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Abstract. This paper puts forward a new account of rigorous mathematical proof and its
epistemology. One novel feature is a focus on how the skill of reading and writing valid proofs is
learnt, as a way of understanding what validity itself amounts to. The account is used to address
two current questions in the literature: that of how mathematicians are so good at resolving
disputes about validity, and that of whether rigorous proofs are necessarily formalizable.

§1. Introduction. What’s going on in mathematical proofs? How do they establish
the truth of their conclusions? By proof here I mean the kind of proof mathematicians
actually write and exchange with each other and accept as valid.

One way to attempt to understand proof is via derivations, the formal objects that
logicians use to model deduction. Gentzen intended his system of natural deduction
to be

a formalism that reflects as accurately as possible the actual logical
reasoning involved in mathematical proofs (Gentzen, 1969, p. 74)

and he described its derivations as having

[a] close affinity to actual reasoning (Gentzen, 1969, p. 80).

One can read this as meaning that all valid mathematical inferences should be
instances of the logical rules of natural deduction, or closely related to them.1 If
mathematicians did actually explicitly work according to certain fixed formal rules,
then proof would be unmysterious: understanding proof would just come down to
understanding the relevant formal rules. However as many authors point out, in reality
mathematical proofs do not proceed according to any list of rules that one could specify
in advance: there is far too much variety of inferences for that, and new proofs will
often contain inferences that are somewhat (or completely) novel.2
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1 This is apparently the reading of Goethe & Friend (2010, pp. 274–275). It is also possible

that Gentzen merely intended that the logical substructure of proofs should be expressible
in natural deduction—aspects such as introducing and eliminating premises, moving from a
statement about an arbitrary x to a statement about all x, and so on.

2 These points are argued for instance by Tragesser (1992), Celluci (2009), Leitgeb (2009),
Goethe & Friend (2010), and Larvor (2012). A nuanced version of the rule based approach
to proof is given by Hamami (2019). Due to the arguments of the previously mentioned
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RIGOUR AND PROOF 481

More plausible than a naive rules based view of proof is one on which the correctness
of a proof consists in its being formalizable—translatable into a derivation according to
some given system of formal rules. What exactly this description amounts to will depend
on what notion of translation is employed (and on the underlying system of formal
rules). Though historically often implicitly assumed by philosophers of mathematics
to be correct, numerous authors have recently objected to this view. There have thus
been many calls to develop a new, more plausible account of mathematical proof and
its epistemology.3

This paper aims to provide such an account, or at least the beginnings of it—found
largely in §3 and §4.4 The account is not actually of proof in general, but only of rigorous
proof, rigour being the standard of acceptable proof in much of modern mathematics. I
do not view this as a significant limitation. Indeed I argue in §2 that questions like “what
is mathematical proof ?”, asked in full generality, are unlikely to receive a satisfying
answer: there is no univocal notion of proof in mathematics, or at least not one we
can expect to obtain a substantial philosophical analysis of. The account of rigorous
proof given here is not the last word on the subject, and I note places where it could
be expanded on.

The account put forward here takes a somewhat novel approach: instead of focusing
exclusively on proofs, considering also the ability of mathematicians to produce and
recognize valid inferences.5 Where does this ability to recognize validity come from?
What can be said about it? Answering these questions is one way to gain insight into
what is going on in proofs themselves—how they justify their conclusions.

The resulting account is used to address two questions about proof that have been
raised in the literature. The first is that of how mathematicians are so able to generate
agreement about the validity of proofs. This phenomenon—that if a mathematician
thinks a proof is valid, they can generally convince others, or be convinced themselves
of a flaw in it—has been noted by various authors, including Azzouni (2004, pp.
83–84) and Antonutti Marfori (2010, pp. 267, 270–271). Explaining it is one of the
major motivations for the “derivation–indicator” view of proof that Azzouni (2004)
puts forward. Azzouni’s analysis of proof has met with controversy, with for instance
Tanswell (2015) raising what appear to be valid criticisms. Using the account of rigour
put forward here, in §5 I give an explanation of this agreement about validity that aims
to be simpler and more plausible than Azzouni’s.

The second question is that of whether rigorous proofs are necessarily formalizable.
In §7 it is argued not that formalizability is directly required of valid proofs (as is
sometimes thought), but that it is a consequence of the norm of rigour in mathematics—
as spelled out in §3 and §4—that valid proofs are necessarily formalizable. The worries
of Rav (1999) and Weir (2016) about whether the process of filling in intermediate

authors, I do not think an account like Hamami’s can ultimately be successful, though I do
not have space to discuss it in detail here.

3 As illustrations of the objections, and the calls for improvement, see for instance Rav (1999),
Rav (2007), Celluci (2009), Detlefsen (2009), Leitgeb (2009), Pelc (2009), Goethe & Friend
(2010), Antonutti Marfori (2010), Larvor (2012), Weir (2016), De Toffoli & Giardino (2016),
and Larvor (2019).

4 The account developed here is a fuller version of that sketched in Tatton-Brown (2019).
5 Hamami (2019) also focuses on how the skill of assessing rigour results from mathematical

training, though from a more formal perspective.

https://doi.org/10.1017/S1755020320000398 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000398


482 OLIVER TATTON-BROWN

steps in an argument will ever terminate are addressed, and a possible response to the
related worry of Pelc (2009) is sketched.

One cannot properly discuss formalizability without discussing what formal system
one is targeting, and first §6 considers the argument that mathematicians should really
be regarded as working in naive set theory, with its unrestricted comprehension scheme.
This has been claimed for instance by Jones (1998) and Leitgeb (2009). If correct
this would render the formalizability claim empty of interest, since set theory with
unrestricted comprehension is inconsistent and so any argument is trivially formalizable
in it (with every inference justified by your favorite set theoretic paradox). This position
is evaluated, and dismissed.

These are not all the worries about formalizability that have been or could be raised,
and consideration of further qualms—such as the concern expressed by for instance
Larvor (2012) that informal arguments may undergo some sort of violence, or essential
loss, when formalized—will have to await consideration in further work.

§2. Initial remarks on rigour. The main account of rigour is found in §3 and §4,
but first there are some preliminary remarks worth making. To begin with, we will see
some examples of nonrigorous mathematics; this helps illustrate the distinctive nature
of mathematical rigour, and is also used to argue against the idea that there is a unified
notion of “proof” in mathematics that is worth conceptually analyzing. Indeed one
intended moral of this paper is that it is rigorous proof, not proof in general, which
is the philosophically interesting concept. The latter part of this section summarizes
the discussion of rigour given by Burgess (2015), which makes a number of valid,
significant points, but which does not address the questions discussed in §1 that this
paper attempts to answer.

First, the examples of nonrigorous mathematics. One good example consists of
manipulations involving infinitesimals in the 17th and 18th centuries, which—before
the introduction of limits into analysis—were not generally rigorous. For a toy example
of how they often worked, we can determine the derivative of the function x �→ x2. If
we let dx be small, then we have

(x + dx)2 – x2

dx
=
x2 + 2x · dx + dx2 – x2

dx
=

2x · dx + dx2

dx
= 2x + dx

and then since dx is small we discard it, obtaining 2x as the derivative of x �→ x2 at
x. Arguments along these lines (and more complicated versions) were carried out by
various authors, with Fermat perhaps being the first to give this particular kind of
calculation (Kline, 1990b, pp. 344–345). These methods met with criticism however,
as it was not clear what the status of “small” quantities such as dx was, or what was
allowed when manipulating them. Indeed if dx is small but nonzero then the result is
only approximate; for the result to be exact, we require that 2x + dx = 2x, but then we
obtain by subtraction that dx = 0 and so we cannot divide by dx to begin with. Rolle
pointed this out (Mancosu, 1989, pp. 230–231), followed more famously by Berkeley
who complained that infinitesimals appeared to be the “ghosts of departed quantities”
(Berkeley, 1999, pp. 80–81).

Other common methods in the 17th and 18th centuries also lacked rigour. Often
arguments proceeded by assuming that what held for the finite also held for the infinite,
with infinite series being manipulated as though they were finite sums, without worrying
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about issues of convergence. For instance Jacob Bernoulli argued (essentially) that
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despite knowing that the sum 1 + 1
2 + 1

3 + ··· is infinite (Kline, 1990b, p. 443).6 As
illustrated by many further examples in Kline (1990b, Chap. 20), infinite series were
freely manipulated in this period without worrying about convergence, despite these
methods sometimes leading to false or contradictory conclusions.

Arguments like these gradually came to be seen as unacceptable. In the 19th century
both the calculus and the study of infinite series were rephrased in terms of the concept
of limit, putting them on a firm footing (Kline, 1990a, chap. 40). Infinitesimals were
then largely eschewed in analysis until Robinson demonstrated how one could in
fact reason rigorously about them, via the logical concept of a nonstandard model
(Robinson, 1996).

Other ways of reasoning formerly regarded as valid also came to be shunned, such
as appeals to intuition. Proofs were demanded of even very intuitive statements, with
the Jordan curve theorem being a famous example. This states that if φ : S1 → R

2 is
continuous and injective thenR \ φ(S1) consists of exactly two connected components,
one of which is bounded and the other unbounded, and φ(S1) is the boundary of each
component. On an intuitive understanding of continuity, this can appear obvious, and
it takes some effort to imagine a curve φ in such a way that the conclusion is not
immediate. However on the �-� definition of continuity, the fact is not obvious at all—
and providing a rigorous proof turned out to be very difficult. Bolzano had already
noted that this fact required proof (Coulston, 1970, p. 274) and this proof was only
provided by Jordan (published in Jordan, 1887) more than 30 years after Bolzano’s
death.7

There are a number of lessons to be drawn from these examples. First, they can
be used to assess the adequacy of an account of rigour, such as that given in §3
and §4—it needs to be able to explain why they are not considered rigorous. Second,
such examples illustrate that an argument does not have to be rigorous to be reliable,
or explanatory, or valuable. Arguments involving infinitesimals in the 18th century
could plausibly be all three (such as the differentiation example above), as could
manipulations of infinite series. Much of modern nonrigorous physics and engineering
is also presumably reliable, explanatory and valuable. Nonetheless rigour does bring
benefits, some of which will be discussed in this paper.

These examples also illustrate the broadness of the notion of mathematical proof in
times past. This, I believe, tells against the desire to seek a philosophical account of

6 One can adjust this argument to make it rigorous by telescoping the partial sums:
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7 Some controversy followed Jordan’s proof, with Veblen (1905) claiming it was flawed, and
claiming to give the first rigorous proof. However Hales (2007) argues that Jordan’s proof
was basically valid, though perhaps not as polished as it could be.
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the general notion of proof—to discover what proof in general “really is”, or where
its boundaries are drawn. Indeed in the above examples, reasoning of various kinds
all distinct from the usual mathematical paradigm of deduction is seen. To make
arguments involving infinitesimals one postulates a new manner of calculation, in
which a quantity is treated at one stage as nonzero, and later as small enough that it
can be neglected. This can otherwise be viewed as the postulation of a new kind of entity
with these apparently odd properties. Either way, it is essentially a form of abductive
reasoning: reasoning of a kind which is not justified by anything that has gone before,
but instead by its immense success in solving all manner of differential problems.8 It is
not so different to the postulation of new principles or entities in physics, except that it
is confirmed by mathematical applications and deductions, rather than by experiments.
Then the manipulation of infinite series as though they were finite is essentially a case
of argument by analogy, again backed up by its apparent success in solving problems.
Finally we have appeals to intuition, delivering conclusions that one finds very hard to
doubt because of one’s intuitive grasp of the concepts involved—not so different from
the intuition that philosophical zombies could exist, or that nothing can cause itself.

I do not think there is much to be gained by seeking to discover what these disparate
forms of reasoning “have in common”. They are all taken to justify high credence
in their conclusions, and they all concern abstract, mathematical subject matter, but
beyond that there may not be much more to say. Certainly one could conduct a fruitful
investigation into abductive reasoning, or intuition as a form of evidence, but there
is unlikely to be much distinctive to say about either in the context of mathematical
proof that does not apply to more general contexts. There is also not much I think to
say about why such methods were accepted, beyond that they were felt to be reliable.
The best assessment of proof in general may just be that there are different kinds of
permissible actions that one may carry out, as Larvor (2012) puts it. It is rigorous
proof which appears to be more deserving of philosophical attention: this is where the
ideal of flawless deduction that Euclid aspired to takes its purest form (Burgess, 2015,
pp. 36–38), and where mathematical reasoning is found at its most distinctive, and
epistemologically robust.

The variety of kinds of inference allowed in proofs historically makes it clear that it is
only for rigorous mathematics that one could defend the formalizability of arguments.
For instance what would a formal system for arguments like Bernoulli’s, involving
manipulation of divergent series, look like? Would it formalize analogies between the
finite and the infinite? Similarly there is no reason to think that irreducibly intuitive
reasoning would be formalizable.

Given the major differences between the historical standard of proof and what
modern rigour permits, an obvious question is how and why the shift to rigour came
about. Considering that would take us too far afield, but it is one topic which Burgess
discusses (Burgess, 2015, chap. 1) in his account of rigour, to which we now turn.
Burgess is mainly concerned with implications of the norm of rigour for the debate
over structuralism, and does not give explicit arguments concerning the kinds of
questions raised in §1—the epistemology of proof, the ability of mathematicians to

8 As an anonymous referee remarks, part of the confidence in the use of infinitesimals stemmed
from how in many cases one could use them to solve a problem—like the volume of a sphere—
whose solution was already known, and thus check that the infinitesimal methods gave the
correct results.
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reach agreement about the validity of proofs, the issue of formalizability and so on.
Nonetheless some observations he makes are worth highlighting.

Burgess emphasizes that any piece of rigorous mathematics takes place in a context
of existing results and definitions which can be appealed to Burgess (2015, pp. 149–
158). One can then extend the boundaries of knowledge with a new argument, stringing
together definitions and proofs of propositions, appealing to existing results and using
existing concepts where needed. Burgess also emphasizes that often it does not matter
whether a fact one is appealing to is a basic principle or a consequence thereof, or how
concepts used were actually defined as long as the properties one needs of them do
hold. This is the basis of his critique of structuralism as a metaphysical position.9

Both components of the rigorous process—definitions, and proofs of propositions—
merit some attention. Burgess notes that when introducing a new concept, one is
required a clear definition in terms of existing ones (Burgess, 2015, p. 7). This definition
does not have to be completely formal—for instance one can state that a vector space
is a set equipped with an abelian group structure and a scalar multiplication operation,
without specifying exactly how this is coded set theoretically: as a triple (V,+, ·), or
((V,+), ·), or as (+, ·), or in some other way. It just needs to be clear that the definition
could be made completely precise in such a way that all uses made of the concept would
be valid.

Burgess also discusses what the standard of rigour requires for proofs of propositions.
He considers various possibilities, and ultimately comes to the (tentative) conclusion
that:

What rigor requires is that each new result should be obtained
from earlier results by presenting enough deductive steps to produce
conviction that a full breakdown into obvious deductive steps would
in principle be possible (Burgess, 2015, p. 97)

This I think is basically right. However there is more to say before this can be brought
to bear on the issues discussed in §1. If we are interested in the epistemology of proof,
then this is only a sketch rather than a full account. How is this conviction generated?
How is it reliable? If mathematicians are judging formalizability in principle (which
is roughly what “full breakdown into obvious deductive steps” might amount to),
how are they able to judge this? As discussed in §1, most mathematicians have no
experience of or interest in formalization, after all. There is also the question of how
mathematicians are so good at resolving disputes, discussed in §1, which we could hope
to answer. Addressing these issues is the purpose of the remainder of the paper.

§3. A rigorous eduction. As mentioned in §1, the account of rigorous proof put
forward here uses a somewhat novel approach: to try to understand the skill of
mathematicians in judging and producing rigorous proofs by thinking about how
this skill is acquired. For this we will start at the beginning. There are many different
universities around the world that teach rigorous mathematics, and they may teach it

9 He argues that exactly how the concepts one uses were defined is often irrelevant, as all
one will need are certain derived properties. Thus one need not care about how things were
defined when doing mathematics. It is this irrelevance of definitions that Burgess argues has
been mistaken by structuralists for a metaphysical truth about the nature of mathematical
structures, with structuralists hoping to infer for instance that mathematical objects have
only general structural properties (Burgess, 2015, chap. 3).
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(b) Since 1 = 12, it follows from (a) that 1 > 0.

1 > 0.

If n , then n  > 0.

. We conclude
Proof. (a) By the Trichotomy Property, if a

2.1.8 Theorem

(b)

(c)

Copyright © 2000 John Wiley & Sons, Inc. All rights reserved.

If a and a  0, then a2 > 0.(a) �

that if a  
then by 2.1.5(ii), a2 = a . a , then a2 = (–a) (–a)

0, then a2 > 0.�

0, then either a or –a
. Also, if –a

. If a

Fig. 1. “Introduction to Real Analysis”, Bartle and Sherbert, p. 26 (proof of (c) is omitted).

in somewhat different ways, but there are some common features that can be pointed
to. Students are generally taught the basics of rigorous proof by seeing and working
through examples, paired with descriptions of how and why the reasoning involved
works. An example of a basic early result students might see is displayed in Figure 1.

This demonstrates a fact commonly assumed without question: that the square
of a nonzero real is positive. Probably the only part of the argument that requires
explanation is the symbol P, which denotes the set of (strictly) positive real numbers.
Axioms concerning this set have been stated in the textbook a few pages previously.
The relevant axioms are that:

(i) For any a ∈ R, either a ∈ P or (– a) ∈ P or a = 0, with exactly one of these
holding.

(ii) If a, b ∈ P then a · b ∈ P.

From these the above proof proceeds straightforwardly, arguing by cases.
The main thing to note about this proof is just how incredibly detailed it is.

Virtually all of the logical structure of the argument is right there on the page. There
are places where one could be even more explicit, in particular in the assertion that
a2 = (– a)(– a), and indeed this follows immediately from the facts that 1 = (– 1)(– 1)
and that (– a) = (– 1)a, which are both given as exercises (Bartle & Sherbert, 2000, p.
29). Nonetheless the proof is very close to the formal level and would be no challenge
to formalize.

We can call this level of very great detail that proofs can be carried out at the “week
2 level of detail”. Of course students may not see this particular argument in week 2, or
at all; it is just a convenient name. We are not defining the “week 2 level of detail” here
in terms of what is comprehensible to certain students—instead we give examples of
basic arguments at this level of incredible detail, such as the above and also for instance
basic number theoretic results (Taylor & Garnier, 2014, theorem 6.2; Silverman, 2012,
Lemma 7.1) or basic results from linear algebra (Axler, 1997, Propositions 1.1–1.6).

As students learn the subject they won’t just be passively reading proofs like this. They
will also typically (and importantly) be proving these kinds of basic facts themselves,
demonstrating them with arguments written out at this very explicit level of detail. The
hope is that by doing this they will gain what we can call “proficiency at week 2 detail”,
the ability to prove simple facts like this one by chaining together these kinds of very
basic steps.

A bit more will be said about how this basic level of proficiency is gained later in
this section. For now we proceed onwards through the curriculum. As time passes the

https://doi.org/10.1017/S1755020320000398 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000398


RIGOUR AND PROOF 487

Fig. 2. “Introduction to Real Analysis”, Bartle and Sherbert, p. 168.

arguments the students are presented with will gradually get faster, and have fewer
of the details filled in. Sometime later—perhaps a few months, or a term—they may
encounter an argument like that in Figure 2.

This theorem presents another fundamental fact: that if a function on an interval has
a “relative extremum”—a local maximum or a local minimum—at an interior point,
and is differentiable there, then the derivative must be zero. This is clear by visualizing
the situation, but we are doing rigorous mathematics so are not satisfied with that, and
we demand a proof.

The argument given is again fairly detailed, but is slightly less explicit than the
previous example: not all the details are there. It only actually covers the case where
f′(c) > 0, showing that this cannot happen, and the task of showing that f′(c) < 0
cannot occur is left to the reader. If the reader has understood the argument they should
have no problem seeing how this would go, or writing it out. This aspect of the proof
is fundamental to the way we learn rigorous mathematics. Students will hopefully not
be treating proofs like the deliverances of some oracle: lecturers will ideally encourage
them to engage with the proofs, to see if they could have proved the results themselves,
to see if they can prove similar results by similar methods, and to see if they can fill in
any parts where the proof is sketchy, and check any parts of the proof they are not sure
about in more detail.

The course did not start by teaching students the week 2 level of detail material just
to pad the schedule. The hope is that now when they meet an argument like this which
is a little bit faster, strung together out of inferences that are simple but not necessarily
completely basic, they can check any inference they are not sure of by proving it in
more detail, using their “proficiency at week 2 detail” that they have hopefully already
attained. Thus they can sharpen their judgment of which simple (but not completely
basic) inferences are valid, checking such inference whenever necessary by seeing if
they can be proved.

Students won’t just be seeing theorems like this however. They will also be proving
these kinds of slightly higher level statements themselves, by stringing together
inferences that are simple (but not necessarily completely basic). By doing so they
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Therefore, the radius of convergence of the two series is the same, so the formally differen-
tiated series is uniformly convergent on each closed and bounded interval contained in the
interval of convergence. We can then apply Theorem 9.4.4 to conclude that the formally
differentiated series converges to the derivative of the given series. Q.E.D.

Copyright © John Wiley & Sons, Inc. All rights reserved.

Both series have the same radius of convergence.

9.4.12 Differentiation Theorem A power series can be differentiated term-by-term
within the interval of convergence. In fact, if

Proof. Since lim(n1/n) = 1, the sequence (|nan|1/n) is bounded if and only if the sequence

lim sup (|nan|1/n) = lim sup (|an|1/n) .

(|an|1/n) is bounded. Moreover, it is easily seen that

Σ
n=0

f (x) = anxn, then forΣ
n=1

f ’(x) = |x| < R.nanxn–1

Fig. 3. “Introduction to Real Analysis”, Bartle and Sherbert, p. 270.

will hopefully gain what we can call “proficiency at term 2 detail”, the ability to
prove these slightly higher level inferences by stringing together simple inferences,
and to reliably judge the validity of simple inferences (checking whenever necessary by
proving them at the week 2 level of detail).10 Again we define the “term 2 level of detail”
by giving examples, such as the above and also for instance from Bartle & Sherbert
(2000, Theorem 5.2.1), Axler (1997, Propositions 2.9 and 2.13) and Silverman (2012,
Lemma 9.2).

As the terms go by the students are gradually exposed to more and more condensed
arguments. After another year or so they might meet an argument like that in
Figure 3.

Here the students see a proof that power series can be differentiated term by term.
The proof is another step up in terms of compression, in terms of relying on the
intelligence of the reader. This can be seen in the first line, where the reader is expected
to see that a certain sequence is bounded if and only if another sequence is. Also in the
second sentence, the reader is expected to “easily see” that a certain equation holds.
These statements are extremely plausible; and if a student has any doubt, they can
check them by proving them in more detail, using the “proficiency at term 2 detail”
ability they have hopefully gained. They do not need to take these statements on trust,
and they do not need to guess.

Again we can talk roughly about this “year 2 level of detail”, giving further examples
of arguments at about this level of detail to help explicate it, again for instance from
analysis (Bartle & Sherbert, 2000, Theorems 9.3.2 and 10.1.3), from number theory

10 A note on terminology. I find it natural to speak of proving inferences, as in proving them
in greater detail, though strictly speaking this may be a category error: inferences are things
that we draw, assess, or justify, and we normally only speak of proving statements and
propositions. Nonetheless I think it is clear what is meant—replacing a given inference by a
chain of intermediate inferences, which collectively constitute a proof of the conclusion from
the premises—and it is a convenient and expressive idiom.
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(Silverman, 2012, Theorem 42.1), and also from ring theory (Aluffi, 2009, Propositions
III.3.11 and III.4.5) and complex analysis (Bak & Newman, 2010, Proposition 3.1).

This process continues in the obvious way. As the years progress a student is exposed
to gradually faster and faster arguments, arguments where gradually more and more
of the details are left out and more is left to the reader’s intelligence. We can pick out
further levels of detail a student will encounter, in the same way as above. First, we
define a “year 3 level of detail” by giving examples, now with a wider variety: from
functional analysis (Rudin, 1987, Theorems 4.6–4.12), complex analysis (Conway,
1978, sec. IV.2), measure theory (Fremlin, 2010, chap. 12), general topology (Munkres,
2000, sec. 33), algebraic topology (Lee, 2000, chap. 13), differential geometry (Lee,
2012, chap. 3), commutative algebra (Aluffi, 2009, sec. V.1), representation theory
(James & Liebeck, 2001, chap. 6), number theory (Niven, Niven, & Zuckerman, 1991,
sec. 1.2), combinatorics (Szemerédi, 1975, Facts 1 and 2), logic (Cori & Lascar, 2000,
sec. 1.1), and category theory (Awodey, 2010, Proposition 2.10). Again these may not
be arguments a given student actually sees in their third year, but the level of detail is
intended to be one that competent third year students will be gaining proficiency at,
for both reading and writing proofs.

Detail here is not the same thing as accessibility. An argument can be very detailed
but still difficult, for instance because it involves difficult concepts, or relies on difficult
results, or because the result is poorly motivated and the proof strategy unexplained—
or just because the argument is too long. Detail here means explicitness, and proximity
to definitions, and how much the proof says of what could be said. It is the antonym
of “how much is left out”.

Naturally these predicates “week 2 level of detail”, “year 2 level of detail” and so on
will be vague: we may not be able to always determine precisely whether an argument
is at the year 2 level of detail or not, just as we may not be able to decide whether a
jumper is red, or perhaps orange instead. That does not undermine these predicates’
validity or usefulness. Although there will be borderline cases, there will also be cases
where we can in fact state with confidence that an argument is at around the year 2
or year 3 level of detail, rather than the week 2 or graduate level of detail (defined
shortly). Of course an argument may not all take place at the same level of detail,
so that describing the different levels of detail its parts take place at may be more
appropriate than trying to shoehorn the whole argument into one category—as with
a multicolored jumper. One issue with these levels of detail that does not have such
a comparison with jumpers is that it can potentially be quite difficult to compare the
detail of pieces of mathematics from very different areas, where the reasoning is of a
very different style. We can mitigate that as here by giving examples from a wide range
of areas when characterizing levels of detail.

We now continue in the same way, defining further levels of detail a student will
encounter. It should perhaps be emphasized that this terminology of levels of detail is
new terminology I am introducing, and not a standard part of mathematical discourse.
There are times one might see something like it used—for instance if a mathematician
presented an unconvincing argument to a colleague, and after some questioning the
colleague asked them to explain it more slowly, like they were talking to a grad
student. Also, concepts like these can perhaps be seen as implicitly underlying some
mathematicians’ talk of detail in mathematics, an example of which will be seen in §5
when discussing how these levels of detail can help mathematicians resolve disputes
about the validity of proofs.
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Week 2
Term 2
Year 2

Year 3

Graduate (explicit)

Graduate (terse)

Research article (terse)

more detail
/more explicit

less detail
/less explicit

Scale:
A

B

Each inference at level A
can be recognised/checked
to be provable at level B

Fig. 4. Levels of detail.

We will actually now pick out two different graduate levels of detail. First, we
define the “graduate level of detail (explicit)” by giving examples, from functional
analysis (Banach, 1987, Theorem II.1), complex analysis (Conway, 1978, sec. IV.6),
measure theory (Schwartz, 1954), general topology (Walker, 1974, secs. 1.1–1.16),
algebraic topology (Switzer, 2002, chap. 4), differential geometry (Hirsch, 1976, sec.
1.3), algebraic geometry (Eisenbud & Harris, 2000, sec. I.1.4), commutative algebra
(Eisenbud, 1995, chap. I.2), representation theory (Fulton & Harris, 1991, Lecture 4),
number theory (Niven et al., 1991, sec. 5.7), combinatorics (Erdös, 1947, Theorem 1),
logic (Prawitz, 1965, chap. I–III), and category theory (MacLane, 1998, secs. II.3–II.6).

The basic idea is hopefully now clear, but we can keep going and pick out a “graduate
level of detail (terse)” by giving some examples: from algebraic topology (Hatcher,
2001, sec. 2.2), differential geometry (Thurston, 1997, sec. 2.7), algebraic geometry
(Hartshorne, 1977, sec. II.3) and category theory (MacLane, 1998, chap. IX). As seen
in the examples above, some research mathematics is written out at a level of detail
already covered: for instance Szemerédi (1975, Facts 1 and 2) at the year 3 level of
detail, and Banach (1987, Theorem II.1), Schwartz (1954), Erdös (1947, Theorem
1) and Prawitz (1965, chap. I–III) at the graduate level of detail (explicit). However
plenty of research mathematics does take place at a level of greater compression, and
one could keep going and pick out levels of this, named perhaps “research article
level of detail (terse)”, “research article level of detail (very terse)”, and maybe
one or two more. A range of levels of detail we can obtain in this way is seen in
Figure 4.

To be clear, there is nothing privileged about the levels of detail listed in Figure 4.
There is a continuum of levels of detail that we could potentially pick from (perhaps
idealizing somewhat, given that statements in proofs are finite objects), and nothing to
mark out those in Figure 4 as special; they are just useful examples for the purposes of
this paper.

A little more should be said about the upper reaches of mathematics, at the top
of Figure 4 and beyond. In fact it is clear that nothing too different happens as one
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approaches the research frontier—the gradual ascent to levels of greater and greater
compression continues. That nothing radically different is happening can be seen in
the ability of professors to take the most important, beautiful or useful results in a
field—once it has matured—and collate them into a textbook with proofs accessible
to graduate students. In the process proofs may be simplified or altered, but there is
never any great obstacle to writing out what was once research level mathematics at a
level of detail that graduate students can follow. One can see this in for instance the
titles in the Springer Graduate Texts in Mathematics series.

A particularly extreme example of this is given by the case of Perelman’s proof of
the Poincaré conjecture. This was one of the most major conjectures in mathematics,
and the subject of a Clay Millennium Prize. In 2002 and 2003 Perelman uploaded three
papers containing a claimed proof (Perelman, 2002, 2003a, 2003b). The papers were
written at a very high level, containing mathematics sketchy enough that despite only
totally 70 pages, it took teams of mathematicians 3 years—working in correspondence
with Perelman—to verify the argument as correct. Perelman was then offered a Field’s
medal, and subsequently a Millennium Prize, both of which he declined. Since 2006
more detailed expositions of his argument have been produced, such as Morgan & Tian
(2007), which is a textbook intended to be accessible to graduate students. Indeed it
looks to be at about the graduate level of detail (explicit) or graduate level of detail
(terse). It comes in at 521 pages—about 8 times longer than Perelman’s original papers.
This is quite an increase, but even so it shows that there is not too dramatic a leap in
terms of compression from maths at a level graduate students can understand to some
of the most concise mathematics acceptable as a proof.

Now to say a little more about the lower end of Figure 4. First, a potential issue
is that some areas of maths are generally only studied at a high level, because they
have substantial mathematical prerequisites or typically involve subtle or complex
arguments. This is the case with harmonic analysis, the theory of functions of several
complex variables, and modern algebraic geometry, amongst other areas. This presents
a potential problem with regards to the lower levels of detail in Figure 4, since for
instance no-one does algebraic geometry in week 2 of their degree. In some cases this is
unproblematic since expanding an argument in great detail will lead to basic inferences
like those found in other areas—for instance combinatorics or analysis, in the case of
harmonic analysis. In other cases reasoning used is more sui generis. Nonetheless in
these cases I think it still makes sense to talk about what an inference carried out at
say the term 2 level of detail would look like. In fact we sometimes see this happen:
when a new manner of argument is introduced, even to advanced students, a few very
explicit examples are often given of how it works. This is so that students have a sense
of what is underlying more complex arguments, and know what to fall back on if they
ever find more complex arguments hard to follow or produce. An instance of this from
differential topology—a fairly advanced subject, done in full generality—is seen in
Lee (2012, proposition 2.4). Here Lee is giving an example of how to use the smooth
charts on a manifold to prove local facts about them, and it is written up in great detail
to make clear to students how this works, at around the week 2 or term 2 level of
detail. One could do the same for other advanced subjects, for instance writing out the
arguments of Eisenbud & Harris (2000, sec. I.1.4) from algebraic geometry mentioned
above at the term 2 level of detail.

A second issue about levels of greater detail is one that was rather passed over in the
discussion above: what takes place in the initial stages of learning rigorous mathematics,
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before the ascent up the levels of compression can start. To begin with, students will
be taught how the basics of proof work, and what to do with the logical vocabulary
∧,∃,¬,∀ and so on, by a combination of examples and informal descriptions of what
is going on and why. For instance they will (hopefully) learn by seeing and working
through examples that to prove a statement ∀n φ(n) about all numbers, one can take an
unknown number n, prove that φ(n) holds without assuming anything special about
n, and then deduce that indeed ∀n φ(n) holds—essentially the ∀-introduction rule
from natural deduction. The logical workings of proof can be stated in simple, clear,
precise form—in terms of the hypotheses active at each stage, and how to introduce
and exploit them—and when students can grasp how this works from examples it
is not such a great surprise. Anyway not all students do manage to learn the rules
from examples, and how to best teach the logic of proof is much discussed in the
mathematics education literature (see for instance Epp, 2003). As well as the logical
vocabulary students will learn the basics of set theory, including how to determine if
two sets are equal via extensionality (whether this is an axiom or an inference rule is not
important to the students, and the distinction may not be clear to them), and they will
be shown various acceptable ways of forming new sets—power sets, cartesian products
and so on.

There is a further basic aspect of proof that students are expected to infer from
examples, and this is the ability to prove results by describing algorithms or procedures
to achieve some desired mathematical goal, with Euclid’s algorithm being an early
example students often encounter (Silverman, 2012, pp. 33–34), and further examples
coming in linear algebra (Axler, 1997, propositions 2.6 and 2.7; Artin, 1991, pp. 14–15)
and other areas. Though some such proofs can be rephrased as arguments by induction,
sometimes they may implicitly require the definition of functions by recursion, and this
is not usually something early undergraduates will be in a position to justify formally—
the set theoretic treatment of recursion is typically taught later on in a more general
form that applies to recursions on all ordinals (such as in Jech, 2006, theorem 2.15).
In fact this does not present any sort of problem, and is not so different to the cases
above where students grasp principles from examples; in this case the general principle
implicitly underlying these kinds of recursive arguments is the axiom of dependent
choice. This states that if X is a set and R is a binary relation on X such that for all
x ∈ X there is y ∈ X with xRy, then for all x ∈ X there is a sequence (x0, x1, ...) of
elements of X where x0 = x and for all i, xiRxi+1. That this is a statement rather than
an inference rule, and not a basic axiom of set theory (it is deduced from the axiom
of choice) is not important here. It is intuitive, and can be stated clearly, simply and
precisely, and it is not a surprise that students can grasp from examples what kinds of
arguments are in line with it.

The basic axioms governing sets are exempted from the general requirement that
inferences be justifiable by proofs in greater detail. One can rightly assert this without
actually deciding on which the basic axioms are; for instance it does not matter whether
one regards the statement that function setsBA exist as a basic axiom, or as justified by
an argument that appeals to more basic axioms (union, separation, pair set and power
set perhaps). Whatever the basic axioms are, they need not be justified by a proof,
and other basic properties of sets are justified in terms of them (perhaps out of sight
of students). There has been some discussion of exactly what means of set formation
are allowed in mathematics—in particular, whether the unrestricted comprehension
principle of naive set theory is used—and this issue will be addressed in §7.
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With these points addressed, we have the essentials of how rigour is learnt. We can
pick out different levels of detail maths is done at by giving examples, and students
proceed upwards through these levels of detail as described above: once they have
gained proficiency at a certain level of detail they are in a position to engage with more
concise arguments, with a tutored sense of what less explicit are valid—tutored by
their experience at proving such inferences. If they are ever unsure, they can use their
existing proficiency to check a difficult inference and see if it can in fact be justified by
a proof; and if so, they can ask why they were suspicious about it, and consider how
to adjust their instincts to recognize such inferences as valid in future. It is essential to
the normal process of learning rigorous mathematics that students are in a position to
check inferences for themselves in this way, rather than just being presented with high
level arguments they are intended to imitate. This is the most significant difference
between mathematics as taught rigorously, and mathematics as taught in a physics
degree (for instance). As discussed above there are also cases early on where students
are expected to infer general principles from examples. There are only a few such cases
though, and the reasoning each general principle encompasses can be characterized
simply and precisely.

As mentioned in §1, there are various places where this account could be expanded
on. This could be a task for further investigations on the subject. For instance, one
might seek a better understanding of exactly how students “adjust their instincts” to
recognize a wider variety of inferences as valid, having seen particular cases to be
provable in greater detail; or how, and with what degree of success, they “infer general
principles from examples” in the early stages. We leave such investigations for the
future.

§4. The concept of rigour. The key feature of rigorous mathematics, on the view put
forward here, is that there is a range of levels of detail that rigorous mathematics can
take place at, where nontrivial inferences at a more compressed level can necessarily be
proved at an appreciably greater level of detail. This is implicit in the process of learning
rigorous mathematics described in §3, where each time a student is trying to master a
new level of greater compression, it is constitutive of inferences being at that level of
compression that they be provable at a previous level of detail, a level the student is
already comfortable at—so that there are no leaps in the process of learning rigorous
mathematics where a student is unable to check inferences for themselves (apart from
when grasping certain basic principles). Indeed if inferences at the level of greater
compression didn’t need to be provable in more detail, then “checking” them by seeing
which inferences can be justified with a proof would be a mistake. As discussed above,
the basic axioms of set theory are exempted (whatever exactly they are taken to be),
and are intended to be accepted by students without argument, though possibly with
the assurance that they are “obvious”.

The requirement that nontrivial inferences be provable at a greater level of detail is
also key to the mechanism for resolving disputes in mathematics discussed in §5. For the
purpose of resolving disputes, this requirement is of less practical importance at levels
of very great detail, as mathematicians may agree immediately about sufficiently basic
inferences; but equally, for these simpler inferences it is generally more obvious that
they can be proved in greater detail, and how such a proof would go, so the requirement
is no unnecessary burden. Again, the basic axioms of set theory are exempted from
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the requirement of being justifiable in greater detail: their correctness is not up for
debate (within mathematics) and is supposed as a precondition for the mathematical
enterprise to get going.

This requirement that inferences be provable in more detail is why the examples
discussed in §2 were not rigorous: the manipulations of infinitesimals and infinite series
discussed could not be justified in greater detail, and could not be regarded as basic
rigorous rules in themselves since it was not clear how to demarcate what reasoning
was acceptable.11 Similarly brute intuitions such as for the truth of the Jordan curve
theorem are not in themselves suitable in proofs unless they can be backed up with
more detailed arguments.

The necessity that inferences be provable in greater detail applies to levels of detail
that students (and mathematicians) reach after progressing onwards from the basic
level at which the subject is first taught—assumed above to be the week 2 level of
detail. However not all students do manage to directly grasp how proof works at this
level of detail, and some need more explicit demonstration of the rules that proof
is implicitly following. There are courses and textbooks which provide this, such as
Velleman (2006), which teaches how proof works essentially by teaching how to prove
statements using the natural deduction rules: here the premises being used are explicitly
tracked and calculated with, according to the rules governing the various bits of logical
vocabulary. We can call this most basic, most explicit level of detail the “intro to proof
level of detail”. Students can use this as a stepping stone to gain comprehension of
how basic arguments at the week 2 level of detail work, and implicit in this (as above
with later levels of detail) is that inferences at the week 2 level of detail be provable at
the intro to proof level of detail—otherwise gaining a grasp of how arguments work
at the intro to proof level would be misleading as to what is going on at the week 2
level. Thus we can extend the above argument that inferences need to be provable in
greater detail all the way down until we reach the intro to proof level of detail, where
arguments explicitly use the natural deduction rules.

A minor caveat to this ability to prove in greater detail is that some arguments
may require rephrasing when proving in more explicit formal terms—for instance
one would often justify the Euclidean algorithm as an informal recursive process of
repeated division with remainder, described for integers a, b > 0 perhaps by saying:

Write a = q0b + r0 with 0 � r0 < b,
write b = q1r0 + r1 with 0 � r1 < r0,
write r0 = q2r1 + r2 with 0 � r2 < r1,

and so on, until we reach rn = 0

which if proved more explicitly would be transformed into some sort of formal recursive
definition (of the form justified by the axiom of dependent choice—though there is
no choice here—as discussed in §3). In these kinds of cases one is replacing a part of
a proof with a similar more detailed version, rather than literally filling in inferences

11 Reasoning with infinitesimals was put on a firm footing by Robinson (1996) in terms of the
logical concept of nonstandard model, and Nelson (1977) showed how to give a rigorous
axiomatization for the approach. One can also use a paraconsistent approach to embrace
the contradictory nature of infinitesimals, as seen in Brown & Priest (2004) and Sweeney
(2014).
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in greater detail. However these kinds of cases are the exception rather than the rule,
and do not make any essential difference to any of the discussion below, so we will
generally include them under “proving in greater detail” (speaking a little loosely).

Now although the account above has focused on the ability to prove inferences in
greater detail, it should be emphasized that one does not generally have to see how
to prove an inference in greater detail to understand it, or accept it. For instance, to
someone familiar with the notion of homeomorphism it probably feels obvious that
the sphere {x ∈ R

3 : ‖x‖ = 1} is homeomorphic to the cube {x ∈ R
3 : maxi |xi | = 1},

but sitting down and trying to write out a proof of this could well take a while. Such
examples are not limited to topology. In logic—a subject where perhaps one would
expect “intuition” would play less of a role—it might well feel obvious that substituting
term t for variable x in a formula φ, when x is not free in φ, will just return φ, but again
proving this in detail would take a bit of work (though probably less insight than the
previous example). These kinds of higher level judgments about inferences—without
a proof in mind—are an essential part of mathematics. Nonetheless it is important
in rigorous mathematics that the option of proving inferences in more detail is there,
to aid in gaining a firm grasp of any new concepts, and in guiding and sharpening
one’s judgment in any difficult cases—not all homeomorphic spaces are as obviously
homeomorphic as the two above.

Also, when checking a proof one does not always necessarily actually check that
every inference in is valid. Indeed if an unsurprising claim in a proof is supported by
reasoning that looks like the right kind of thing, and the right amount of effort, then an
experienced mathematician may pass on without checking every single detail. This is
seen in interviews conducted by Andersen (2017) with mathematics referees, and also
mentioned by Thurston (1997, p. 32). It appears this can be a fairly good guide to the
overall correctness of results, though numerous commentators have remarked on the
unreliability of the mathematical literature and the pervasiveness of errors in proofs,
to which this manner of refereeing may be a contributing factor (Jaffe & Quinn, 1993;
Thurston, 1994, p. 33; Nathanson, 2008; Grcar, 2013, pp. 421–422).

§5. Disagreements about validity. It is traditional when studying deduction to think
in terms of a single sharply defined notion of validity, that every inference either has
or lacks. I think the above analysis of rigour rather tells against this conception.

Indeed having picked out various levels of detail that mathematical inferences can
take place at, we can introduce a cumulative hierarchy of validity predicates—“valid
at the week 2 level of detail”, “valid at the term 2 level of detail”, and so on, where for
instance “valid at the term 2 level of detail” means an inference either at the term 2 level
of detail, or at a level of greater detail. One can keep ascending in this way, defining
validity predicates which allow more and more compressed inferences, inferences that
are increasingly challenging for even an experienced mathematician to follow. At some
point one will reach inferences compressed enough that they are well beyond the
bounds of what mathematicians consider to be valid. However there appears to be no
natural place on the continuum of levels of detail to draw a line, and say this is the limit
of validity: that inferences at least that detailed are valid, while those less detailed are
not. Asserting that there is a precise such limit seems to just be philosophical dogma,
unsupported by the facts of the practice. Suppose for instance that a preprint of an
article is uploaded to the arXiv, and read by two mathematicians experienced in the
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field—one of whom concludes that it is perfectly rigorous, the other that the proof of
a certain lemma is too sketchy and incomplete. Who are we to announce—without
examining the preprint—that one is definitely right, and the other definitely wrong? I
think it is more plausible to say that judgments of validity can—to some extent—be
both vague and subjective.

Some philosophers are aghast at this suggestion, it is worth explaining why, given
the account of rigour above, it is not as damaging a claim as might be thought. In as
much as there is disagreement about the validity of a certain inference, the framework
of rigour provides a mechanism for resolving it.

That mathematicians are good at resolving disagreements about validity—that if a
mathematician believes a proof is valid, they are generally able to convince others of
this, or become convinced themselves of a flaw in it—has been noted by various authors
as a fact that deserves explanation, and is one of the main motivations of Azzouni’s
derivation indicator view of proof is to attempt to provide this (Azzouni, 2004, pp. 83–
84; Antonutti Marfori, 2010, pp. 267, 270–271). The idea behind Azzouni’s account is
that the informal proofs mathematicians write serve to indicate formal derivations. This
has met with criticism, with Tanswell (2015) pointing out that attempted proofs may
have many different attempted formalizations, which poses a problem since Azzouni
wants to characterize validity of the informal proof in terms of success of the indicated
formal derivation. Additionally as seen in §3, mathematics generally proceeds at a much
greater level of compression than is found in formal proofs, and (as mentioned in §1)
most mathematicians have no experience of or interest in the activity of formalization,
so Azzouni’s account is rather far removed from how mathematicians typically engage
with proofs in practice.

Instead of hoping for an explanation in terms of completely formal proofs, it is
more promising to look to the process of proving in more detail itself. Indeed if
a mathematician ever puts forward a purported proof in which an inference is not
convincing, then a more detailed justification for that inference can be requested—an
appreciable step up to a level of greater detail, perhaps from the research article level
of detail (terse) to the graduate level of detail (terse), as discussed in §3.12 At this level
of greater detail inferences are more transparent and judgments of validity are more
reliable, and this may already serve to resolve the controversy—with the new argument
being acceptable, or an obvious error in it discovered. If not, and an inference in this
more detailed argument is still controversial, a more detailed justification can be asked
of it in turn, taking us to a still greater level of detail at which errors will be even more
obvious—perhaps we now reach the third year level of detail. In principle this process
will terminate when one reaches the level of complete formalization, though in practice
if both sides are of sound mind and proceeding in good faith then the controversy will
be resolved well before that.13

Thus if one believes a proof to be rigorous, in as much as this belief is correct one
can always (in principle, and usually in practice) fill in the details of any inferences that
are felt to be sketchy, to increase the level of detail to one which is found acceptable.

12 Though this terminology of levels of detail is new, the process is not.
13 The resolution of disagreement in this manner is an example of the idea from argumentation

theory that a debate goes down to the level of detail that will satisfy both parties (using the
apt words of an anonymous referee). For more on argumentation theory and mathematics,
see Aberdein & Dove (2013).
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In the imagined case considered initially of two mathematicians disagreeing about an
arXiv preprint—with one finding that a particular lemma was argued for too briefly—
the dispute would normally be resolvable in this way, bringing the proof into a form
acceptable to everyone.

Thus though in my view there may be some subjectivity and vagueness to where
exactly the limits of rigour are drawn, much more significant is the strong form of
objectivity afforded by rigour, in which there are always robust reasons available to
win over an objector—provided one’s assessment of a proof as valid is justified.

In fact this dispute resolution mechanism is essentially that described in the Princeton
Companion to Mathematics:

[T]he fact that arguments can in principle be formalized provides a
very valuable underpinning for the edifice of mathematics, because
it gives a way of resolving disputes. If a mathematician produces an
argument that is strangely unconvincing, then the best way to see
whether it is correct is to ask him or her to explain it more formally
and in greater detail. This will usually either expose a mistake or
make it clearer why the argument works. (Gowers, Barrow-Green, &
Leader, 2008, p. 74)

§3 and §4 can be seen as a clarification and elaboration of the process outlined in this
quote. As an explanation of how disputes in mathematics can be resolved, this seems to
be both more straightforward and more plausible than Azzouni’s account, and better
grounded in mathematical practice. However there may well be more to be said about
the reality of disputes over validity in mathematics, and how well this simple account
fits it.

§6. Naive set theory? The final topic of the paper is how this account of rigour
impacts on the question of formalizability. Before the discussion of this in §7, we take
a brief detour from the main course of the paper, to address a sceptical view about
the basic principles used in mathematics: the idea that mathematicians should be
viewed not as working in a system like ZFC(U), but in naive set theory, with its axiom
scheme of unrestricted comprehension. This has been suggested by Leitgeb (2009),
and some mathematicians have made similar claims about their own understanding
(Jones, 1998, p. 205; Aluffi, 2009, p. 1). Indeed “Naive set theory” is actually the title of
a set theory textbook by Halmos (2011). If mathematicians are best regarded as using
unrestricted comprehension, this would make the claim that mathematical proofs can
be formalized trivial, since set theory with unrestricted comprehension is inconsistent
and so any argument can be immediately formalized in it (with every inference justified
by a set theoretic paradox).

The key step when considering this possibility is to distinguish different senses of the
term “naive set theory”. Certainly most mathematicians do not know what the axioms
of ZFC are, but they do have a solid grasp of how to legitimately form new sets:
by taking unions, subsets, power sets, Cartesian products, function sets, equivalence
classes, and so on. This understanding may be “naive” in the sense that it is not
accompanied by explicit awareness of how these operations are justified in terms of the
basic axioms—but that is totally different to “naive” set theory in the logicians’ sense,
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in which the central principle is that of unrestricted comprehension, the scheme

∃y (x∈y ⇔ φ(x))

for all formulae φ in which y does not occur free.14 Indeed the above set forming
operations are not generally justified any more directly by unrestricted comprehension
than by ZFC; to form Cartesian products for instance, one still needs to go through
the rigmarole of defining what ordered pairs are and what a family of objects is,
and the availability of unrestricted comprehension does not significantly simplify
this. Moreover, there is no evidence of mathematicians making essential appeals to
unrestricted comprehension, and this being accepted as valid. In the normal course of
mathematics, all classes one would like to be sets are easily seen to be set sized using the
standard set forming operations. In category theory, where size issues are encountered,
the axiom of universes was introduced specifically so that they could be dealt with in a
rigorous way. There are occasional instances where classes are manipulated as though
they were sets, for instance in the definition of the Grothendieck group as a quotient of
the set of isomorphism classes of finitely generated modules over a ring R; but at least
in this case there is nothing genuinely troubling going on since one can easily define a
set of representatives of the isomorphism classes instead (the quotient modules R

n

M of
powers of R, with isomorphic quotients identified), or one can appeal to the axiom of
universes.

Moreover there are genuine mathematical cases where the distinction between sets
and classes is crucial, and the use of unrestricted comprehension would be disastrous.
For instance the general adjoint functor states that if G : D → C is a functor with
D complete and locally small, then G has a left adjoint iff it preserves all limits and
satisfies the solution set condition (MacLane, 1998, p. 121). The solution set condition
states that a set of morphisms with a certain property exists, and in this case the fact
that this be a set rather than a class is key, as there is always a class of morphisms
with the required property. In the presence of unrestricted comprehension, the general
adjoint functor theorem would become the claim that any limit preserving functor
whose domain is complete and locally small has a left adjoint, which is false in general.
The issue of which functors have adjoints is not some category theoretic curiosity—it
is an important issue in various areas of mathematics including algebra and topology.

Thus the way mathematicians form sets may be naive in the sense that it need not
be founded in explicit knowledge of the basic principles, but there is no indication that
it is naive in the sense of relying on unrestricted comprehension. If it did, signs of this
ought not to be too hard to find.

§7. Formalizability. Now to the question of formalizability itself. As advertised
previously, it will be argued here that valid rigorous proofs are formalizable, in principle,
though what this means requires clarification. The prospects for feasible formalization
will also be touched on.

14 The set theory in Halmos’s textbook is naive in an even weaker sense. Halmos does in fact
state the usual basic axioms of set theory (with no mention of unrestricted comprehension),
and he uses them to derive various set theoretic operations and facts, but he says the approach
is naive in that “the language and notation are those of ordinary informal (but formalizable)
mathematics”.
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For the purposes of this section we introduce the concept of “deductive grounding”
between levels of detail. If L,L′ are levels of detail, then we say that L′ is deductively
grounded in L if every inference valid at level of detail L′ is provable at level of detail
L.15 This concept of grounding is justificatory rather than metaphysical, and does not
share all the properties of standard notions of metaphysical grounding (for instance
it is reflexive). This concept of grounding uses a notion of provability, and the kind
of modality employed here needs to be spelt out before we know what deductive
grounding amounts to. The notion of provability we will use is one of “in principle”
provability, abstracting from limitations in terms of time or other resources (and thus
perhaps abstracting away from the limitations of our own physical universe). One
could otherwise use a notion of what is actually feasibly provable, given the physical
and biological constraints on us, and obtain thereby a notion of “feasible deductive
grounding”.

We can relate this notion of deductive grounding to a notion of “in principle
formalizability”. Indeed, we can fix some standard system of first order natural
deduction (for instance that of Prawitz, 1965, chap. I), and we take a formal proof to
be a complete derivation in this system in the language of set theory with all premises
amongst the axioms of ZFCU. We then define the “formal level of detail” to consist
just of these formal proofs. We characterize a proof as being formalizable in principle
if every inference in it is provable at the formal level of detail. Thus the claim that
every proof at a level of detail L is formalizable in principle is just the claim that L is
deductively grounded in the formal level. This is a weak notion of formalizability in
principle, and for instance if the Riemann hypothesis is a theorem of ZFC then the one
line proof of the Riemann hypothesis from no premises is formalizable in principle by
this definition. Nonetheless it is one available sense of formalizability in principle; the
question of what we do and should mean by formalizability will be returned to later in
this section.

The key property of this notion of in principle provability is that it satisfies a version
of the converse Buridan formula. In general the converse Buridan formula is (the
scheme of formulae) of the form

∀x �(φ(x)) ⇒ �(∀x φ(x)).

It is of the same general form as the converse Barcan formula, though with an existential
instead of universal quantifier (Konyndyk, 1986, p. 94). This converse Buridan formula
is not typically valid. For instance if I have a well stocked fridge, it may be the case
that for every item in the fridge I can have that item as part of my dinner, but that it
is impossible for me to have every item in the fridge as part of my dinner. Nonetheless
in cases where one abstracts from resource constraints it can be valid. In particular if
we have a finite set S of inferences, and write Prov to indicate that we have obtained a
proof of s ∈ S, then we do have that

∀s∈S �(Prov(s)) ⇒ �(∀s ∈S Prov(s))

15 As was noted in §4, some inferences at level L′ may be part of an informal section of a proof
which as a whole needs to be replaced by a more detailed and formal version at level L;
this was illustrated with the example of the Euclidean algorithm. This caveat makes no real
difference to what follows.
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since if each element of S is provable, then—given sufficient time—it will be possible
to obtain coeval proofs of every element of S.

It follows that if level of detail L′ is deductively grounded in level of detail L, and
we have a proof p of result s valid at level of detail L′, then one can in principle obtain
a proof of s at level of detail L. Indeed every inference in p is provable at level of
detail L, so that (as just discussed) it is possible to obtain a simultaneous proof of
every inference in p; concatenating these then gives a proof of s at level of detail L, as
claimed.

Thus we can obtain that the notion of deductive grounding is transitive. Indeed
suppose we have levels of detail L,L′, L′′ with L′ deductively grounded in L and L′′

deductively grounded in L′. Let s be an inference valid at level of detail L′′. Then by
the definition of deductive grounding, we can in principle obtain a proof of s at level
of detail L′; but then as just discussed, given such a proof one can in principle obtain
a proof of s at level of detail L. Thus s is indeed provable at level of detail L.16

We will now argue that for the levels of detail that a student moves through on their
way to mastering research level mathematics, each more compressed level is deductively
grounded in its more detailed predecessors. Recall as discussed in §3 and §4 that it is
crucial for learning rigorous mathematics that at each stage, one has the option of
proving the more compressed inferences one is encountering at a greater level of detail
that one has already mastered.

We will consider a student gradually moving through an education in mathematics,
where at each time t there is the level of detailmt of mathematics that they have mastered
so far, and the level of detail lt that they are learning at that point. We will assume that
the collection of times t making up this period of education forms a complete totally
ordered set, which we denote by I. I may or may not have endpoints—an initial point,
a final point, or both. If L andL′ are levels of detail we will writeL � L′ to denote that
L′ consists of mathematical inferences at least as compressed as those at level L. We
will assume that the function t �→ mt is monotonic, i.e., that if t′ � t then mt′ � mt .
For there to be no magical jumps in this process of learning, it needs to be the case that
for all times t not initial in I, there is some t′ < t such that mt � lt′ , so that the level
of detail mastered at time t was actually learnt at some previous point in time. We also
need that for all times t not final in I, there is some t′ > t such that mt′ � lt , so that
there is no magical jump after time t where at all subsequent times, a level of detail
has been mastered that is greater than that which was being learnt at time t. Finally, as
discussed above, it is constitutive of learning rigorous mathematics that at each stage,
the level of detail one is learning is deductively grounded in a level of detail one has
already mastered, i.e., that lt is deductively grounded in mt .

Now for the argument. For each t not initial in I there is some t′ < t such thatmt �
lt′ , but lt′ is deductively grounded in mt′ , so that by transitivity mt is also deductively
grounded inmt′ (call this backwards grounding). Also, for each t not final in I, there is
t′ > t such that mt′ � lt , so that mt′ is deductively grounded in mt (call this forwards
grounding). Now suppose for contradiction that there is s > t such that ms is not
deductively grounded in mt . We let r be the infimum of

{s | ms not deductively grounded in mt}

16 This argument could be carried out more formally, and implicitly uses the principle ��φ ⇒
�φ of S4, which holds for the kind of metaphysical possibility being employed.
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(a set which is bounded below by t). By forwards grounding, there is t1 > t such thatmt1
is deductively grounded in mt , so that by monotonicity of m, we have that r � t1 > t.
Thus r is not initial in I, and so by backwards grounding for r, there is t2 < r such that
mr is deductively grounded in mt2 . But by the definition of r, we must have that mt2 is
deductively grounded in mt , and thus by transitivity that mr is deductively grounded
in mt . But then forwards grounding for r gives that there is t3 > r such that mt3 is
grounded in mr , and thus in mt ; then by monotonicity of m, if r � t′ � t3 then mt′ is
deductively grounded in mt , so that t3 is actually a lower bound for

{s | ms not deductively grounded in mt},
so that r is not the infimum of this set, giving the required contradiction. Thus from
the assumptions we have made, it follows that if s > t, thenms is deductively grounded
in mt .

Thus we obtain that all levels of detail that can be mastered rigorously, from a
process starting at the week 2 level of detail, are deductively grounded in the week
2 level of detail. Then it is clear by inspection that arguments at the week 2 level of
detail can be written out as formal derivations, as was noted in §3, and their premises
are all amongst the axioms of ZFCU, so that the week 2 level of detail is deductively
grounded in the formal level. Otherwise, as discussed in §4, one can define an “intro
to proof level of detail”, in which the natural deduction rules are explicitly used, and
which some students use as a stepping stone to master the week 2 level of detail; it
follows (as above) that the week 2 level of detail is deductively grounded in the intro to
proof level of detail, whose proofs are trivially formalizable—they are already natural
deductions of a slightly nonstandard kind. Either way we obtain that the week 2 level
of detail is deductively grounded in the formal level, and thus that all the levels of
detail that can be mastered rigorously are deductively grounded in the formal level. In
other words, all rigorous mathematics is, in principle, formalizable. This is not a mere
empirical fact obtained by looking at examples of mathematical arguments (except
perhaps for the step from the intro to proof or week 2 level to the formal level), but a
direct consequence of the norm of rigour in mathematics as enunciated here in terms
of levels of detail.

This account answers a potential worry about formalizability: if rigour requires
proofs to be formalizable, how are mathematicians so good at judging this? The answer
is that mathematicians are not directly judging formalizability, but are instead judging
the rigour of inferences (as discussed in §3 and §4), and that formalizability is obtained
as a consequence of rigour.

In the literature the main worry about this kind of in principle formalizability is
raised by Rav (1999), reiterated by Weir (2016). Rav considers a situation where one
has an inferenceA→ B in a proof, and after some thought fills this in with intermediate
inferences to obtain A→ A1, A1 → A2, ... , An → B . Perhaps one is then questioned
by a student or nonspecialist as to why A1 follows from A, and comes up with a new
interpolation A→ A′, A′ → A1. Rav claims we can give no “theoretical” reason why
this process of adding interpolations ought to ever terminate (Rav, 1999, pp. 14–15).

The basic problem with this description is the lack of any attempt to characterize the
form the interpolating inferences must take. One cannot just write in any intermediate
inferences that suit one’s fancy, whether justifying an inference to oneself or to a
sceptic. For instance suppose we are trying to argue that the fact there are infinitely
many primes (IP) is a consequence of the fundamental theorem of arithmetic (FTA),

https://doi.org/10.1017/S1755020320000398 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000398


502 OLIVER TATTON-BROWN

and we write RH for the Riemann hypothesis and ST for Szemerédi’s theorem. It is
clearly nonsense to try to justify FTA → IP by filling in intermediate inferences of the
form

FTA → RH, RH → ST, ST → RH, RH → IP.

These may be valid as material implications (in the presence of the axioms of ZFC),
but they are totally useless as intermediate inferences for us; and to explain why they
are the wrong kind of intermediate inferences, we have to start putting inferences on
some sort of scale of plausibility, or simplicity, or evidentness, and require that adding
intermediate inferences take us in the increasing direction on this scale. This is the
first step towards thinking of mathematics in terms of levels of detail, as in §3 and §4,
and to the requirement—implicit in Rav’s description—that nontrivial inferences be
provable in greater detail. Then we are on the road to the argument for formalizability
just given.

This argument concerned in principle formalizability, but it is also possible to say a
little from this perspective about how practical formalization might be. Indeed we can
use the above framework to address a weaker version of Rav’s worry put forward by
Pelc (2009), who accepts that the process of filling in with intermediate inferences will
necessarily terminate, but questions whether we have any reason to believe this process
will result in a formal proof of feasible length (given some initial proof of reasonable
size). Pelc defines a vast number M in terms of various fundamental constants, large
enough so that there is no possibility of us ever (in practice) constructing a formal
proof of this length. His number M is at least the number of particles in the universe
divided by the Planck time (in seconds), and thus at least 10120 on standard estimates;
so a special case of Pelc’s worry is whether when formalizing a proof of reasonable
length, we have any reason to believe the resulting formal proof will be less than 10120

symbols.
The framework of levels of detail developed above can also be useful when addressing

this kind of worry. Indeed one can get from the week 2 level of detail to the research
article level of detail (terse) in a small number of steps up: from the week 2 level of detail
to the year 2 level of detail, from the year 2 level of detail to the graduate level of detail
(explicit), and from the graduate level of detail (explicit) to the research article level of
detail (explicit). For each of these steps one can estimate by considering examples what
kind of factor increase in length one generally obtains, when writing out an inference
from the more compressed level at the more detailed level. Though it would have to
be confirmed by more careful investigation, my belief from considering examples is
that this factor is not generally too large, with a factor of less than 5 being common,
a factor of 10 being fairly rare and a factor of 20 being very rare (as a proportion
of inferences). This is supported by the example of Perelman’s proof of the Poincaré
conjecture discussed in §3, where an extremely high level argument was written out
at around the graduate level of detail with a factor of increase in length of 8. Thus
though one may obtain exponential growth in proof length as one fills in details in a
proof, to bring it down to the week 2 level of detail, the base and exponent are both
fairly small: the former being the factor of increase with each step to greater detail,
the latter being the number of such steps (4 in the case above). Even with a factor of
20 at each stage, and another factor of 20 (again a crude upper bound) to reach the
formal level from the week 2 level, this gives us an overall factor of increased length
of at most 205 = 3, 200, 000 to formalize an argument at the research article level of
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detail (terse). This is vastly less than the factor Pelc is concerned might be necessary.
Though this could undoubtedly result in very unwieldy proofs (if this crude upper
bound was attained), they would still be within the bounds of feasibility, as usually
conceived—requiring perhaps a few gigabytes or tens of gigabytes of space to store on
a hard drive.17

Even if one can fill out the above sketched argument to make a convincing case
that all rigorous proofs of reasonable length will be feasibly formalizable, this does
not meet one major kind of objection to formalizability: namely, that the process of
formalization so dramatically changes a proof that the formal proof that results cannot
rightly be regarded as the “same proof” as the original, and thus should not be regarded
as a formalization of it. Larvor writes of the “violence or essential loss” that can result
from formalization (Larvor, 2012, p. 717). A related question concerns what practical
relevance formalization has, or could have, to mathematics; it played only an indirect
role in the account of rigour from §3 and §4, and turned out to be inessential to the
process of resolving disputes in mathematics described in §5. These questions will have
to await possible consideration in future work.

§8. Final thoughts. To conclude, there are a few loose ends concerning rigorous
proof to discuss.

First, to say a bit about a topic that has been neglected here: understanding proofs.
Indeed instead of just checking each line of a proof, one generally also wants to
understand the proof “as a whole”. This can be phenomenologically quite distinct
from mere confidence that each line follows from the previous ones, as Tieszen (1992,
pp. 58–59) emphasizes. Though it is tempting to think about understanding in terms of
the distinctive subjective subjective experience of grasping a proof, this characteristic
sensation may not always be attainable—for instance it may be hard to gain the feeling
of an immediate grasp of a proof taking longer than a page or so, or of a proof
which relies on substantial previous results. An attractive alternative is to think of
understanding as an ability, as advocated by Avigad (2011): for instance understanding
a proof may mean that one can recreate it oneself, convey its ideas informally to another
mathematician, use its ideas or techniques to prove similar results, generalize it, suggest
how it could have been discovered, and so on. In many of these capacities that displays
understanding of a proof, the ability to create or recognize valid proofs—the ability
discussed throughout this paper—is key: recreating the proof means writing out a
similar valid proof of the same result, generalizing it means writing out a similar valid
proof of a more general result, and so on. Arguably, to convey the ideas behind the
proof to another mathematician means to use words, gestures, diagrams and so on to

17 This sketched argument is intended to concern formalizability in a standard system of natural
deduction, such as that of Prawitz (1965, chap. I), relative to the axioms of ZFCU, which
I take to be the axioms underlying the usual practice of proof in modern mathematics. The
question of proof speed up at a more compressed level of informal mathematics should be
distinguished from the question of proof speed up in a stronger formal system (there is no
reason to believe that any system of rules could be written down that govern informal
mathematical inferences, as discussed in §1), though it is possible that if one required
formalization in a weaker system, the lengths of the formal proofs obtained in practice
would increase.
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equip the recipient with the means to recreate for themselves a similar valid proof of
the result in question. As Thurston (1994, pp. 31–32) emphasizes, it can often be much
easier to convey mathematical ideas by informal communication than by embedding
them in and then excavating them from rigorous proofs.

A second point is that in practice in mathematics it is not demanded that every
inference in a proof actually be valid. Total validity is intended when many philosophers
speak of proof (as has been the attitude in this paper), but in reality if an argument
published in a mathematics journal contains a number of typos and minor logical
errors, it may still be regarded as a perfectly acceptable proof. We could call the
mathematicians’ use of the word proof “proof in the weak sense”, to distinguish it
from the philosophical use of the term. The key feature I think for proof in this weak
sense is I think that the proportion of valid inferences is high, or very high, and that
those inferences which are invalid are each fixable relatively easily. Thus for instance
the classification of finite simple groups may well be a proof in this weak sense, even
though it is so enormously long that it is practically certain that it contains errors.
This is more or less the view taken by Aschbacher (2005). A proof of a result in this
weak sense still establishes that its conclusion is a logical consequence of the basic
principles used—since in principle one could convert it into a proof in the strict sense,
in which case the result would be a logical consequence of the relevant basic principles
(as seen in §7), and whether or not the conclusion is a logical consequence of the basic
principles is independent of whether any such conversion is actually carried out.

Finally, a note on the epistemology of mathematics. In §3 and §4, an attempt
was made to understand how rigour is judged in mathematics by thinking about
how rigorous proof is learnt—by a gradual ascent up levels of greater and greater
compression, at each stage being able to tutor one’s judgment of which inferences
are valid by checking if they can be proved in greater detail. There is undoubtedly
more that could be said about this process, but at any rate it is only part of a full
epistemology of mathematics. Indeed it was argued in §7 that a valid proof shows its
conclusion to be a logical consequence of the basic principles used; but this in itself
does not imply that the conclusion is true. That would require further arguments, for
instance arguments that the basic principles themselves are true. Thus the epistemology
sketched here is one component of a full epistemology of proof, which would need
to be supplemented by an epistemology of the basic principles themselves. Whether
the basic principles generally used in mathematics—those of set theory—are true,
and how we could know this, are exactly the kinds of epistemological questions that
philosophy of mathematics has long wrestled with, and which some advocates of the
shift to focusing on actual mathematics like to disparage, or describe as irrelevant
to mathematics itself (for instance Rav, 1999, Goethe & Friend, 2010 and De Toffoli
& Giardino, 2016). It is of note that thinking about mathematical practice and the
epistemology of proof naturally leads us back to exactly this standard epistemological
question.
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Szemerédi, E. (1975). On sets of integers containing no k elements in arithmetic

progression. Polska Akademia Nauk. Instytut Matematyczny Acta Arithmetica, 27,
199–245.

https://doi.org/10.1017/S1755020320000398 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000398


508 OLIVER TATTON-BROWN

Tanswell, F. (2015). A problem with the dependence of informal proofs on formal
proofs. Philosophia Mathematica, 23(3), 295–310.

Tatton-Brown, O. (2019). Rigour and intuition. Erkenntnis (online only early view).
Taylor, J., & Garnier, R. (2014). Understanding Mathematical Proof (first edition).

Boca Raton, FL: Routledge.
Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American

Mathematical Society, 30(2), 161–177.
———. (1997). Three-Dimensional Geometry and Topology, Vol. 1. Princeton, NJ:

Princeton University Press.
Tieszen, R. (1992). What is a proof ? In Detlefsen, M., editor. Proof, Logic and

Formalization (first edition). London: Routledge, pp. 57–76.
Tragesser, R. (1992). Three insufficiently attended to aspects of most mathematical

proofs: Phenomenological studies. In Detlefsen, M., editor. Proof, Logic and
Formalization (first edition). London: Routledge, pp. 162–198.

Veblen, O. (1905). Theory on plane curves in non-metrical analysis situs. Transactions
of the American Mathematical Society, 6(1), 83–98.

Velleman, D. J. (2006). How to Prove It: A Structured Approach (second edition).
Cambridge: Cambridge University Press.

Walker, R. C. (1974). The Stone-Čech Compactification. New York: Springer-Verlag.
Weir, A. (2016). Informal proof, formal proof, formalism. The Review of Symbolic

Logic, 9(1), 23–43.

DEPARTMENT OF PHILOSOPHY
UNIVERSITY OF BRISTOL

BRISTOL, UK
E-mail: otattonbrown@gmail.com

https://doi.org/10.1017/S1755020320000398 Published online by Cambridge University Press

mailto:otattonbrown@gmail.com
https://doi.org/10.1017/S1755020320000398

	1 Introduction
	2 Initial remarks on rigour
	3 A rigorous eduction
	4 The concept of rigour
	5 Disagreements about validity
	6 Naive set theory?
	7 Formalizability
	8 Final thoughts

