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SOME INEQUALITIES FOR DIOPHANTINE APPROXIMATION
BY CONTINUED FRACTIONS

JlNGCHENG TONG

Let £ be an irrational number with simple continued fraction expansion £ =
[ao;ai ,a2 , . . . , a n , . . . ] , let pn/qn be its nth convergent and let 9n — qn\qnt — pn\-
In this paper a general method is introduced to deduce a series of inequalities
involving the triple (0n_i ,6n, 0n+l).

1. INTRODUCTION

Let £ be an irrational number with simple continued fraction expansion £ =
[ao;ai,a2,-.. ,an,...], where a0 is an integer and the a; (t = 1,2,...) are positive
integers. Let pn/qn denote the nth convergent. The sequence of approximation con-
stants is defined as follows.

(1) 0n = qn\qnt - pn\.

About forty years ago, Brauer and Macon [1, 4] proved the following inequalities
involving the triple (0n_i,0n,0n+i):

(2) 0n- iMn+i < 4/27,

(3) 0n_i +0n + 0n+i < 2,

(4) T- + T + T->6-

Recently, Jager and Kraaikamp [2] generah'sed the above results. They proved the
following inequalities which include (2), (3) and (4) for an+i = 1.

(5) ««-lMn+l < K + l + 1)2 /K+1 + 2)3,

(6) 0n-i +0n + 0n+1 < (2an+1 + 3)/(an+1 + 2),
1 1 1 2

(7) -g— + r + ~e—>4 + «n+ i+T—TT-

In this paper, using the idea in [7, 8], we introduce a general method for deducing
a series of inequalities involving the triple (0n_i,0n,0n+i). The results cited above are
very special cases of the new inequalities we obtain.
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2. PRELIMINARIES

Let (= [ o 0 ; o 1 , o j , . . . , o n , . . . ] , o n + 1 = [an + 1 ; a n + 2 , . . . ] . Then (see [5, 6]) we have

, _Pj± _ an+lPn + P n - 1 _ Pn _ ( — 1)"
9n "n+l9n + 9n-l 9n (<*n+l + 9n-l /9n)?n '

Since qn-i/qn = [0, an, a n _ ! , . . . , ox], we have that

Set P = [an+2;an+3,...}, Q= [on;aB_i,...,o1] and A = an+1PQ + P + Q. Then
we have the following relations.

(8)

(9) *„ = K+ 1 + P - + g - r 1 -

V 1
(10)

Viewing P and Q as variables, one easily finds the following formal partial deriva-
tives with respect to P, Q.

(11) «;_i,j» = - l / A 2 ; C i , e = -(«*»+! J> + 1)2/A2,

(12) ^ i P = g2/A2; ^ , g = P 2 / A 2 ,

(13) <?UI,P = -(o»+i« + i f /A 2 ; O'n+1<Q = - I / A 2 .

3. MAIN RESULTS

We need a very simple lemma (one need only observe that P > an+2 and Q > an).

LEMMA 1. Let f(0n-i,0n,6n+1) be a function defined for 0n-i, 6n, 0n+1 > 0.
Let Ao = anan+1an+2 + an + an+2 • Then

(i) if f{{an+1P + 1)/A, (PQ)/A, (on+1Q + 1)/A) is a decreasing function
in both P and Q, we have

fm (, a x . t (an+ian+2 + 1 "ntn+2 g|.+l'»i.+2 + l\
/(«n-l,t'n,t'n+l) < / I T , T , T I;

\ Ao Ao Ao /

(ii) if f((an+1P + 1)A, (P<?)/A, (an+1Q + 1)/A) is an increasing function
in both P and Q, we have

,,c\ f(0 a o s t (^On+lfln+2 + 1 ttn°n+2 an+lQn+2 + 1 "\
(15) /(»n-l, »n,«n+l) > / T , —T , T )•

\ Ao Ao Ao /
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Since an ^ 1, an+2 ^ 1, (14) and (15) can be replaced by

o n + i + 2 a n

i + I an+i + I an+i

THEOREM 1. If a, 7 ^ /3 > 0 , then
1 \a+7

PROOF: Let /(»,-i,«»>fl«+i) = « S _ 1 ^ + 1 . Then

T
-a ^Q -7K+1Q+I)

(on +iP + l)A PA A

<~K~~A <0'

Similarly one can show that (log/)g < 0. Therefore /(0n-i>"n>0n+i) is a de-

creasing function in P and Q. By Lemma 1 and (14') we have (16). D

Letting a — /3 = 7 — 1, we have inequality (5).

THEOREM 2 . If 3 ^ a, 7 >/? ^ 1, A, B, C> 0, and aA, jC > /3B, then

(17)

PROOF: Let f{0n_1,6n,9n+1) = A0n-ia + B8P + C9l+1. Then

(an+1P
-aA BQ

I)""1 A3 P ^ 1 A' / 9

Since 7 > /3, we have A ^ " = (an+1PQ + P + Q)7"^ > QT-^, hence
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Similarly, one can show that / Q < 0. By Lemma 1 and (14'), we have inequality

(17). D

Letting A = B = C = 1 and a = /? = 7 = l , w e have inequality (6).

THEOREM 3 . Let a, 7 ^ 1 ^ 0 > 0, let A, B, C > 0 and aA, -yC ̂  0B.
Then

B C . / a n + 1 + 2 \ Q „
i>\an+2 + I) +

PROOF: Let /(fln-i,«»,«»+i) = ^ C - i + ̂ ^ + C f l^ . Then

JP -
"n-l "n

r +

Since A = an_iP<5 + P + Q > an+1Q + 1 >Q, we have f'P > ~fC - 0B ^ 0.

Similarly one can show that / ^ > 0. By Lemma 1 and (15'), we have inequality

(18). D

Letting a = 0 = 7 = 1 and .A = i? = C = l i n Theorem 3, we have inequality (7).

THEOREM 4 . Let A, C ̂  B ^ 1. Then

(19) ^^n-l^SnCffn+l < J4»n+l+'B»n+l+' C"*"+1+J

P R O O F : Let / ( 0 n _ i , tfn, 0B+1) = Ae"-iJ5««C7ff«+i. Then

(log f)'p = 6'n_ltP log A + e'n>P log B + 6'N+hP log C

= £ j ( - log A + Q2 log 5 - K + 1 Q + I) 2 log C)

Similarly one can show that / Q < 0. By Lemma 1 and (14'), we have inequality

(19). D

Letting A — B = C, we again have inequality (6).
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The significance of Theorems 1,2,3, and 4 is not just that of their statements. They

are examples of a general method. For a given function f(On-i,On>0n+i) involving

parameters, one first finds f'p and f'q by using expressions (8)-(13) (this is the decisive

step), then one considers proper conditions on the parameters to make / decreasing

or increasing in P or (J. In this way one may deduce numerous other inequalities

involving the triple (0n_i ,0n ,0 ,H-i) .
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