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The purpose of this paper is to show that the corona theorem is
valid on any unbounded finitely sheeted covering surface if and only if
the corona theorem is valid on its base surface.

We start by fixing terminologies precisely before stating our main
theorem. We denote by H°°(R) the class of all single valued bounded
analytic functions on a Riemann surface R. We say that the corona
theorem is valid on R if for any finite number of functions fu , /, in
H~{R) with inf̂  ]F]}βl \f}\ > 0 there exist functions gu , gs in H°°(R) with
ΣUfjSj = 1 on R.

Consider two Riemann surfaces R and R and an analytic mapping
π of R onto R. We say that (R, R, π), or simply J?, is a covering surface
of R. The surface R and π are referred to as the base surface and the
covering map of the covering surface (R, R} π). We say that the cover-
ing surface (R9 R, π) is unbounded if for any curve C on R with its
initial point z and any z in π~\z) there exists a curve C on R with z
its initial point such that π(C) = C. Let z0 be in R and z0 in π~ι(z0).
We can always find local parameters ζ and ζ about z0 and z0 respectively
such that the local expression of the covering map z = π(z) takes the
form ζ = ζm. Here the positive integer m does not depend on the choice
of local parameters ζ and ζ. If m > 1, then £0 is referred to as a branch
point of order m — 1. For each z in R we let ftCrc"1^)) = oo if the set
π"\z) is infinite and %(π~ι(z)) = n if the set TΓ"1^) consists of a finite τι
number of points where a branch point of order m — 1 is counted as m
points. When (R, R, π) is unbounded,

Received October 8, 1982.
This work was partly supported by Grant-in-Aid for Scientific Research, No. 454027,

Japanese Ministry of Education, Science and Culture.

163

https://doi.org/10.1017/S002776300002064X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002064X


164 MITSURU NAKAI

%(π-\z)) = sup %(π {}

for any z in R, where N is the set of all positive integers. If n e N,
then we say that (R, R, π) is n sheeted or more roughly finitely sheeted
without referring to the specific n. By using these terminologies our
principal result in this paper is stated as follows:

THE MAIN THEOREM. The corona theorem is valid on any unbounded

finitely sheeted covering Riemann surface R if and only if the corona

theorem is valid on the base Riemann surface R of R.

Instead of proving this theorem directly we consider maximal ideal
spaces M and M for H™(R) and H°°(R) respectively and the natural
projection τ:M->M, i.e. τ(p) = p if p Π H°°(R) = p. We will clarify the
structure of the "covering space" (Λf, M, τ) as the covering theorem in
No. 7 from which the above theorem follows at once. In No. 1, we state
applications, meanings, generality, and an open question of or related
to our main theorem. In Nos. 2-5 some fundamental results on the
maximal ideal spaces are given. In No. 6 the integral dependance of
H°°(R) on H°°(R) is explained. In No. 7, the covering space (M, M, τ) is
introduced and the covering theorem is stated, the proof of which will
be given in Nos. 8-12.

1. Before proceeding to the proof we pause here to state three
corollaries of our main theorem and a remark on the necessity of finitely
sheetedness with an open question.

a) Every plane region or Riemann surface thus far known on which
the corona theorem is valid is obtained based upon the fundamental
result of Carleson [3] (see also Gamelin [7] for an extremely simple proof)
that the corona theorem is valid on the unit disk Δ: \z\ < 1. Stout [15]
proved that the corona theorem is valid for any finitely eonnected plane
region, and more generally Gamelin [4] proved that the corona theorem
is valid for any finite open Riemann surface. As is well known these
surfaces are represented as unbounded finitely sheeted covering surfaces
of the unit disk Δ (cf. e.g. Ahlfors [1]). Hence, again based upon the
Carleson result, our theorem may be viewed as a generalization of Stout-
Gamelin theorem.

b) Consider an unbounded 2 sheeted covering surface (J2, Δ, π) of Δ.
As a special case of our theorem, the corona theorem is valid on Δ2
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since it is valid on J. This result is first obtained by Hara [9]. Let {cn}
be the sequence of projections of branch points in J2. By the Blaschke
theorem it is easy to see that ^ ( 1 — \cn\) = +00 if and only if H~(Δά
= H°°(Δ) o π. In this case the corona theorem is trivially valid on Δ2.
Suppose Σ ( l — |cn|) < +00 and let B be the Blaschke product with {cn}
its zero set. It is then easy to see that H°°(Δ2) is an (H°°(Δ) o τr)-module
with the base {1, V B}. From this it instantly follows that H°°(Δ?) sep-
arates the points in J2. Making use of the above module expression of
iJ°°(J2), Hara [9] proved that the corona theorem is valid on Δ2 which is
an important nontrivial example of Riemann surfaces of infinite genus
on which the corona theorem is valid.

c) Consider a region W = Ω — U Dn obtained from a plane region
Ω on which the corona theorem is valid by removing a sequence {Dn}

of mutually disjoint closed disks Dn in Ω such that \JDn — \JDn is con-
tained in 3Ω, the boundary of Ω. Behrens [2] proved that the corona
theorem is valid on W along with Ω if the radii of Dn converge to zero
sufficiently rapidly. This was the first example of plane regions of infinite
connectivity on which the corona theorem is valid. It is sufficient to
take Ω = Δ. Let us consider an unbounded 2 sheeted covering surface
W2 of W with the sequence {cn} of projections of branch points in W2.
In general a hyperbolic Riemann surface R is referred to as being of
Parreau-Widom type if `Σιg(pn,P) < +00 where g(-,p) is the Green's
function on R with its pole p and {pn} is the totality of zeros pn of
Pg(-,p) on R — p. The importance of being of Parreau-Widom type lies
in the fact that H°°(R) separates the points in R (Widom [16, 17]). It is
easy to see that if the centers of Dn converge to dΔ sufficiently rapidly,
then W is of Parreau-Widom type. If {cn} converges to the boundary
dW sufficiently rapidly, then W2 is of Parreau-Widom type along with
W (cf. Segawa [12]; see also Selberg [13], Yamamura [18], Stanton [14]).
The Riemann surface W2 is an example of Riemann surfaces of Parreau-
Widom type with infinite genus and of infinite connectivity on which
the corona theorem is valid. A similar example was given by Hara [8].

d) In the "only if"-part of our theorem, the finitely sheetedness of
R is essential for the validity of its statement. There exists an example
given by B. Cole of Riemann surface B of infinite genus and infinite
connectivity on which the corona theorem is invalid (see Gamelin [6]).
Moreover this B can be chosen in the class of surfaces of Parreau-Widom
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type ([10]). Let B be the universal covering surface of B. Since B.
hyperbolic and not finite, B = Δ and is an unbounded infinite covering
surface of JB. Although the corona theorem is valid on B — Δ, it is
invalid on B.

e) In the "if "-part of our theorem, the authorm believes that the finitely
sheetedness of R is essential for the validity of its statement. If we can
show that the Cole example B can be represented as an unbounded
covering surface of Δ, then (B, Δ) gives a counterexample.

2. We now start our main discussion. For an arbitrary Riemann
surface R the class H°°(R) is a ring over the complex number field C and
in fact a normed ring equipped with the norm ||/|| = supΛ |/|. We denote
by M the maximal ideal space of the normed ring H°°(R). The Gelfand
transform f of / in H°°(R) is a function on M where the value f(p) at
each p in M is given by

(1) f-Rp)ep.

A net (p;) in M converges to p in M if the net (f(pj) converges to f(p)
for every / in H°°(R). By this topology, M i s a compact Hausdorff space

and H°°(R) = {/; / e ϋΓ°°(R)} is a subring of C(M), the ring of continuous
functions on M, separating the points in M. These follow from the
Gelfand theory of normed rings (see e.g. Gamelin [5], Rudin [11], etc).
We denote by c the natural map of R into M defined by

(2) fθ(z)) = /(*) ((*, /) e R X H~(R)).

In general c:R->M is a continuous mapping. The map r.R->M is
injective if and only if H°°(R) separates the points in R. Even in this
case, we do not know whether c{R) is open in M. If R is of Parreau-
Widom type, then H°°(R) separates the points in R, t(R) is open in Mf

and R is homeomorphic to c(R) (Stanton [14]).

3. Let A be a subset of M. In order that p e M — A it is necessary
and sufficient that there exist functions f19 , fm in p with the property

inf.Σ"-il/i l>0
Suppose there exist such functions f19 -`-9fm and yet peA. Then

there exists a net (pλ) in A converging to p so that Σ7=i\fj(P*)\-+
Σf=ί \fj(p)\ = 0 which contradicts the assumption inf̂  2Γ=i \fλ > 0.

Conversely suppose that p eM — A. For each q in A there exists
an / in H~(K) with f(p) Φ /(<?)• Let F( , qr) = 2(f(q) - f(p)Y\f - f(p)).
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Then F(-,q) belongs to H^K) with F(p9 q) = 0 and F(q, q) = 2. On

setting V(q) = {reM; \F(r, q)\ > 1} we have [JqeI V(q) 3 A. Therefore

there exist points qu , qm in A with U?=i V(#j) ID A, and the functions

f3 = F(-, qΊ) in H°°(R) (j = 1, , m) are required. •

4. A point p in M is said to be free if p <£ c(R). Viewing the totality

of free points in M as the "corona" of the "sun" c(R), the term "corona

problem", "corona conjecture", "corona theorem", etc have been used:

The corona theorem is valid on R if and only if M contains no free points.

Let fl9'"9fn be in H~(R) with infΛ Σ?-i IΛI > ° I f t h e s e t p =

{Σu=ifjgj> £i> * * '>g™ eH°°(R)} does not contain 1, then P is a proper

ideal of H°°(R) and a fortiori there exists a p in M with P dp. Since

infect Σ?=i IΛ I = i n f * Σ?=i l/ l > ° a n d fu "'yfmep9 No. 3 assures that p
is free.

Conversely assume the existence of free p in M. By No. 3 there exist

Λ, ,/m in p with infβ Σ?-i IΛI = inft(Λ) Σ?=i IΛI > ° T h e n t h e r e a r e n o

gl9 9gm in H°°(R) with Σi?=ifj§j = 1 on i?. Π

5. The following almost trivial simple fact will play one of the

fundamentally important decisive role in our proof of the covering theorem

given later:

THE SEPARATION LEMMA. For any mutually distinct points pu -,pm

in M there exists an f in H'iR) such that /(Pi), , f(pm) are mutually

different.

For any pair (ij) with 1 ̂  i <j < m, since pt Φpj9 there exists an

ftj in H~(R) with ftj(pά φ ftj(Pj). For any pair (μ, v) with 1 <: μ < v < m9

set, with C the complex plane,

f l, ,m Λ -̂

Pμ, = {(zy) 6 c w ( m - 1 ) / 2 ; 2 (ΛίCp,.) - fij(P»))Zij = 0 .

Since P ,̂, is a hyperplane in cm ( m~1 ) / 2, there exists a point (Λ )̂ in
l, ,m

Cm(m-l)/2 II p

Then the function

1, ,TO

/ = Σ λtlftj

is a required function in i/°°(J?). Q
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6 Let R and R be Riemann surfaces such that (R, R, π) is an un-

bounded n sheeted covering surface, n being a positive integer. We now

consider the relationship between rings H™(R) and H°°(R) over C. Clearly

H°°(R)oπ is a subring isomorphic to H°°(R). We set

( 3 ) ff-X*) = {*i, *>, ••-,*«}

fpr each 0 in i? where a branch point of order m — 1 is appearing jn

times as n points in (3). To each / in H°°(R) consider n functions

au , an in i3"°°(i?) defined by

{ 4) ( - l)*α*(*) = ``g` f(ziχ) f(zik) (k = 1, 2, ., jι) .

These functions ax, -,an will be referred to as a-functions of /. Let S

be the totality of solutions of the algebraic equation

( 5 ) Xn + σ^X"-1 + + an^(z)X + an(z) = 0

of degree n. Then we have

( 6 ) S

where a solution of order m is appearing m times in (6) which corre-

sponds to a branch point of order m — 1 in (3). By observing

a,{z) = (αt o TΓ)^.) (i, 7 = 1, , n) ,

the relation (5) with X = f(z3) implies that the relation

( 7 ) Λ + (αio*)Λ- 1+ ••• + ( α » - i ° * ) / + α n o 2 Γ = 0

is valid on i?. This means that, in terms of the ring theory (see e.g.

Zariski-Samuel [19], p. 256), the ring H°°(R) is integral over H~(R)oπ.

7. We still assume that (R, R, π) is an unbounded finitely n sheeted

covering surface of R. Let M and M be maximal ideal spaces of H°°(R)

and H°°(R), respectively, and c and ϊ be natural maps of R and R to M

and M, respectively. We define the projection τ\M—>M by

<8) f(τ(p)) = f^(p) ((p, f)eMx H~(R)) .

It is instantly seen that τ: M -> M is continuous. For each g in M we

call τ~\q) the /ϊ&er over q. Clearly the following is a commutative

diagram:
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Concerning the structure of the covering space (M, M, τ), we have

the following

THE COVERING THEOREM. Let (R,R,π) be an unbounded finitely n

sheeted covering surface of R and (M, M, τ) the associated covering space.

Then τ is surjective and the fiber τ~\p) over any p in M consists of at

most n points. Moreover

( 9 ) τ(?CR)) = <(Λ) , c(R) = τ

and also

(10) τ{c{R)) = c{R) , c(R) = τ~\c(R)) .

In particular M contains a free point if and only if M contains a free

point.

The main theorem follows at once from the above theorem with the

result in No. 4. The proof of the above theorem will be given in Nos.

8-12 divided into several steps.

8. Here we start the proof of the covering theorem by showing

that τ:M -+M is surjective, i.e. we have to show that τ~\p) Φ 0 for each

p in M. Consider the set

Σfi(gj**); fjeH-iR), gjβp, j = l,. ,m, m e

which is an ideal in H°°(R). Suppose P contains 1. Then there exist

functions fs in H^iR) (j = 1, , m) and gi in p (j = 1, , m) such that

Σl?=ιfj(Sj°π) = l Let π'Xz) = {zu •••,£„} for each z in R in the sense

of (3). Since gi o π{z^) = gs(z), we have

Summing up these n identities we obtain

If we set
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) (j = 1, , m) ,

then hj belongs to H™(R) (j = 1, , m) and χ>= 1 hό{z)gό{z) = 1 for every
^ in R. Hence Σf=ί hόgό = 1 on M and in particular XlJli h5(p)gj(p) = 1.
On the other hand ^ ep implies g/p) = 0 (j = 1, , m) which contra-
dicts the above identity. We have thus to conclude that P is a proper
ideal in H°°(R). Therefore there exists a q in M with P c q. The proof
is over if we can show τ{q) = p. Contrariwise suppose τ(g) Φ p. Then
there exists an / in H°°{R) such that f(τ(q)) Φ f(p) = 0. Then since /
belongs to p,/°τr belongs to P and a fortiori to g. By (8), we see that

Kτ(QΪ) — f°π(θ) — 0, which contradicts the above. •

9. Next we will show that the fiber τ'Xp) consists of at most n points
for each point p in R.

Contrary to the assertion we assume that the fiber τ~\p) contains
n + 1 different points p0, p1? , pn in M. By the separation lemma there
exists an / in H°°(R) such that f(p0), , f(pn) are mutually different. Let
al9 , an be the a-ΐunctions of /. Then from (7) it follows that

fiPsY + ΛCPifc)"- 1 + + an^oπ{p3)f{Pj) + C^ϋ(p3) = 0

and by observing that at o π(pj) = άfaipj)) = ά^p) (ί = 1, , ή) we con-
clude that the algebraic equation

x* + άx(P)x^ + . . + «;.(/))! + άn(P) = o

of degree n has ^ + 1 different solutions f(p0), /(A), , /(P«)> which is
clearly a contradiction. •

10. We proceed to the proof of (9). For the aim we only have to
show that the inclusion relations τ(ΐ(R)) c c(R) and T~\C(R)) C C(R) are valid.

First let z be an arbitrary point in R. By using (2) and (8) we
deduce for / in H°°(R) that

f(τ(c(z))) =f^i(c(z)) = /o π(z) = f(π(z)) = f(c(π(z))) .

Thus τ(ϊ(z)) = c(π(z)) e c(R) and we have shown the inclusion relation
τ(ϊ(R)) C c(R).

Conversely let z be an arbitrary point in R. We will derive a con-
tradiction from an erroneous assumption that there exists a point p in
τ " 1 ^ ) ) which does not belong to c(R). Let π~\z) = {zu , zn} be as in
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(3). Observe that τ(e(zt)) = e(π(Zi)) = c(z) as above. Hence {ίfo), , c{zn)}

dτ-ι(c(z)) and ϊφ). Therefore p e {ίfo), . , c(zn)}. By the separation

lemma there exists an / in H°°(R) with f(p) g {/fo), , f(zn)}. Let a19 , αn

be the α-functions of /. By considering Gelfand transforms of (7) at p

and by observing αf o π(p) = άt(τ(p)) = ά<(*(2)) = αf(e) (ί = 1, , n), we con-

clude that f(p) is a solution of the algebraic equation

Xn + α^JP-1 + + α^φX + αn(*) = 0

of degree n. On the other hand, by (6), the totality S of solutions of

the above equation is given by S = {/(^), , /(£„)} which does not con-

tain f(p), a contradiction. •

11. We turn to the proof of (10). As in No. 10 we only have to

show that the inclusions τ(c(R)) c c(R) and τ~\c{R)) c c(R) are valid.

Since, by (9), τ(e(R)) C c(R), the continuity of τ implies at once that

τ(c(R)) C c(R). Thus we have to show that r'^CR)) C ί(R).

Choose an arbitrary p in c(R) and then an arbitrary q in τ~Xp). We

will show that q belongs to ϊ(R). Choose a net (zλ) in R such that (c(zλ))

converges to p in M. Let

in the sense of (3). Then we obtain ^ nets (c(zu))9 , (c(znλ)) in M. Since

M is compact, there exists a subnet (?(2U,)) of (c(zn)) converging to a

point Pi in M. Similarly there exists a subnet (c(z2χ»)) of (J( 2̂̂ )) converg-

ing to a point p 2 in ^ By repeating the same process n times we

obtain a subnet (c(znλ<n>)) of (?(^A(«-D)) converging to a point p n in M.

On replacing (A) by (λ(n)) if necessary, we can assume the following:

(c(zλ)) converges to p in M and (c(ziλ)) converges to pt in M (i = 1, , n).

Then we see that the continuity of τ implies that

τ{pτ) = lim τ(c(zu)) = lim *feι) = P (i = 1, , n)

since τ(c(zίλ)) = e(zλ) (i = 1, , ή). Therefore we conclude that

We next claim that the above inclusion relation is improper. If this is

not the case, then there exists a point q in τ~\p) — {pί9 ,pn}. By the

separation lemma we can find an / in H°°(R) such that
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(ii) «

Let au , an be the α-functions of /. Then by (4)

Σ
for each k = 1, , n. Taking the limit with respect to λ, we have

(-iyάk(P)= hΣ KPU f(PU .
iχ<~`<ik

Therefore S = {/(A)> , f(pn)} is the totality of solutions of the algebraic

equation

(12) X- + ^ ( p ) * - 1 + + α ^ f o ) * + fin(p) = 0

of degree n. By considering the Gelfand transform of (7) at q, we obtain

that

Kθ)n + ί^{q)Kq)n-χ + + a^Mq)f(q) + C^π{q) = 0 .

Since at o ττ(g) = άi(τ(q)) = α<(p) (ί = 1, , 7i), the above identity shows

that X = /(qr) satisfies (12), i.e. /(g) e S, which contradicts (11). Since

Pi e c(R) by the choice of pt (ί = 1, , n), we conclude that

>pn}c?CR)

which shows that r'XKi?)) C ?(Λ). D

12. Finally we show that M contains a free point if and only ifM

contains a free point.

Suppose p is a free point in M. If τ(p) belongs to c(R), then the

second identity of (10) implies that r~!(r(p)) c ϊ(R). Since p belongs to

τ~\τ(p)), we see that p belongs to c(R) which shows that p is not free.

Thus M contains a free point r(p).

Conversely suppose that q is a free point in M. Let p be an arbitrary

point in τ~\q). We claim that p is free. If p is not free, then p belongs

to c{R), and the first identity of (10) implies that τ(p) belongs to c(R).

Hence q = τ(p) is not free which is a contradiction. Therefore p is a

free point in M. •
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