so special and hyperplane-special actions coincide.

Let Γ denote the graph whose vertices are the G-orbits of hyperplanes and whose
edges link two orbits if they contain at least two transverse hyperplanes. Naturally,
each hyperplane of X is labeled by a vertex of Γ, namely the G-orbits it belongs to.
Define the label of an oriented path γ in X as the word �(γ) given by the sequence of
the G-orbits of hyperplanes it crosses. Fixing a basepoint x0 ∈ X, we consider

Φ ∶ { X → X(Γ),
x ↦ �(path from x0 to x),

where X(Γ) denotes the usual CAT(0) cube complex on which the right-angled Cox-
eter group CΓ acts, namely the cube completion of the Cayley graph Cay(CΓ , V(Γ)).
Notice that Φ naturally induces

φ ∶ { G → CΓ ,
g ↦ Φ(g ⋅ x0).

It turns out that φ is an injective morphism, that Φ is a φ-equivariant embedding, and
that the image of Φ is a convex subcomplex of CΓ . These observations are based on
the following three claims, for which we sketch justifications.

Claim 3.1 The map Φ is well defined, i.e., for every vertex x ∈ X, the vertex of X(Γ)
represented by the label of a path from x0 to x does not depend on the path we choose.

First, consider an oriented path of the form ee−1, namely a backtrack. Then
�(ee−1) = �(e)2 equals 1 in CΓ . Next, consider an oriented path of the form e ⋅ f where
e and f are consecutive edges in a square. Because the hyperplanes dual to e and f are
transverse, the generators �(e) and �( f ) commute in CΓ , so

�(e ⋅ f ) = �(e)�( f ) = �( f )�(e) = �(e′ ⋅ f ′),

where e′ ⋅ f ′ denotes the image of e ⋅ f under the diagonal reflection in the square
which contains e ⋅ f . Therefore, the label of a path remains the same if we add or
remove a backtrack or if we flip a square. In a CAT(0) cube complex, any two paths with
the same endpoints can be obtained from one to another thanks to such elementary
operations, so the desired conclusion follows. ∎

Claim 3.2 The map φ ∶ G → CΓ is a morphism.

Fix two elements g , h ∈ G. We have

φ(gh) = �([x0 , ghx0]) = �([x0 , gx0] ⋅ g[x0 , hx0])
= �([x0 , gx0])�([x0 , hx0]) = φ(g)φ(h),

where the second equality is justified by Claim 3.1, and the third one by the fact that the
labeling map � is G-invariant. (Here, [⋅, ⋅] refers to some arbitrary choice of a geodesic
between the two vertices under consideration.) ∎

So far, the specialness of the action has not been used, and the morphism φ ∶ G →
CΓ is well defined for every action of G on a CAT(0) cube complex. However, this
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assumption is crucial in the proof of the injectivity of Φ (and φ), which follows from
the next assertion.

Claim 3.3 For every vertex x ∈ X and every geodesic [x0 , x] in X, the word �([x0 , x])
is graphically reduced in CΓ .

Assume that there exists a vertex x ∈ X and a geodesic [x0 , x] such that the word
�([x0 , x]) is not graphically reduced. So, if we write [x0 , x] as a concatenation of
oriented edges e1⋯en , then there exist two indices 1 ≤ i < j ≤ n such that �(e i) = �(e j)
and such that �(ek) commutes with �(e i) for every i < k < j. Assume that j − i ≥ 2.
Because �(e i) and �(e i+1) commute, the hyperplane J i dual to e i has a G-translate
which is transverse to the hyperplane J i+1 dual to e i+1. Because the action is special, the
hyperplanes J i and J i+1 cannot be tangent, so they are transverse. As a consequence,
the edges e i and e i+1 span a square, and by flipping this square, we can replace our
geodesic [x0 , x]with a new geodesic so that j − i decreases. By iterating the process, we
end up with a geodesic [x0 , x] such that j = i + 1. In other words, [x0 , x] contains two
successive edges with the same label; or equivalently, if J and H denote the hyperplanes
dual to these two edges, J and H belong to the same G-orbit. However, J and H are
either tangent or transverse, which contradicts the specialness of the action. ∎

3.2 Embeddings into graph products

In this section, we define special actions on quasi-median graphs and we show, given
a group admitting such an action, how to embed it into a graph product. We begin by
introducing the following notation.

Notation 3.4 Let G be a group acting on a quasi-median graph X. For every
hyperplane J of X, let S (J) denote the collection of sectors delimited by J, and S(J)
the image of stabG(J) in the permutation group of S (J).

Special actions on quasi-median graphs are defined as follows.

Definition 3.1 Let G be a group acting faithfully on a quasi-median graph X. The
action is hyperplane-special if:
• for every hyperplane J and every element g ∈ G, J and gJ are neither transverse nor

tangent;
• for all hyperplanes J1 , J2 and every element g ∈ G, if J1 and J2 are transverse, then

J1 and gJ2 cannot be tangent.
The action is special if, in addition, the action S(J) ↷ S (J) is free for every hyper-
plane J of X.

It is worth noticing that our definition agrees with the definition of special actions
on median graphs we used in the previous section. In other words, an action on a
median graph is special if and only if it is hyperplane-special. Indeed, hyperplanes in
median graphs delimit exactly two sectors, and a faithful action on a set of cardinality
two is automatically free.

As a preliminary observation, note that:

Lemma 3.5 If G acts specially on a quasi-median graph X, then vertex stabilizers are
trivial.
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Proof Assume that g ∈ G fixes a vertex x ∈ X.
Let y ∈ X be a neighbor of x. Let C denote the clique which contains the edge

connecting x and y, and J the hyperplane containing C. Because J and gJ are
neither tangent nor transverse, necessarily gJ = J, so that gC = C as a consequence
of Lemma 2.4. Because the action S(J) ↷ S (J) is free, necessarily g stabilizes all the
sectors delimited by J, which implies that g fixes C pointwise, and in particular g y = y.

Thus, we have proved that g fixes x and all its neighbors. By reproducing the
argument to the neighbors of y, and so on, we deduce that g fixes X pointwise. As
the action of G on X is faithful, we conclude that g must be trivial. ∎

The rest of the section is almost entirely dedicated to the proof of the following
embedding theorem.
Theorem 3.6 Let G be a group acting specially on a quasi-median graph X.
• Fix representatives {J i ∣ i ∈ I} of hyperplanes of X modulo the action of G.
• Let Γ denote the graph whose vertex set is {J i ∣ i ∈ I} and whose edges link two

hyperplanes if they have two transverse G-translates.
• For every i ∈ I, let G i be an arbitrary group containing S(J i) as a subgroup of index

at least the number of orbits of S(J i) ↷ S (J i).
Then there exists an injective morphism φ ∶ G ↪ ΓG, where G = {G i ∣ i ∈ I}, and a
φ-equivariant embedding Φ ∶ X ↪ QM(Γ,G). Moreover, if the index of S(J i) in G i
is exactly the number of orbits of S(J i) ↷ S (J i) for every i ∈ I, then the image of Φ is
a gated subgraph.
Proof We fix a basepoint x0 ∈ X, and, for every hyperplane J, we denote by S(J) the
sector delimited by J containing x0. Given an i ∈ I, we want to fix an injective map
λ i ∶ S (J i) ↪ G i and a coloring of S (J i) such that:
• λ i is S(J i)-equivariant and λ i(S(J i)) = 1;
• if the index of S(J i) in G i coincides with the number of orbits of S(J i) ↷ S (J i),

then λ i is a bijection;
• no two points of S (J i) in the same S(J i)-orbit have the same color;
• for every point x ∈ S (J i) and every color c, there exists a unique g ∈S(J i) such

that gx has color c.
Let us prove that such objects exist. Fix representatives Sα , α ∈ A, in S (J i) under
the action of S(J i); and representatives gβ , β ∈ B, in G i under the action by left-
multiplication ofS(J i). We know by assumption that the cardinality of B is at least the
cardinality of A, so we can assume that B contains A, with equality if they both have
the same cardinality. Because S(J i) acts freely on S (J i), every point in S (J i) can
be uniquely written as gSα where g ∈S(J i) and α ∈ A. Therefore, setting λ i(gSα) ∶=
g gα for all g ∈S(J i) and α ∈ A defines an S(J i)-equivariant injection S (S j) → G i ,
which is also surjective if A = B. Of course, we can assume that S(J i) is one of our
representatives, say Sγ for some γ ∈ A, and that gγ = 1. Then λ i(S(J i)) = 1. Thus, our
λ i satisfies the desired properties. Next, declare that two sectors R, S ∈ S (J i) have
the same color if there exist g ∈S(J i) and α, β ∈ A such that R = gSα and S = gSβ .
The third item is satisfied because S(J i) acts freely on S (J i), and the fourth item is
satisfied by construction (the uniqueness being also a consequence of the freeness of
the action of S(J i)).

https://doi.org/10.4153/S0008414X22000141 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000141


756 A. Genevois

From now on, we fix, for every i ∈ I, such a map λ i and such a coloring of S (J i).
The specific construction does not matter; only the properties recorded by the four
items will be used in the sequel. Observe that, in particular, the sectors delimited by J i
are labeled by elements in G i under λ i . We want to extend such a labeling equivariantly
to all the hyperplanes of X.

Claim 3.7 For every hyperplane J, there exist i ∈ I and g ∈ G such that gJ = J i and
such that gS(J) and S(J i) have the same color. ∎

Of course, there exist i ∈ I and h ∈ G such that hJ = J i . By definition of our colouing
of S (J i), there exists some k ∈ stab(J i) such that k ⋅ hS(J) and S(J i) have the same
color. Setting g ∶= kh proves the claim.

3.3 Labeling the sectors

If J is an arbitrary hyperplane of X, let i ∈ I and g ∈ G be as given by Claim 3.7. A sector
S delimited by J is labeled by �(S) ∶= λ i(gS) ∈ G i .

Notice that the label of S does not depend on the choice of g. Indeed, let h ∈ G be
another element satisfying Claim 3.7. Then, gh−1 stabilizes J i , and the sectors gS(J),
S(J i), and hS(J) all have the same color. In other words, gh−1 defines an element
of S(J i) that sends some element of S (J i) to an element of the same color, which
implies that gh−1 represents the trivial element ofS(J i). We conclude that gS = gh−1 ⋅
hS = hS.

3.4 Labeling the oriented paths

If e ⊂ X is an oriented edge, let S1 (resp. S2) denote the sector delimited by the
hyperplane dual to e which contains the initial endpoint of e (resp. the terminal
endpoint of e). The label of e is defined as �(e) ∶= �(S1)−1�(S2). More generally, if γ =
e1⋯en is an oriented path, then its label is defined as the word �(γ) ∶= �(e1)⋯�(en),
most of the time thought of as an element of ΓG.

Because we may consider the label of an oriented path either as a word or as an
element of ΓG, we will use the following notation in order to avoid any ambiguity.
Given two labels a and b, we denote by a = b the equality in the group ΓG, and a ≡ b
the equality as words.

We record below two fundamental facts about the labeling we have constructed: it
is G-invariant, and it sends geodesics to graphically reduced words.

Claim 3.8 Let e ⊂ X be an oriented edge and g ∈ G an element. Then �(g ⋅ e) = �(e).

Let J denote the hyperplane dual to e. According to Claim 3.7, there exist i ∈ I and
h, k ∈ G such that hJ = J i = k ⋅ gJ and such that S(J i), hS(J), and kS(gJ) all have the
same color. As a consequence, kgh−1 stabilizes J i , so it defines an element σ of S(J i).
Notice that, if S is an arbitrary sector delimited by J, then σ sends hS to k ⋅ gS (as
elements of S (J i)). Hence,

�(gS) = λ i(kgS) = λ i(σ hS) = σλ i(hS) = σ�(S),

in G i . The key observation is that σ does not depend on S. Therefore, if S1 (resp. S2)
denotes the sector delimited by J which contains the initial endpoint of e (resp. the
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terminal endpoint of e), then

�(ge) = �(gS1)−1�(gS2) = �(S1)−1σ−1σ�(S2) = �(S1)−1�(S2) = �(e),

concluding the proof of our claim.

Claim 3.9 For all vertices x , y ∈ X and every geodesic [x , y] from x to y, the word
�([x , y]) is graphically reduced in ΓG.

Assume for contradiction that there exist vertices x , y ∈ X and a geodesic [x , y]
from x to y, which we decompose as a concatenation of edges e1⋯er , such that
�([x , y]) is not graphically reduced in ΓG. So, there exist two indices 1 ≤ i < j ≤ r
such that �(e i) and �(e j) belong to the same vertex group of ΓG and such that �(ek)
belongs to an adjacent vertex group for every i < k < j. In other words, if Jk denotes
the hyperplane dual to ek for every 1 ≤ k ≤ r, then J i and J j belong to the same G-orbit
and, for every i < k < j, a G-translate of Jk is transverse to J j . Because G acts specially
on X, notice that, if j ≥ i + 2, then the hyperplane J j−1 cannot be tangent to J j , so J j−1
and J j are transverse. As a consequence of Lemma 2.6, there exists a geodesic from
x to y which crosses the hyperplanes J1 , . . . , J j−2 , J j , J j−1 , J j+1 , . . . , Jr in that order. By
iterating the argument, it follows that we can choose carefully our geodesic [x , y] so
that j = i + 1. In other words, J i and J j are tangent or transverse. However, we know
that J i and J j belong to the same G-orbit, contradicting the specialness of the action.
The proof of our claim is complete.

3.5 The embedding

Fix a second basepoint x1 ∈ X, possibly different from x0. In order to prove our
theorem, we want to show that

Φ ∶ { X → X(Γ,G)
x ↦ � (path from x1 to x)

defines an embedding whose image, that

φ ∶ { G → ΓG
g → Φ(g ⋅ x1)

is an injective morphism, and that Φ is φ-equivariant.
First of all, we claim that Φ is well defined, i.e., the label of a path from x1 to x (as an

element of ΓG) does not depend on the path we choose. As a consequence of Lemma
2.2, it suffices to show that flipping a square, shortening a triangle, and removing a
backtrack do not modify the label of a path.

We begin by noticing that, if e ⋅ f is an oriented path between two opposite vertices
of a square and if e′ ⋅ f ′ denotes the image of e ⋅ f under the reflection along the
diagonal of our square, then e ⋅ f and e′ ⋅ f ′ have the same label. Indeed, observe that
the endpoints of e and f ′ belong to the same sectors delimited by the hyperplane dual
to e and f ′, and similarly for f and e′, so �(e ⋅ f ) ≡ �(e)�( f ) and �(e′ ⋅ f ′) ≡ �( f )�(e).
However, �(e) and �( f ) belong to two vertex groups of ΓG which are adjacent since
the two hyperplanes dual to e and f are transverse. Therefore,
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�(e ⋅ f ) = �(e)�( f ) = �( f )�(e) = �(e′ ⋅ f ′),

so that flipping a square in a path does not modify its label (in ΓG). Next, if e ⋅ f is a
backtrack, then

�(e ⋅ f ) = �(e)�( f ) = �(e)�(e)−1 = 1,

so that removing a backtrack to a path does not modify its label (in ΓG) either. Finally,
let e ⋅ f be the concatenation of two successive edges in a triangle, and let e′ denote
the edge of this triangle with the same endpoints as e ⋅ f . Let J denote the hyperplane
containing our triangle, S1 the sector delimited by J which contains the initial point of
e, S2 the sector delimited by J which contains the terminal endpoint of e, and S3 the
sector delimited by J which contains the terminal point of f. Then

�(e ⋅ f ) = �(e)�( f ) = �(S1)−1�(S2) ⋅ �(S2)−1�(S3) = �(S1)−1�(S3) = �(e′),

so that shortening a triangle does not modify the label of a path. Thus, we have proved
that Φ is well defined.

It is worth noticing that our map Φ essentially does not depend on the basepoint x1
we choose. When we allow the basepoint x1 to vary, we denote by Φz the map obtained
from Φ by replacing x1 with another vertex z ∈ X. Then:

Claim 3.10 For all vertices p, q ∈ X, we have the commutative diagram

X
Φq ��

Φp

��

QM(Γ,G)

mg�����
���

���
�

QM(Γ,G)

where the isometry mg denotes the left-multiplication by g ∶= �([p, q]).

Indeed,

Φp(x) = �([p, x]) = �([p, q] ⋅ [q, x]) = �([p, q]) ⋅Φq(x),

for every vertex x ∈ X.
We are now ready to show that φ is an injective morphism and that Φ is a φ-

equivariant embedding.

Claim 3.11 The map Φ is an isometric embedding. In particular, it is injective.

Let x , y ∈ X be two vertices. Fix a geodesic [x , y] between x and y in X. As a
consequence of Claim 3.10,

d(Φ(x), Φ(y)) = d(Φx(x), Φx(y)) = d(1, �([x , y]).

However, �([x , y] is a graphically reduced word according to Claim 3.9, so
d(1, �([x , y])) coincides with the length of �([x , y]), or equivalently with the number
of edges of [x , y]. We conclude that d(Φ(x), Φ(y)) = d(x , y).

Claim 3.12 For all x ∈ X and g ∈ G, Φ(gx) = φ(g)Φ(x).
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By fixing arbitrary paths [x1 , gx], [x1 , gx1], and [x1 , x] in X, we have

Φ(gx) = �([x1 , gx]) = �([x1 , gx1] ⋅ g[x1 , x]) = �([x1 , gx1])�([x1 , x]) = φ(g)Φ(x),

where the penultimate equality is justified by Claim 3.8. Our claim is proved.
Notice that Claim 3.12 implies that φ is a morphism. Indeed, for every g , h ∈ G, we

have

φ(gh) = Φ(gh ⋅ x1) = φ(g)Φ(h ⋅ x1) = φ(g)φ(h).

Moreover, the injectivity of φ follows from the injectivity of Φ provided by Claim 3.11,
combined with Lemma 3.5, and Claim 3.12 precisely means that Φ is φ-equivariant.

From now on, we assume that, for every i ∈ I, the index of S(J i) in G i coincides
with the number of orbits of S(J i) ↷ S (J i); by construction, this implies that λ i ∶
S (J i) → G i is a bijection. We want to show that, under this assumption, the image of
Φ is a gated subgraph of QM(Γ,G).

Claim 3.13 Let x ∈ X be a vertex and i ∈ I an index. If there exists some a ∈ G i such
that x is the initial vertex of an edge of X labeled by a, then, for every b ∈ G i , x is the
initial vertex of an edge labeled by b; moreover, this edge belongs to the same clique
as the edge labeled by a.

Fix an element b ∈ G i . Let C denote the clique of X containing our edge labeled by
a, and let J denote the hyperplane of X which contains it. By construction, the sectors
delimited by J are labeled by elements of G i , and conversely every element of G i labels
a sector delimited by J. Let e be the edge of C which connects x to the sector delimited
by J which is labeled by cb, where c ∈ G i is the label of the sector containing x. Then
�(e) = c−1 ⋅ cb = b, so e is the edge we are looking for.

Claim 3.14 The image under Φ of a clique of X is a clique of QM(Γ,G). As a
consequence, the image of Φ contains its triangles.

Let C be a clique of X. Fix an arbitrary vertex x ∈ C. The edges of C are all labeled by
the same group G i , i ∈ I. It follows from Claim 3.13 that Φ(C) ⊃ Φ(x)G i . On the other
hand, Φ(x)G i is a clique in QM(Γ,G) according to Lemma 2.8, so Φ(C) ⊂ Φ(x)G i .
This proves the first assertion of our claim. Now, let T be a triangle with at least one
edge e in the image of Φ. Let A be a clique of X such that Φ(A) contains e, and let
B be the clique of QM(Γ,G) that contains T. Then Φ(A) and B are two cliques of
QM(Γ,G) containing e. However, in a quasi-median graph, the intersecting between
two distinct cliques contains at most one vertex (which is an immediate consequence
of the fact that there is no induced K−4 ); hence, T ⊂ B = Φ(A), proving that the image
of Φ contains its triangle, as desired.

Claim 3.15 The image of Φ is locally convex.

Let e1 , e2 ⊂ X be two edges which share their initial point and such that Φ(e1) and
Φ(e2) span a square S. Necessarily, �(e1) and �(e2) belong to adjacent vertex groups,
which means that the hyperplane dual to e1 has a G-translate which is transverse to the
hyperplane dual to e2. Because G acts specially on X, it follows that the hyperplanes
dual to e1 and e2 are transverse, so that e1 and e2 span a square in X according to

https://doi.org/10.4153/S0008414X22000141 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000141


760 A. Genevois

Lemma 2.5. The image of this square under Φ must be S as QM(Γ,G) does not contain
K3,2 as an induced subgraph, concluding the proof of our claim.

By combining Lemma 2.1 with Claims 3.14 and 3.15, we conclude that the image of
Φ is a gated subgraph. The proof of our theorem is complete.

Remark 3.16 Observe that, if X is a median graph in Theorem 3.6, then the graph
product we obtain is a right-angled Coxeter group. Indeed, for every i ∈ I, S (J i) has
cardinality 2, so eitherS(J i) has order 2 and G i =S(J i); orS(J i) is trivial and G i has
order 2. Consequently, G i is cyclic of order 2 for every i ∈ I, and ΓG is a right-angled
Coxeter group. So, we recover that groups acting specially on CAT(0) cube complexes
embed into right-angled Coxeter groups.

When applying Theorem 3.6, it may be difficult to understand the groups S(J).
Our next statement shows that, when the group acts with finitely many orbits of
vertices, these groups are essentially clique-stabilizers (which are much easier to
understand).

Proposition 3.17 Let G be a group acting specially on a quasi-median graph X with
finitely many orbits of vertices. For every hyperplane J and every clique C ⊂ J, stab(C)
embeds as a finite-index subgroup in S(J).

Proof Fix a hyperplane J of X and a clique C ⊂ J. The fact that the image of stab(C)
in S(J) is faithful is a direct consequence of Lemma 3.5. Because S(J) acts freely
on S (J), it suffices to show that (the image of) stab(C) acts on S (J) with finitely
many orbits in order to deduce that (the image of) stab(C) has finite index in S(J).
In fact, we claim that stab(C) acts on C with finitely many orbits of vertices, which is
sufficient.

Notice that, if two vertices x and y of C are in the same G-orbit, then they are
in the same stab(C)-orbit. Indeed, let g ∈ G be such that gx = y. Then the cliques
C and gC either are identical or they intersect along a single vertex. However, the
latter case cannot happen because the action is special (indeed, otherwise g would
send the hyperplane containing C to a hyperplane that is transverse or tangent to it),
so g ∈ stab(C). As G acts on X with finitely many orbits of vertices, it follows that:

Fact 3.18 C contains only finitely many stab(C)-orbits of vertices. ∎

This last observation concludes the proof of our proposition.

As a consequence of Proposition 3.17, we better understand the vertex groups of the
graph product into which we embed our group in Theorem 3.6, under the additional
assumption that the action on the quasi-median graph has only finitely many orbits
of vertices.

Corollary 3.19 Let G be a group which acts specially on a quasi-median graph X with
finitely many orbits of vertices. Following the notation in Theorem 3.6, for every i ∈ I,
S(J i) has finite index in G i and contains a clique-stabilizer as a finite-index subgroup;
in particular, G i is virtually a clique-stabilizer.

Proof Recall that, for every i ∈ I, the index ofS(J i) in G i coincides with the number
of S(J i)-orbits in S(J i). As a consequence of Proposition 3.17, our corollary follows
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from the observation that, for every hyperplane J of X,S(J) acts on S (J)with finitely
many orbits. This is a direct consequence of Fact 3.18. ∎

By combining Theorem 3.6 with Corollary 3.19, one immediately gets the following
corollary.

Corollary 3.20 Let G be a group which acts specially on a quasi-median graph X with
finitely many orbits of vertices. Then G embeds into a graph product of virtual clique-
stabilizers.

3.6 Gated-cocompact subgroups are virtual retracts

We saw in the previous section that a group acting specially on a quasi-median graph
can be embedded into a graph product. In the present section, our goal is to show,
under the additional assumption that the group acts with only finitely many orbits of
vertices, that the image of this embedding is a virtual retract. Our proof is based on
the following concept.

Definition 3.2 Let G be a group acting on a quasi-median graph X. A subgroup H ≤
G is gated-cocompact if there exists a gated subgraph Y ⊂ X on which H acts with
finitely many orbits of vertices.

Unless stated otherwise, a gated-cocompact subgroup of a graph product ΓG always
refers to the action of ΓG on QM(Γ,G). The main result of this section is that such
subgroups are virtual retracts.

Theorem 3.21 Let Γ be a simplicial graph andG a collection of groups indexed by V(Γ).
A gated-cocompact subgroup H ≤ ΓG is a virtual retract.

Before turning to the proof of our theorem, we need to introduce a few definitions.
So, let X be a quasi-median graph and G a group acting on it.
• The rotative-stabilizer of a hyperplane J is stab↻(J) ∶= ⋂{stab(C) ∣ C ⊂ J clique}.
• Given a G-invariant collection of hyperplanes J, the action G ↷ X is J-rotative if,

for every J ∈ J, the action stab↻(J) ↷ S (J) is transitive and free.
• Given a vertex x ∈ X, a collection of hyperplanes J is x-peripheral if there do not

exist J1 , J2 ∈ J such that J1 separates x from J2.
For instance, the action of ΓG on QM(Γ,G) is fully rotative [35, Proposition 2.21], i.e.,
it is J-rotative where J denotes the collection of all the hyperplanes of QM(Γ,G).

Lemma 3.22 Let G be a group acting on a quasi-median graph X with trivial vertex-
stabilizers. Fix a basepoint x0 ∈ X, and let J be an x0-peripheral collection of hyper-
planes. Assume that the action of G on X is J-rotative. Then

Y ∶= ⋂
J∈J

sector delimited by J containing x0

is a fundamental domain for the action of R ∶= ⟨stab↻(J) ∣ J ∈ J⟩ on X.

Proof Let x ∈ X be an arbitrary vertex. Assume that x ∉, Y and let y ∈ Y denote
its projection onto Y (which exists since, as an intersection of gated subgraphs, Y is
gated). The last edge of a geodesic [x , y] must be dual to a hyperplane J in J. Because

https://doi.org/10.4153/S0008414X22000141 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000141


762 A. Genevois

the action is J-rotative, there exists some g ∈ stab↻(J) which sends x in the sector
delimited by J which contains Y. Notice that g sends [x , y] minus its last edge to a
path between gx and y, so

d(gx , Y) ≤ d(gx , y) ≤ d(x , y) − 1.

By iterating the argument, we conclude that there exists r ∈ R such that rx ∈ Y .
Now, fix an arbitrary vertex x ∈ Y . For every J ∈ J, let XJ denote the union of all

the sectors delimited by J which are disjoint from Y. Notice that:
• If J1 , J2 ∈ J are transverse, then g1 and g2 commute for all g1 ∈ stab↻(J1) and g2 ∈

stab↻(J2) [28, Lemma 8.46] (see also [35, Fact 2.22]).
• If J1 , J2 ∈ J are transverse, then g ⋅ XJ2 ⊂ XJ2 for every g ∈ stab↻(J1) [28, Lemma

8.47] (see also [35, Proposition 2.21]).
• If J1 , J2 ∈ J are distinct and not transverse, then g ⋅ XJ2 ⊂ XJ1 for every g ∈

stab↻(J1)/{1}.
• For every J ∈ J and every g ∈ stab↻(J)/{1}, we have g ⋅ x ∈ XJ .
Therefore, [28, Proposition 8.44] (see also [31, Proposition 3.26]) applies, and we
deduce from [28, Fact 8.45] (see also [31, Fact 3.27]) that g ⋅ x ∈ ⋃

J∈J
XJ for every

nontrivial g ∈ R; in particular, g ⋅ x ∉ Y . Thus, we have proved that Y is a fundamental
domain for R ↷ X. ∎
Proof Let Y ⊂ QM(Γ,G) be a gated subgraph on which H acts with finitely many
orbits of vertices. Let J denote the collection of the hyperplanes of QM(Γ,G) which
are tangent to Y (i.e., with no edges in Y but whose carriers intersect Y). We set R ∶=
⟨stab↻(J) ∣ J ∈ J⟩ and H+ ∶= ⟨R, H⟩. Notice that J is H-invariant, so R is a normal
subgroup of H+. Moreover, Y coincides with

⋂
J∈J

sector delimited by J containing Y ,

which is a fundamental domain of R according to Lemma 3.22. Therefore, H ∩ R = {1}.
It follows that H+ = R ⋊H, so that H is a retract in H+. Moreover, since Y is a
fundamental domain of R and because H acts on Y with finitely many orbits of vertices,
necessarily H+ acts on QM(Γ,G) with finitely many orbits of vertices, which means
that H+ is a finite-index subgroup of ΓG. Thus, we have proved that H is a virtual
retract in ΓG. ∎

According to Theorem 3.6, if a group G acts specially on a quasi-median graph X,
then there exists an embedding φ ∶ G ↪ ΓG such that X embeds φ-equivariantly into
QM(Γ,G) as a gated subgraph. As a consequence, if G acts on X with finitely many
vertices, then the image of φ is a gated-cocompact subgroup of ΓG, so Theorem 3.21
directly implies that:

Corollary 3.23 Let G be a group which acts specially on a quasi-median graph X
with finitely many orbits of vertices. The image of the embedding G ↪ ΓG provided by
Theorem 3.6 is a virtual retract in ΓG.

It also follows from Theorem 3.21 that gated-cocompact subgroups of our group G
are virtual retracts in G itself.
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Corollary 3.24 Let G be a group which acts specially on a quasi-median graph X.
Gated-cocompact subgroups of G are virtual retracts in G.

Proof According to Theorem 3.6, there exist a graph product ΓG, an injective
morphism φ ∶ G ↪ ΓG, and a φ-equivariant embedding X ↪ QM(Γ,G) whose image
is gated. As a consequence, any gated-cocompact subgroup H of G (with respect to
its action on X) is a gated-cocompact subgroup of ΓG (with respect to its action on
QM(Γ,G)). Therefore, H is a virtual retract in ΓG according to Theorem 3.21, which
implies that H is a virtual retract in G. ∎

As subgraphs in median graphs are gated if and only if they are convex, we recover
from Corollary 3.24 that convex-cocompact subgroups in cocompact special groups
are virtual retracts [40].

4 Right-angled graphs of groups

4.1 Graphs of groups

We begin this section by fixing the basic definitions and notations related to graphs
of groups; essentially, we follow [49]. So far, our graphs were always one-dimensional
simplicial complexes, but we need a different definition in order to define graphs of
groups. In order to avoid ambiguity, we will refer to the latter as abstract graphs.

Definition 4.1 An abstract graph is the data of a set of vertices V, a set of arrows E,
a fixed-point-free involution e ↦ ē on E, and two maps s, t ∶ E → V satisfying t(e) =
s (ē) for every e ∈ E.

Notice that the elements of E are referred to as arrows and not as edges. This
terminology will allow us to avoid confusion between arrows of abstract graphs and
edges of quasi-median graphs. Below, we define graphs of groups and their associated
fundamental groupoids as introduced in [42].

Definition 4.2 A graph of groups G is the data of an abstract graph (V , E , ⋅̄, s, t),
a collection of groups indexed by V ⊔ E such that Ge = G ē for every e ∈ E, and a
monomorphism ιe ∶ Ge ↪ Gs(e) for every e ∈ E. The fundamental groupoid F = F(G)
of G is the groupoid which has vertex set V, which is generated by the arrows of E
together with ⊔

v∈V
Gv (an element of Gv being thought of as a loop based at v), and

which satisfies the relations:
• for all v ∈ V and g , h, k ∈ Gv , gh = k if the equality holds in Gv ;
• for all e ∈ E and g ∈ Ge , ιe(g) ⋅ e = e ⋅ ι ē(g).
Notice in particular that, for every e ∈ E, ē is an inverse of e in F. Fixing some vertex
v ∈ V , the fundamental group of G (based at v) is the vertex group Fv of F, i.e., the
loops of F based at v.

We record the following definition for future use.

Definition 4.3 The terminus of an element g ofF is the vertex of V which corresponds
to the terminal point of g when thought of as an arrow of F.
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The following normal form, proved in [42], is central in the quasi-median geometry
of right-angled graphs of groups.

Proposition 4.1 Let G be a graph of groups. For every e ∈ E, fix a set Te of left-coset
representatives of ιe (Ge) in Gs(e) containing 1s(e). Any element of F can be written
uniquely as a word g1 ⋅ e1⋯gn ⋅ en ⋅ gn+1, where:
• (e1 , . . . , en) is an oriented path in the underlying abstract graph;
• g i ∈ Te i for every 1 ≤ i ≤ n, and gn+1 is an arbitrary element of Gt(en);
• if e i+1 = ē i for some 1 ≤ i ≤ n − 1 then g i+1 ≠ 1.

Such a word will be referred to as a normal word.
Roughly speaking, we will be interested in graphs of groups gluing graph products.

In order to get something interesting for our purpose, we need to control the gluings.

Definition 4.4 Given two graph products ΓG and ΛH, a morphism Φ ∶ ΓG→ ΛH is
a graphical embedding is there exist an embedding f ∶ Γ → Λ and isomorphisms φv ∶
Gv → H f (v), v ∈ V(Γ), such that f (Γ) is an induced subgraph of Λ and Φ(g) = φv(g)
for every v ∈ V(Γ) and every g ∈ Gv .

Typically, we glue graph products along “subgraph products” in a canonical way.
We refer to Section 4.4 for examples.

Definition 4.5 A right-angled graph of groups is a graph of groups such that each
(vertex and edge)group has a fixed decomposition as a graph product and such that
each monomorphism of an edge group into a vertex group is a graphical embedding
(with respect to the structures of graph products we fixed).

In the following, a factor will refer to a vertex group of one of these graph products
that label the vertices in our graph of groups. In order to avoid possible confusion,
in the sequel vertex groups will only refer to the groups labeling the vertices of the
underlying abstract graph of our graph of groups.

Given a right-angled graph of groups G and an arrow e ∈ E, there exists a natural
set Te of left-coset representatives of ιe(Ge) in Gs(e): the set of elements of Gs(e)
represented by graphically reduced words whose tails (see Definition 2.4) do not
contain any element of the vertex groups in ιe(Ge). From now on, we fix this choice,
and any normal word will refer to this convention.

4.2 Quasi-median geometry

Fix a right-angled graph of groups G, and a vertex ω ∈ V of its underlying abstract
graph. Let S ⊂ F denote the union of the arrows of E together with the factors (minus
the identity) of the graph products Gv , v ∈ V . By definition, S is a generating set of
the fundamental groupoid F of G.

Definition 4.6 The graph X = X(G, ω) is the connected component of the Cayley
graphX(G) of the groupoidF, constructed from the generating setS, which contains
the neutral element 1ω based at ω. In other words, X is the graph whose vertices are
the arrows of F starting from ω and whose edges link two elements g , h ∈ F if g = h ⋅ s
for some s ∈S.
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It is worth noticing that an edge of X is naturally labeled either by an arrow of E or
by a factor.

Proposition 4.2 [28, Proposition 11.8] The graph X is quasi-median.

Notice that the fundamental group Fω of G based at ω naturally acts by isometries
on X by left multiplication. Moreover:

Lemma 4.3 Two vertices of X belong to the same Fω-orbit if and only if they have the
same terminus.

Proof If g ∈ Fω and h ∈ X, it is clear that h and gh have the same terminus.
Conversely, if h, k ∈ X have the same terminus, then the product kh−1 is well defined,
and it belongs to Fω . Since kh−1 ⋅ h = k, it follows that h and k belong to the same
Fω-orbit. ∎

We record the following definition for future use.

Definition 4.7 A leaf of X is the subgraph induced by the set of vertices gGv , where
Gv is a vertex group of G and where g ∈ F is some arrow starting from ω and ending
at v ∈ V .

Notice that, by construction, a leaf is isometric to the Cayley graph of a graph
product as given by Theorem 2.7. (See [28, Lemma 11.11] for more details.)

4.2.1 Path morphisms

Let G be a right-angled graph of groups, and let (V , E , ⋅̄, s, t) denote its underlying
abstract graph. Given an arrow e ∈ E, we denote by φe ∶ ιe(Ge) → ι ē(Ge) the iso-
morphism ι ē ○ ι−1

e . A priori, φe is not defined on Gs(e) entirely, but for every subset
S ⊂ Gs(e), we can define φe(S) as φe (S ∩ ιe(Ge)). By extension, if an oriented path
γ decomposes as a concatenation of arrows e1⋯en , we denote by φγ the composition
φen ○ ⋯ ○ φe1 .

Notice that, if G is a factor contained in a vertex group Gu of G and if γ is a path in
the graph of G starting from u, then φγ(G) is either trivial (i.e., reduced to {1}) or a
factor (different from G in general). Moreover, in the latter case, the equality

a ⋅ e1⋯en = e1⋯en ⋅ φγ(a)

holds for every a ∈ G, where e1⋯en is a decomposition of γ as a concatenation of
arrows.

Given a right-angled graph of groups, a subgroup of automorphisms is naturally
associated to each factor.

Definition 4.8 For every factor G contained in a vertex-group Gu of G,

Φ(G) ∶= {φc ∣ c closed path based at u such that φc(G) = G} ≤ Aut(G).

These groups of automorphisms are crucial in the study of right-angled graphs of
groups. Indeed, as noticed by [28, Example 11.36], cyclic extensions of an arbitrary
group are fundamental groups of right-angled graphs of groups, but we cannot expect
to find a geometry common to all the cyclic extensions, so we need additional
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restrictions on the graphs of groups we look at. As suggested by [28, Proposition 11.26]
and Proposition 4.9, typically we require the Φ(G) to be trivial, or at least finite.

4.2.2 Cliques and prisms

Let G be a right-angled graph of groups. The description of the cliques in our quasi-
median graph X is given by the following lemma.

Lemma 4.4 [28, Lemma 11.15] A clique of X is either an edge labeled by an arrow or a
complete subgraph gG where G is a factor in some vertex-group Gu and g ∈ F an element
with u as its terminus.

About the prisms of X, notice that we already understand the prisms which lie in
leaves, as a consequence of Lemma 2.9. The other prisms are described by our next
lemma.

Lemma 4.5 [28, Lemma 11.18] For every prism Q of X which is not included in a leaf,
there exist some e ∈ E and some prism P which is included into a leaf, such that Q is
induced by the set of vertices {g , ge ∣ g ∈ P}.

4.2.3 Hyperplanes

Let G be a right-angled graph of groups. The rest of the section is dedicated to the
description of the hyperplanes of X. It is worth noticing that, as a consequence of [28,
Fact 11.14 and Lemma 11.16], a hyperplane has all its edges labeled either an arrow of
G or by factors (not a single one in general). In the former case, the hyperplane is
of arrow-type; and in the latter case, the hyperplane is of factor-type. Notice that, as a
consequence of [28, Fact 11.14], two hyperplanes of arrow-type cannot be transverse.

Roughly speaking, the carrier of the hyperplane dual to a clique labeled by some
factor G is induced by the vertices corresponding to elements of F which “commute”
with all the elements of G. Because commutation is not well-defined in groupoids, we
need to define carefully this idea, which is done by the following definition.

Definition 4.9 Let G be a factor contained in a vertex group Gv of G. An element
h ∈ F with initial vertex v belongs to the link of G, denoted by link(G), if it can be
written as a normal word h1e1⋯hn en hn+1 such that:

• φe1⋯en(G) is nontrivial;
• h1 belongs to the subgroup of Gv generated by the factors adjacent to G;
• for every 1 ≤ i ≤ n, h i+1 belongs to the subgroup of Gt(e i) generated by the factors

adjacent to φe1⋯e i (G).

We are now ready to describe the hyperplanes of factor-type of X and their
stabilizers.

Proposition 4.6 [28, Proposition 11.21] Let C = gG be a clique where G is a factor and
where g ∈ X. Let J denote the hyperplane dual to C. An edge e ⊂ X is dual to J if and
only if e = g(h1�, h2�) for some h1 , h2 ∈ G distinct and � ∈ link(G). As a consequence,
N(J) = gG ⋅ link(G) and the fibers of J are the gh ⋅ link(G) where h ∈ G.
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Corollary 4.7 [28, Corollary 11.22] Let C = gG be a clique where G is a factor and
where g ∈ X. Let J denote the hyperplane dual to C. Then

stab(J) = g{kh ∣ k ∈ G , h ∈ link(G), φh(G) = G}g−1 .

In this statement, φh is defined as follows. Writing h as a normal word
h1e1⋯hn en hn+1 as in Definition 4.9 (this representation being unique according to
Proposition 4.1), we refer to e1⋯en as the path associated to h. Then, φh ∶= φe1⋯en .
Notice that, by definition of link(G), φh always sends G to another factor, or, in other
words, φh(G) cannot be trivial.

About the hyperplanes of arrow type of X, a complete description is not required
here. The following statement will be sufficient.

Lemma 4.8 [28, Lemma 11.24] Let J be a hyperplane of arrow type in X. Then J has
exactly two fibers, and they are both stabilized by stab(J).

4.3 When is the action special?

In this section, we want to understand when the action of the fundamental group of
a right-angled graph of groups on the quasi-median graph constructed in Section 4.2
is special. Our main result in this direction is the following statement.

Proposition 4.9 LetG be a right-angled graph of groups. The action of the fundamental
group Fω of G on X(G, ω) is special if and only if the following conditions are satisfied:
(i) for every factor G and every cycle c in the abstract graph of G based at the vertex

group containing G, φc(G) = {1} or G;
(ii) there do not exist two vertices u, v in the graph of G, two paths α, β from u to v,

two commuting factors A1 , A2 ⊂ Gu , and two noncommuting factors B1 , B2 ⊂ Gv
such that φα(A1) = B1 and φβ(A2) = B2;

(iii) every arrow in the abstract graph of G has distinct endpoints;
(iv) for every factor G, the equality Φ(G) = {Id} holds.

Observe that, if (iii) does not hold, then we can modify our graph of groups by
subdividing the loops and by indexing the new vertices and edges by the edge groups
of the corresponding loops. This operation does not modify the fundamental group of
the graph of groups, it does not interfere with the conditions (i), (ii), and (iv), and
the new graph of groups satisfies (iii).

We begin by proving the following preliminary lemma.

Lemma 4.10 Let G be a right-angled graph of groups. Let G be a factor of G, and let
C denote a clique labeled by G, say C = gG. Furthermore, let J denote the hyperplane
containing C. The action S(J) ↷ S (J) is transitive, and it is free if and only if Φ(G) =
{Id}. Moreover, if this is the case, then the image of stab(C) = gGg−1 in S(J) is faithful
and surjective.

Proof In order to shorten the notation, we assume that g is trivial. As a consequence
of Proposition 4.6, it is clear that stab(C) = G acts faithfully, freely, and transitively on
S (J). Therefore, the action S(J) ↷ S (J) is transitive, and it is free if and only if the
image of stab(C) = G in S(J) is surjective. However, we know from Proposition 4.6
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and Corollary 4.7 thatS(J) is the set of permutations of S (J) = {h ⋅ link(G) ∣ h ∈ G}
induced by

stab(J) = {km ∣ k ∈ G , m ∈ link(G), φm(G) = G}.

Observe that, for all km ∈ stab(J) and h ⋅ link(G) ∈ S (J), we have

km ⋅ (h ⋅ link(G)) = kφ−1
m (h)m ⋅ link(G) = kφ−1

m (h) ⋅ link(G),

where φm ∈ Φ(G). If Φ(G) is trivial, then it is clear that the action of km on S (J)
coincides with the action of k ∈ G = stab(C). Conversely, if the action of km on S (J)
coincides with the action of some f ∈ G, then kφ−1

m (h) ⋅ link(G) = f h ⋅ link(G) for
every h ∈ G. As a consequence of Proposition 4.1 and of the definition of link(G),
this amounts to saying that kφ−1

m (h) = f h for every h ∈ G. Hence, k = f and φm = Id.
Because the conclusion holds for every km ∈ stab(J), necessarily Φ(G) = {Id}. ∎

The next observation will be fundamental in our proof.

Lemma 4.11 Let G be a right-angled graph of groups, and e , f ⊂ X two edges. Let A, B
denote the two factors labeling e , f , respectively, and let u, v denote the vertices of the
graph of G such that A and B are factors of Gu and Gv , respectively. If e and f are dual to
the same hyperplane, then there exists a path γ in the graph of G from u to v such that
φγ(A) = B.

Proof Write e = (p, pa) and f = (q, qb) where a ∈ A and b ∈ B. As a consequence
of Proposition 4.6, f = p(a1�, a2�) for some distinct a1 , a2 ∈ A and some � ∈ link(A).
We have

b = q−1 ⋅ qb = �−1a−1
1 p−1 ⋅ pa2� = φ� (a−1

1 a2) = φγ (a−1
1 a2) ,

where γ is the path in the graph of G associated to �. Because φγ sends a factor to {1}
or to another factor, we conclude that γ is a path from u to v and that φγ(A) = B, as
desired. ∎

Now, we are ready to determine when the action of the fundamental group of a
right-angled graph of groups on its quasi-median graph is hyperplane-special.

Lemma 4.12 Let G be a right-angled graph of groups. The action of the fundamental
group Fω of G on X(G, ω) is hyperplane-special if and only if the following conditions
are satisfied:

(i) For every factor G and every cycle c in the abstract graph of G based at the vertex
group containing G, φc(G) = {1} or G.

(ii) There do not exist two vertices u, v in the graph of G, two paths α, β from u to v,
two commuting factors A1 , A2 ⊂ Gu , and two noncommuting factors B1 , B2 ⊂ Gv
such that φα(A1) = B1 and φβ(A2) = B2.

(iii) Every arrow in the abstract graph of G has distinct endpoints.

Proof First, assume that the action of the fundamental group of G on X is not
hyperplane-special. There are several cases to consider.

Case 1: There exist a hyperplane J of X and an element g ∈ Fω such that gJ and J
are transverse or tangent.
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It is clear that, if there exist two distinct intersecting edges ofXwhich are labeled by
the same arrow of G, then the endpoints of this arrow coincide, so that (iii) does not
hold. So, from now on, we assume that J is of factor type. Fix two distinct edges e1 ⊂ J
and e2 ⊂ gJ which share their initial point, and let A, B denote the distinct factors
which label them. Notice that, because e1 and e2 intersect, our factors A and B belong
to the same vertex group of G, say Gu . Because ge1 is labeled by the factor A and is
dual to the same hyperplane as e2, namely gJ, it follows from Lemma 4.11 that there
exists in the abstract graph of G a closed path c based at u such that φc(A) = B. In
particular, φc(A) is neither trivial nor A, contradicting (i).

Case 2: There exist two tangent hyperplanes J1 , J2 of X and an element g ∈ Fω such
that J1 and gJ2 are transverse.

We distinguish three cases, depending on whether J1 and J2 are of arrow type or of
factor type.

Case 2.1: J2 is of arrow type.
Fix a geodesic γ ⊂ N(J1) whose initial point belongs to N(J1) ∩ N(J2) and whose

last edge is dual to gJ2. Crossing J2 corresponds to right-multiplying by the arrow e
(or its inverse) which labels J2. However, such a multiplication is allowed only if the
element of the groupoid under consideration has as terminus an endpoint of e (the
initial or terminal point of e depending on whether we are multiplying by e or e−1).
Consequently, the initial point of γ and one of the last two points of γ have the same
terminus. According to Lemma 4.3, these two points belong to the same Fω-orbit. So,
there exists some h ∈ Fω such that the initial point of γ belongs to N(hgJ2) ∩ N(hJ1).
We already know from Case 1 that, if J1 and hJ1 are tangent or transverse, then (i)
cannot hold, so (since their carriers intersect) we suppose that they coincide. Similarly,
we suppose that J2 = hgJ2. As gJ2 and J1 are transverse, it follows that hgJ2 and hJ1
must be transverse as well; but J2 and J1 are tangent, a contradiction.

Case 2.2: J1 and J2 are both of factor type.
Fix two edges e1 ⊂ J1 and e2 ⊂ J2 which share their initial point, and let A1 and

A2 denote the factors which label them, respectively. Notice that, because e1 and
e2 intersect, A1 and A2 belong to the same vertex group of G, say Gu . Moreover,
because e1 and e2 do not span a square, A1 and A2 do not commute in the graph
product Gu . Next, fix two edges f1 ⊂ J1 and f2 ⊂ gJ2 which share their initial endpoint
and which span a square, and let B1 and B2 denote the factors which label them,
respectively. Notice that, because f1 and f2 intersect, B1 and B2 belong to the same
vertex group of G, say Gv . Moreover, because f1 and f2 span a square, B1 and B2
commute in the graph product Gv . As e1 and f1 are dual to the same hyperplane,
namely J1, it follows from Lemma 4.11 that there exists a path α in the graph of G
from u to v such that φα(A1) = B1. Similarly, because f2 and ge2 are dual to gJ2, there
exists a path β from u to v such that φβ(A2) = B2. We conclude that (ii) does not
hold.

Case 2.3: J1 is of arrow type and J2 of factor type.
Observe that gJ2 and gJ1 are tangent, that g−1 ⋅ gJ1 = J1 is transverse to gJ2, and that

gJ2 is of factor type. Therefore, we conclude thanks to Case 2.1.
Thus, we have proved that, if the conditions (i)–(iii) of our proposition hold,

then the action of Fω on X is hyperplane-special. Conversely, assume that one of the
conditions (i)–(iii) does not hold.
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If (i) does not hold, then there exist a loop c in the graph of G based at some
vertex u and a factor G in the graph product Gu such that φc(G) is a factor of Gu
distinct from G. Fix an arbitrary vertex h ∈ X whose terminus is u (for instance, a
concatenation of arrows from ω to u). Furthermore, fix a nontrivial element g ∈ G
and write c as a concatenation of arrows e1⋯en . Notice that, for every 0 ≤ i ≤ n, we
have

hge1⋯e i = he1⋯e i φe1⋯e i (g) where φe1⋯e i (g) ≠ 1,

so he1⋯e i and hge1⋯e i are adjacent vertices of X. As a consequence, for every
0 ≤ i ≤ n − 1, the four vertices he1⋯e i , hge1⋯e i , he1⋯e i+1, and hge1⋯e i+1 span a
square in X, so the two edges (h, hg) and (he1⋯en , hge1⋯en) are dual to the same
hyperplane, say J. However, he1⋯en h−1 ∈ Fω sends the edge (h, hg) to the edge
(he1⋯en , he1⋯en g), and the two edges (he1⋯en , hge1⋯en) and (he1⋯en , he1⋯en g)
are distinct because

hge1⋯en = he1⋯en φc(g) where φc(g) ∉ G .

Therefore, the hyperplanes he1⋯en h−1 J and J are either tangent or transverse (depend-
ing on whether G and φc(G) commute in Gu). So, the action of Fω on X is not
hyperplane-special.

If (ii) does not hold, then there exist two vertices u, v in the graph of G, a path
α from u to v, a path β from v to u, two commuting factors A1 , A2 ⊂ Gu , and two
noncommuting factors B1 , B2 ⊂ Gv such that φα(A1) = B1 and φβ(B2) = A2. Fix an
arbitrary vertex h of X whose terminus is v (for instance, a concatenation of arrows
from ω to v) and nontrivial elements p ∈ B1, b ∈ B2, and a ∈ A1. Moreover, write α as
the concatenation of arrows a1⋯as and β as b1⋯br . Notice that, for every 0 ≤ i ≤ r, the
vertices hb1⋯b i and hbb1⋯b i are adjacent as

hbb1⋯b i = hb1⋯b i φb1⋯b i (b) where φb1⋯b i (b) ≠ 1.

Consequently, for every 0 ≤ i ≤ r − 1, the vertices hb1⋯b i , hbb1⋯b i , hb1⋯b i+1, and
hbb1⋯b i+1 span a square. See Figure 3. Similarly, for every 0 ≤ i ≤ s, the vertices
hβa1⋯a i and hβaa1⋯a i are adjacent because

hβaa1⋯a i = hβa1⋯a i φa1⋯a i (a) where φa1⋯a i (a) ≠ 1;

so, for every 0 ≤ i ≤ s − 1, the vertices hβa1⋯a i , hβa1⋯a i+1, hβaa1⋯a i , and
hβaa1⋯a i+1 span a square. Notice that the edges (h, hb) and (h, hp) do not span
a square because B2 and B1 do not commute, so the hyperplane J1 dual to (h, hb) is
tangent to the hyperplane J2 dual to (h, hp). Next, because A1 and A2 commute, we
have

hbβa = hβφβ(b)a = hβaφβ(b) where φβ(b) ∈ A2/{1},

so the vertices hβ, hbβ, hβa, and hbβa span a square. As a consequence, the
hyperplane J3 dual to the edge (hβ, hβa) is transverse to J1. Finally, observe that
βα is a loop based at v in the graph of G, so g ∶= hβαh−1 represents an element
of Fω . Moreover, g(h, hp) = (hβα, hβαp) belongs to the same clique as the edge
(hβα, hβaα) because

hβaα = hβαφα(a) and p, φα(a) ∈ B1 ,
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Figure 3: Configuration of vertices when (ii) does not hold.

Figure 4: On the left, a graph of groups; and, on the right, the graph Ψ that Proposition 4.13
associates to it (with factors in blue and arrows in red).

and hence J3 = gJ2. Thus, we have proved that J1 and J2 are tangent, but J1 and gJ2 are
transverse, showing that the action of Fω on X is not hyperplane-special. ∎

Finally, if (iii) does not hold, then there exists an arrow e which is a loop based at
some vertex u of the graph of G. Fix an arbitrary vertex h of X whose terminus is u
(for instance, a concatenation of arrows from ω to u). Then h−1eh defines an element
of Fω which acts on the bi-infinite line {hen ∣ n ∈ Z} ⊂ X as a translation of length 1.
Consequently, if J is any hyperplane crossing this line, then J and h−1ehJ are tangent,
proving that the action of Fω on X is not hyperplane-special.

Proof Our proposition is an immediate consequence of Lemmas 4.8, 4.10,
and 4.12. ∎

As a consequence of Proposition 4.9, one obtains a sufficient condition which
implies that the fundamental group of a right-angled graph of groups embeds into
a graph product. Our next proposition describes such a graph product; we refer to
Figure 4 for an illustration of the graph constructed in its statement.
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Proposition 4.13 Let G be a right-angled graph of groups satisfying the assumptions of
Proposition 4.9. Let Γ denote the underlying abstract graph of G, and, for every vertex
u ∈ V(Γ), let Γu denote the graph corresponding to our decomposition of the vertex group
Gu as a graph product. On the disjoint union of the Γu , we define an equivalence relation
∼ by declaring that two vertices a ∈ Γu and b ∈ Γv are ∼-equivalent if u and v are linked by
an arrow e in Γ and if φe sends the factor corresponding to a to the factor corresponding

to b. Let Ψ denote the graph obtained from Ψ0 ∶= ( ⋃
u∈V(Γ)

Γu)/ ∼ by adding a vertex for

each element in {{e , ē} ∣ e ∈ E(Γ)} and by linking {e , ē} to each vertex of Γs(e) , Γs(ē)
corresponding to a factor in the image of ιe , ι ē . Finally, let G denote the collection of
groups indexed by V(Ψ) such that a group indexed by (the image in Ψ0 of) a vertex of
Γu is the corresponding factor and such that the groups indexed by arrows are cyclic of
order 2. Then Fω embeds into ΨG.

Proof As a consequence of Lemma 4.4, Fω-orbits of cliques in X are bijectively
indexed by the vertices of {{e , ē} ∣ e ∈ E(Γ)} ∪ ⋃

u∈V(Γ)
Γu . Notice that two hyperplanes

labeled by distinct arrows lie in distinct Fω-orbits of hyperplanes and that:

Claim 4.14 Let A and B be two factors, respectively, in the vertex groups Gu and Gv .
Two hyperplanes J and H dual to cliques C and D, respectively, labeled by A and B
belong to the same Fω-orbit if and only if there exists a path γ from u to v such that
φγ(A) = B. ∎

If J and H belong to the same Fω-orbit, then there exists some g ∈ Fω such that
gC and D are dual to the same hyperplane, namely H. The desired conclusion follows
from Lemma 4.11.

Conversely, assume that there exists a path γ from u to v such that φγ(A) = B. Write
C = gA and D = hB for some g , h ∈ X, and write γ as a concatenation of arrows e1⋯ek .
In addition, fix a nontrivial element a ∈ A. Notice that, for every 0 ≤ i ≤ k, the vertices
ge1⋯e i and gae1⋯e i are adjacent because

gae1⋯e i = ge1⋯e i φe1⋯e i (a) where φe1⋯e i (a) ≠ 1.

Consequently, for every 0 ≤ i ≤ k − 1, the vertices ge1⋯e i , gae1⋯e i , ge1⋯e i+1, and
gae1⋯e i+1 span a square. It follows that the edges (g , ga) ⊂ C and (ge1⋯ek , gae1⋯ek)
are dual to the same hyperplane, namely J. By noticing that

gae1 . . . ek = ge1⋯ek φe1⋯ek(a) where φe1⋯ek(a) = φγ(a) ∈ B,

we deduce that the edge (ge1⋯ek , gae1⋯ek) is a translate of an edge of the clique D.
As a consequence, J and H belong to the same Fω-orbit, concluding the proof of our
claim.

So far, we have proved that theFω-orbits of hyperplanes inX are bijectively indexed
by the vertices of Ψ. Next, we need to verify that two Fω-orbits of hyperplanes contain
transverse representatives if and only if they correspond to two adjacent vertices in
Ψ. This observation is an immediate consequence of the description of prisms in X

given by Lemma 4.5 (the prisms in leaves being described by Lemma 2.9) and of the
description of Fω-orbits of hyperplanes given by Claim 4.14.
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Finally, notice that, if J is a hyperplane containing a clique labeled by a factor G,
then S(J) is isomorphic to G and it acts transitively on S (J) according to Lemma
4.10. Moreover, if J is a hyperplane labeled by an arrow, then, according to Lemma 4.8,
S(J) is trivial and S (J) has cardinality 2. Therefore, the embedding described by our
proposition follows from Theorem 3.6.

4.4 Examples

In practice, Proposition 4.9 most of the time does not apply, but its assumptions are
just too strong. However, it turns out that the conditions (i)–(iii) are often satisfied
up to a finite cover, so that the condition (iv) seems to be the central condition of our
criterion.

Let G be an arbitrary graph of groups, and let Γ denote its underlying graph. If
π ∶ Γ′ → Γ is a cover, then we naturally define a graph of groups G′ which has Γ′ as its
underlying graph by defining, for every vertex u ∈ V(Γ′) and every edge e ∈ E(Γ′),
the vertex group Gu as Gπ(u), the edge-group Ge as Gπ(e), and the monomorphism
ιe ∶ Ge ↪ Gs(e) as ιπ(e) ∶ Gπ(e) ↪ Gs(π(e)). One obtains a covering of graphs of groups
G′ → G as defined in [8], so that the fundamental group of G′ embeds into the
fundamental group of G; moreover, if Γ′ → Γ is a finite cover, then the image of this
embedding has finite index. (More topologically, one can say that the (finite sheeted)
cover Γ′ → Γ induces a (finite sheeted) cover from the graph of spaces defining G′ to
the graph of spaces defining G; see [48] for more details on graphs of spaces and their
connection with graphs of groups.)

Although taking a well-chosen finite cover of graphs of groups often allows us to
apply Proposition 4.9, we were not able to prove that this strategy always works, and
leave the following question open (for which we expect a positive answer).

Question 4.15 Let G be a right-angled graph of groups. Assume that the graph of G
is finite, that its vertex groups are graph products over finite graphs, and that Φ(G) is
finite for every factor G. Does there exists a finite cover G′ → G such that G′ satisfies
the assumptions of Proposition 4.9?

In the rest of the section, we explain how to exploit Proposition 4.9 in specific
examples. The examples of right-angled graphs of groups given below are taken from
[28]. We emphasize that, in the embeddings given below, the Z2 can be replaced with
arbitrary nontrivial groups.

Example 4.16 Given a group A, consider the graph of groups with a single vertex,
labeled by A× A, and a single edge, labeled by A, such that the edge group A is sent into
A× A first as the left factor and next as the right factor. Let A⋊ denote the fundamental
group of this graph of groups. The group A⋊ admits

⟨A, t ∣ [a, tat−1] = 1, a ∈ A⟩,
as a (relative) presentation. Notice that, if A is infinite cyclic, we recover the group
introduced in [15], which was the first example of a fundamental group of a 3-manifold
which is not subgroup separable.

By construction, A⋊ is the fundamental group of a right-angled graph of groups, so
it acts on a quasi-median graph. However, the conditions (i) and (iii) in Proposition
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4.9 are not satisfied, so this action is not special. Nevertheless, it is sufficient to consider
a new graph of groups, which is a two-sheeted cover of the previous one.

More generally, fix another group B, and consider the graph of groups which has
two vertices, both labeled by A× B, and two edges between these vertices, labeled by
A and B, such that the edge group A is sent into the vertex groups as the left factor A
and such that the edge group B is sent into the vertex groups as the right factor B. The
fundamental group of this graph of groups is denoted by A◻ B, and has

⟨A, B, t ∣ [a, b] = [a, tbt−1] = 1, a ∈ A, b ∈ B⟩,

as a (relative) presentation. Observe that A◻ A is naturally a subgroup of A⋊ of index 2,
and that the right-angled graph of groups defining A◻ B satisfies the assumptions of
Proposition 4.9. Let Γ denote the graph which is a path of length 3 a − b − c − d, and let
GA,B = {Ga = Z2 , Gb = A, Gc = B, Gd = Z2}. By applying Proposition 4.13, it follows
that A◻ B embeds into ΓGA,B . Such an embedding is given by sending A ⊂ A◻ B to
A ⊂ ΓGA,B , B ⊂ A◻ B to B ⊂ ΓGA,B , and t ∈ A◻ B to x y ∈ ΓGA,B where x ∈ Ga , y ∈ Gb
are nontrivial.

Thus, we have found a subgroup A◻ A of index 2 in A⋊, and we have constructed
an embedding A◻ A↪ ΓGA,A whose image is a virtual retract.

Notice that, if we replace the Z2 with infinite cyclic groups, then it follows that the
group Z

⋊ from [15] virtually embeds into the right-angled Artin group defined by a
path of length 3. Here, we see that taking a finite-index subgroup is necessary as Z⋊
does not embed directly into a right-angled Artin group. Indeed, Z⋊ is two-generated,
but it is neither abelian nor free [9].

Example 4.17 The previous example can be generalized in the following way. Con-
sider a graph product ΓG, and fix two vertices u, v ∈ V(Γ) such that there exists an
isomorphism φ ∶ Gu → Gv . The HNN extension G ∶= ΓG∗φ is a simple example of a
fundamental group of right-angled graph of groups. Notice that G contains a subgroup
of index 2 H which decomposes as a graph of groups with two vertices, both labeled
by ΓG; with two edges between these vertices, both labeled by Gu ; such that one edge
group is sent into the first ΓG as Gu and into the second ΓG as Gv (through φ); and
such that the second edge group is sent into the first ΓG as Gv (through φ) and into the
second ΓG as Gu . Now, Proposition 4.9 applies to H. Let Ψ denote the graph obtained
from two copies of Γ by identifying u, v in the first copy of Γ, respectively, with v , u in
the second copy of Γ; and by adding a new neighbor to each of the two vertices in the
intersection of the two copies of Γ. Moreover, let H denote the collection of groups
indexed by V(Ψ) such that a vertex w of a copy of Γ is labeled by Gw ∈ G and such
that the two new vertices are labeled by Z2. According to Proposition 4.13, our group
H embeds into ΨH.

Thus, ΓG∗φ has a subgroup of index 2 which embeds (as a virtual retract if Γ is
finite) into the graph product ΨH.

For instance, the HNN extension

Gp,q = ⟨t, x i (0 ≤ i ≤ p − 1) ∣ tx0 t−1 = x2 , xq
i = [x i , x i+1] = 1 (i mod p)⟩

of the Bourdon group Γp,q [12] has a subgroup of index 2 Ḡp,q which embeds as a
gated-cocompact subgroup into the graph product Π(p, q), illustrated by Figure 5 for

https://doi.org/10.4153/S0008414X22000141 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000141


Special cube complexes revisited 775

Figure 5: The HNN extension Γ5,q∗u t
=v virtually embeds into ΨH.

p = 5. As an application, let us deduce that Gp,q is relatively hyperbolic for p ≥ 5 and
q ≥ 2. Indeed, it follows from [28, Theorem 8.35] that the graph product Π(p, q) is
hyperbolic relative to the free product Z2

q ∗Z2
q (given by the central four-cycle of Ψ

in Figure 5). Because Π(p, q) is a graph product of finite groups, it acts properly and
cocompactly on its quasi-median graph, so Ḡp,q , as a gated-cocompact subgroup, is
undistorted. Then, it follows from [24, Theorem 1.8] that Gp,q is hyperbolic relative to
products of free groups. (As a particular case, Gp,2 is toral relatively hyperbolic.)

Example 4.18 In our last example, we consider the group operation

G ●H = ⟨G , H, t ∣ [g , tn ht−n] = 1, g ∈ G , h ∈ H, n ≥ 0⟩,

introduced in [37]. As observed in [29], Z ●Z = ⟨a, b, t ∣ [a, tnbt−n] = 1, n ≥ 0⟩ is a
simple example of finitely generated but not finitely presented subgroup of F2 × F2.
We would like to generalize such an embedding for arbitrary factors.

The product G ●H can be decomposed as a right-angled graph of groups, since,
given infinitely many copies Gn , Hm of G , H, respectively (n, m ∈ Z), it admits

⟨t, Hn , Gm , n, m ∈ Z ∣ [g(n) , h(m)] = 1, m ≥ n
tg(n)t−1 = g(n+1) , th(m)t−1 = h(m+1) , n, m ∈ Z , g ∈ G , h ∈ H ⟩ ,

as an alternative (relative) presentation, where g(n) (resp. h(m)) denotes the element
g ∈ G in the copy Gn (resp. the element h ∈ H in the copy Hm). However, such a graph
of groups (and each of its finite covers) does not satisfy Proposition 4.9. So, here, we
have an example of a fundamental group of a right-angled graph of groups for which
the methods developed in the article do not work, even though nice embeddings exist
(as sketched below).

In order to embed G ●H into a graph product, an alternative approach is to
consider G ●H as a diagram product [37] and to look at its action on the quasi-
median graph constructed in [28]. We do not give details here, but the action turns
out to be special, and an application of Proposition 4.13 shows that G ●H embeds into
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(G ∗Z2) × (H ∗Z2) by sending G to G, H to H, and t to yx where x (resp. y) is a
nontrivial element of the left (resp. the right) Z2. (By replacing the Z2 with infinite
cyclic groups, we recover the embedding Z ●Z↪ F2 × F2 found in [29].)

Acknowledgment I am grateful to the anonymous referee for their careful reading
and for the numerous comments that improved the article in several places.
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