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Abstract
In this paper, we introduce the concept of a multilayer network game in a cooperative setup. We con-
sider the notion of simultaneous contribution of individual players or links to two different networks
(say, X and Z). Our model nests both classical network games and bi-cooperative network games. The
calculation of the utility of players within a specific network in the presence of an additional/alternative
network provides a broader spectrum of real-world decision dynamics. The subsequent challenge involves
achieving an optimal distribution of payoffs among the players forming the networks. The link-based rule
best fits to ourmodel as it delves into the influence of the alternative links in the network.We have designed
an extended Position value to address the complexities arising from scenarios where networks overlap.
Further, it is shown that the Position value is uniquely characterized by the Efficiency and Balanced Link
Contribution axioms.
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1. Introduction
In this paper, we study multilayer network games under a cooperative game theoretic setup.
We investigate how the allocation rules can be designed and characterized based on players’
involvement in multiple networks. In the recent times, we see that various agents (players) of
the society are typically engaged in multiple networks simultaneously. Their interactions within
each network have the potential to impact one another in their socioeconomic transactions
(Lagesse et al., 2015; Neal, 2023). Consider, for example, the scenario where employers and poten-
tial employees are linked through Social and Business networks (Billand et al., 2023). In such
instances, the hiring decisions made by employers are likely to be influenced by the social and
personal behaviors exhibited by prospective employees on their social accounts. Such networks
are modeled through “multigraphs,” i.e., graphs having nodes with parallel edges, and are called
multilayer networks (Billand et al., 2023; Joshi et al., 2023). In Billand et al. (2023) and Joshi
et al. (2023), the interactions among the nodes (players) in multilayer networks are studied to
understand how such networks form and evolve. They establish the necessary and sufficient
conditions for the stability of a network (equilibria) using inter-network spillovers and network
complementarities.

There are also instances where players interact within pre-defined network structures estab-
lished through binding agreements. These agreements outline cooperation and value generation.
In this framework, a network’s stability depends on identifying a fair allocationmechanism for the
value generated by the network. Consider the example of employer-employee networks in light
of this framework. Here, the network’s value quantifies the mutual trust among players, which
is built over time through interactions in alternative networks. Using a fair allocation rule, the
employer ranks the players in the network and decides whom to employ. This approach has its
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origin in the theory of cooperative games. Therefore, we call it “multilayer network games in a
cooperative setup.” In the existing theories of network games and cooperative games with trans-
ferable utilities, players’ interactions are analyzed within a single network setting. The idea of how
a player’s involvement across multiple interconnected networks affects the overall distribution
of value is not well explored. For example, in employer-employee networks, participants might be
involved in multiple layers, such as formal professional relationships, informal social connections,
or working together on specific projects. Single-layer network models are inadequate to describe
such situations. Therefore, it is important to study the multilayer networks in a cooperative setup
and investigate how the allocation rules can be designed and characterized for such scenarios.

Note that, our model is different from that of Billand et al. (2023) and Joshi et al. (2023) in
the sense that (i) Unlike two fixed networks in their model, our value function is defined over the
class of all ordered pairs of subnetworks that can form with the given player set. (ii) Secondly, they
(Billand et al., 2023; Joshi et al., 2023) focus primarily on how networks evolve under equilibria
when players are involved in multiple networks. On the other hand, in our model, we look at
the collective behavior of the players in the networks, assuming that each network remains fixed
for some time. It is beneficial for the players to be in the network and generate value rather than
staying isolated and generating no value. The value function defined over the set of all such pairs
of subnetworks quantifies the influence of one network over the other in that pair. In the next
section, we provide an example to highlight these features more explicitly.

Our model is formulated as follows. We consider two networks, say g1 and g2 from the set of all
possible networks with the players inN. The players inN can be partitioned into four sub-groups:
players in g1 only, players in g2 only, players in both g1 and g2, and players neither in g1 nor in
g2. Thus, in our model, the players are allowed to form multiple networks among themselves.
This justifies the name of the corresponding network game as a “multilayer network game.” The
multilayer network games are defined over the set of all ordered pairs of networks, represented as
(g1, g2), each assigned a value indicating the maximum gain or minimum loss when the players
in N are partitioned into four groups as mentioned above. If either g1 or g2 is an empty network
(a network without any links) in the pair (g1, g2), it represents a single classical network. On the
other hand, if g1 ∩ g2 =∅, then the pair (g1, g2) represents a bi-cooperative network (Borkotokey
and Gogoi, 2014; Gogoi et al., 2014). Therefore, the classical network games and bi-cooperative
network games emerge as special cases of multilayer network games. Our work also resembles the
multigraphs presented in Forlicz et al. (2018) where multiple links can connect nodes. However,
our focus diverges in two key aspects. Firstly, in their model, each node is a tuple (x, b), where x
represents a player and b denotes the number of direct links it possesses. Consequently, both the
value function and allocation rule depend on the quantity b. In contrast, our model emphasizes
the inter-network effects, analyzing how one network influences the overall structure and value of
the other network, rather than focusing on individual player-level details within each network. In
Section 6, we discuss the parallels and contrasts between these models in detail.

In the context of network games, a solution involves a rational allocation of utilities gen-
erated as a result of cooperation, which could manifest in terms of money, power, influence,
etc., obtained within the specified network (Jackson, 2005). There are two distinct solution
concepts, viz., the player-based allocation rule and the link-based allocation rule (Bozzo et al.,
2015; Jackson, 2005; Myerson, 1977; Slikker, 2005). However, unlike the classical network
game, where it is the prerogative of the decision maker to choose between the player-based
and link-based rules, in multilayer network games, such rules cannot be applied arbitrarily.
A player-based allocation rule cannot capture situations involving the common links in networks
g1 and g2 simultaneously. On the other hand, link-based allocation rules consider the relation-
ships between players through their links and, thus, provide a more robust and realistic allocation
procedure. As a result, collaboration, efficiency, and resilience to player substitutions, etc., can be
captured, and a more effective resource distribution within the network can be obtained. Owing
to all these challenges associated with the multilayer network game, this paper concentrates on
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Figure 1. Facebook network: g1 = {12, 13, 23} and LinkedIn network: g2 = {12, 14, 15}.

a link-based allocation rule: the Position value. Within the cooperative framework of networks,
the Position value is recognized as one of the fairest link-based allocation rules (Borkotokey and
Gogoi, 2014; Gogoi et al., 2014; Slikker, 2005, 2011; van den Nouweland and Slikker, 2012). We
provide a characterization of the Position value using Efficiency and Balanced Link Contribution.

The rest of the paper is organized as follows: Section 2 details an example, that further high-
lights the motivation and application of our model. Section 3 contains the preliminary concepts
and definitions required for the model’s development. In Section 4, we present the model for mul-
tilayer network games, and in Section 5, we formulate the Position value specific to these games.
Further, in Section 6, we provide a concluding discussion.

2. Example
Suppose a group of college friends, connected on Facebook, graduate and start their careers in
different fields. Over time, they maintain their Facebook connections, sharing updates about their
lives, jobs, and accomplishments. Take, for example, a member working as a graphic designer who
posts on Facebook about a project they are currently working on. A member of the group with
marketing expertise offers to help. They connect on LinkedIn to discuss potential collaborations.
This connection generates a resource of their potential partnerships and professional collabo-
rations which is dependent on both their Facebook and LinkedIn networks. Thus, by leveraging
their Facebook connections, this group of individuals has created a valuable LinkedIn network that
can generate various resources, through job opportunities, professional advice and collaborations.
Suitable resource allocation within this network can enhance the benefits for all members.

Suppose players 1, 2, and 3 connect on Facebook and seek collaborations within their
LinkedIn networks. Let 4 and 5 join them from 1’s LinkedIn network, and 2 already have a
connection with 1 on LinkedIn. We consider this situation as an ordered pair of networks
({12, 13, 23}, {12, 14, 15}) as shown in Figure 1. There can be 64 possible collaborations in this
way,1 viz., ({12, 13}, {12}), ({12, 13}, {14}), ({12, 13}, {14, 15}), ({12, 13, 23}, {15}) etc. All these pos-
sible collaborations generate resources, for example, in the form of market share through their
networked efforts. Finally, based on all such possible interactions, the resource they generate needs
to be shared among all the players. Existing theories on network games and cooperative games
do not capture situations involving these multiple interconnected networks. Bi-cooperative net-
work games are also limited in this regard, as they do not consider links like {12}, which belong
to both the Facebook and LinkedIn networks in this example. On the other hand, multigraphs
treat such links as parallel links. However, in reality, links like {12} are single links that share
different information on different platforms, like a person adopting different roles in different
contexts. In classical network games, as already mentioned, the Position value is one of the fairest
allocation rules, taking into account player interactions in the networks. It aggregates the con-
tributions of the subnetworks of a given network. It does not consider the influence of multiple
networks. On the other hand, although the Position value in bi-cooperative network games takes
into account the value generated by the network pairs, they only consider disjoint network pairs,
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viz., ({12, 13}, {14}), ({12, 13}, {14, 15}) etc. Nevertheless, in case of multilayer network games,
we also have to consider the values generated by pairs viz., ({12, 13}, {12, 15}) etc. Here, {12} in
the first component is a Facebook link and that in the second component is a LinkedIn link.
Therefore, the Position value for multilayer network games needs to be defined in a more gen-
eral setup such that the values of all possible ordered network pairs are taken into account.
This further justifies that the study of link-based allocation rules in multilayer network games
is more significant, as understanding the characteristics of various links across multiple networks
helps designers identify the most valuable connections.

Government agencies can apply this concept for national accounting or tax and subsidy pur-
poses when dealing with conglomerates. As conglomerates operate in multiple industries, the
trade networks involving conglomerates can precisely be modeled by a multilayer network. The
Position value naturally captures the value added by every trade link and thus gives good estimate
for industrial policy perspective.

3. Preliminaries
In this section, we present the definitions and results from (Boruah et al., 2023; Grabisch and
Labreuche, 2002; Jackson andWolinsky, 1996; Jackson, 2005; Labreuche and Grabisch, 2008) nec-
essary for the development of our model. Specifically, definitions 1, 2, 4, 5 and their consequences
will be utilized in designing the value function for multilayer network games. Additionally, def-
initions 3, 6, 7 will be used in the formulation of the Position value for multilayer network
games.

Let N = {1, 2, . . . , n} be a finite player set. Every subset S of N is termed as a coalition and N
is referred to as the grand coalition. We will use lowercase letters, such as s and t, to represent
the cardinality of sets S and T, respectively, i.e., ‘#S’ is equivalent to “s” throughout the paper.
Sometimes, depending upon the context, we will use “|S|” to denote the cardinality of the set S.

3.1 Overlapping coalitional games
The concept of an overlapping coalitional game is introduced in Boruah et al. (2023). Below, we
formally present the model. Let there be two attributes, call them X and Z, where players can
contribute independently.

Given a player set N, let 2N × 2N = {(S, T) : S, T ⊆N} be the set of pairs of coalition. We call
each (S, T) ∈ 2N × 2N an overlapping bi-coalition. For any (S, T) ∈ 2N × 2N , we assume that play-
ers in S are X contributors, players in T are Z contributors, players in S∩ T contribute to both X
and Z, call them X–Z contributors, and players in N \ (S∪ T) absentees.

Definition 1. An overlapping coalitional game is a function o : 2N × 2N �→R with o(∅, ∅)= 0.

For each (S, T) ∈ 2N × 2N , o(S, T) represents the worth (gain or loss) of (S, T), when the play-
ers in S are X contributors, players in T are Z contributors and S∩ T may or may not be empty
and finally the remaining N \ (S∪ T) are absentees. Let ON be the real vector space of all over-
lapping coalitional games on N. Now, consider the order relation 
 on 2N × 2N as follows:
(A, B)
 (C,D) ⇐⇒ A⊆ C and B⊆D. For (S′, T′) ∈ 2N × 2N with (S′, T′) �= (∅, ∅), consider the
following special games inO

N .

Definition 2. The superior unanimity game ū(S′,T′) : 2N × 2N �→R is defined as follows

ū(S′,T′)(A, B)=
{
1 if (S′, T′)
 (A, B), (A, B) �= (∅, ∅),
0 otherwise.

(1)
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The set of superior unanimity games forms a basis forON and so every o ∈O
N can be expressed

as a linear combination of the superior unanimity games as follows,

o=
∑

(S′,T′)∈2N×2N
c(S′,T′)ū(S′,T′) (2)

where c(S′,T′) are the real constants. For every o ∈O
N , we can associate a cooperative game V

defined on S∪ T such that V(P)= o(P ∩ S, P ∩ T), for all P ⊆ S∪ T. Consequently, V possesses
a corresponding representation in terms of unanimity cooperative games {UP|P ⊆N, P �= ∅} as
follows (Harsanyi, 1963; Shapley, 1953).

V =
∑

∅�=P⊆S∪T
cPUP (3)

where cP = ∑
M⊆P (−1)p−mV(M) and the unanimity cooperative games UP are defined by

UP(S)=
{
1 if P ⊆ S,
0 otherwise.

It follows that ∑
∅�=P⊆S∪T

cP =V(S∪ T)= o((S∪ T)∩ S, (S∪ T)∩ T)= o(S, T). (4)

Definition 3. A one-point solution concept or a value for overlapping coalitional games is a function
that assigns an n-dimensional real vector to each overlapping coalitional game. This vector serves as
a representation of a payoff distribution among the players.

Here, we introduce a value for overlapping coalitional games similar to the LG value (Labreuche
and Grabisch, 2008). This value is termed to as the Overlapping LG value, abbreviated as OLG,
and is defined as follows.

For any o ∈O
N , (S, T) ∈ 2N × 2N such that for all i ∈N

�OLG
i (o)(S, T)=

∑
P⊆(S∪T)\i

p!(s+ t − st − p− 1)!
(s+ t − st)!

(
V(P ∪ i)−V(P)

)
(5)

where for P ⊆ S∪ T, V(P)= o(P ∩ S, P ∩ T) and #S∩ T := st.
Applying Eq.s (2), (3), (4) on (5), we find the expression of the OLG value for o ∈O

N in terms
of the Harsanyi’s dividend (Harsanyi, 1963) for �Sh, the Shapley value (Shapley, 1953) of the
associated cooperative game (S∪ T,V) as follows.

�OLG
i (o)(S, T)= �Sh

i (S∪ T,V)=
∑

P⊆S∪T : i∈P

cP
p
. (6)

3.2 Network games
Given the player set N and distinct players i, j ∈N, a link ij is the pair {i, j} which represents an
undirected relationship between i and j. Clearly, ij is equivalent to ji. The set of all possible links
with the player set N denoted by gN = {ij | i, j ∈N and i �= j} is called the complete network. Let
GN = {g|g ⊆ gN} be the set of all possible networks on N. The network ∅ is the network with-
out any links, which we refer to as the empty network. Let the number of links in a network g
be denoted by �(g). We can consider the links in a network g as hypothetical players. Thus g can
be thought of as a coalition of the players representing these links in g. However, to distinguish
the two representations, we use [g] to denote the coalition. Obviously, �(gN)= (n

2
) = 1

2n(n− 1)
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and �(∅)= 0. Let Li(g)= {ij|{i, j} ∈ g} be the set of links in which player i is involved. Denote
�i(g), the number of links in player i’s link set, and #Li(g)= �i(g). Therefore, it follows that

�(g)= 1
2

∑
i∈N �i(g). Let N(g) be the set of all players in g. A value function v for networks is

such that v :GN �→R with v(∅)= 0. For a network g, v(g) specifies the total worth generated by
the network g. Denote VN = {v|v :GN �→R, v(∅)= 0}, the set of all value functions.
Definition 4. A network game is defined as a pair (N, v), where N is the player set and v is the value
function.

When the player set N is fixed and there is no ambiguity, we represent a network game simply
as v.

Definition 5. For g ∈GN , the unanimity value function ug is given by

ug(g′)=
{
1 if g ⊆ g′
0 otherwise.

(7)

The unanimity value functions form a basis forVN . Thus v ∈V
N can be written as a linear com-

bination of unanimity value functions ug , i.e., v= ∑
g⊆gN cgug , where cg ∈R are the unanimity

coefficients of v.

Definition 6. A network allocation rule is a function Y : GN ×V
N →R

n such that for every g ∈G
N

and every v ∈V
N , Yi(g, v) represents the payoff to player i with the condition that Yi(∅, v)= 0.

Definition 7. For a given network g, let v be a value function with unanimity coefficients (cg′)g′⊆g .
Then the Position value (Slikker, 2005), YPV (g, v) is defined by

YPV
i (g, v)=

∑
g′⊆g

cg′�i(g′)
2�(g′)

, ∀i ∈N. (8)

Let vg be the associated cooperative game with respect to the network game v considering the
links in gN as players. It follows that for every link l of g, the Shapley value �Sh (Shapley, 1953) of
l with respect to vg is given by

�Sh
l (g, vg)=

∑
g′⊆g : l⊆g′

cg′

�(g′)
. (9)

Now, from Eq.s (8) and (9), we obtain

YPV
i (g, v)=

∑
l∈Li(g)

1
2
�Sh

l (g, vg), ∀i ∈N. (10)

4. Multilayer network games
In this section, we introduce the notion of our proposedmultilayer network games. Let g1, g2 ∈GN

be two networks with possibly non-empty g1 ∩ g2. Then (g1, g2) is called a multilayer network.
We assume that players in g1 and g2 as X and Z contributors, respectively. Players belonging
to g1 ∩ g2 are X–Z contributors, and players in the set N \N(g1 ∪ g2) are absentees. Following
ideas similar to those of overlapping coalitions, we call a link in g1 and g2 an X-link and a Z link,
respectively, and refer to them as single-layer links. On the other hand, a link in g1 ∩ g2 exhibits
both X and Z attributes is called an X–Z link, which we refer as multilayer link. In Figure 2, we
present a multilayer network (g1, g2) on the player set N = {1, 2, 3, 4, 5} where g1 = {12, 23} and
g2 = {23, 24, 34}. Both g1 and g2 contains two common players 2 and 3, and therefore, (g1, g2)
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(a) Exclusive X link: (b) Exclusive Z link: (c) X-Z link:

Figure 2. An example of a multilayer network (g1, g2) on N= {1, 2, 3, 4, 5}.

having an X–Z link {23} forms a multilayer network. Let 2gN × 2gN = {(g1, g2)|g1, g2 ⊆ gN} be the
set of all multilayer networks on N.

For (g1, g2) ∈ 2gN × 2gN , let L(g1, g2) denote the set of links in g1 and g2, i.e., L(g1, g2)= L(g1 ∪
g2) and �(g1, g2) represents the total number of links in L(g1, g2). Let Li(g1, g2)= Li(g1 ∪ g2) be the
set of links that involve player i in g1 and g2. Let �i(g1, g2)= #Li(g1, g2). For any link l, by (g1, g2) \ l,
we mean (g1 \ l, g2 \ l). We denote by N(g1, g2)=N(g1 ∪ g2), the set of players in g1 and g2.

A value function is a function vm : 2gN × 2gN �→R such that vm(∅,∅)= 0. Thus, a value
function assigns each (g1, g2) ∈ 2gN × 2gN a real number, its generated worth, when players in g1
are X contributors, players in g2 are Z contributors, players in g1 ∩ g2 act as X–Z contributors,
and the remaining players are considered absentees. LetMG denotes the set of all value functions
on 2gN × 2gN .

Definition 8. A multilayer network game is a pair (N, vm), of a player set N and a value function
vm : 2gN × 2gN �→R.

If the player set N is fixed and there is no ambiguity, we simply write vm to denote a multilayer
network game.

Definition 9. An allocation rule for multilayer network game is a function Y : (2gN × 2gN )×
MG �→R

n such that Yi((∅,∅), vm)= 0 for all vm ∈MG.
For each i, Yi((g1, g2), vm) represents the payoff to the player i with respect to vm ∈MG and
(g1, g2) ∈ 2gN × 2gN .

5. The Position value for multilayer network games
Here, we initially present the link game associated with a multilayer network game, where the set
of links serves as the set of players.

Let [gN] represent the hypothetical player set corresponding to the links in gN . For (g1, g2) ∈
2gN × 2gN , let [g1] and [g2] refer to the set of all hypothetical players representing the links in
g1 and g2 respectively. For a given multilayer network game (N, vm), the associated link game
([gN], vm∗) (where vm∗ :O[gN ] �→R is a function) of (N, vm) is defined as follows.

For each (S, T) ∈ 2[gN ] × 2[gN ] = {(S, T)|S, T ⊆ [gN]} there is a (g1, g2) ∈ 2gN × 2gN with S=
[g1], T = [g2] such that vm∗(S, T)= vm(g1, g2). Conversely, for each (g1, g2) ∈ 2gN × 2gN , there is a
pair (S, T) ∈ 2[gN ] × 2[gN ] such that S= [g1] and T = [g2].
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Definition 10. An allocation rule Y is called a link-based allocation rule if there is some
YL :

(
2gN × 2gN

) ×MG �→R
n(n−1)

2 such that for all (g1, g2) ∈ 2gN × 2gN , vm ∈MG, i ∈N,∑
l∈([g1]∪[g2])

YL
l ((g1, g2), v

m)= vm(g1, g2),

and

Yi((g1, g2), vm)=
∑

l∈Li(g1,g2)

YL
l ((g1, g2), v

m)
2

.

Definition 11. The Position value in a multilayer network game, denoted as YMNPV , is the allo-
cation rule where each player i ∈N in a multilayer network game (N, vm) receives half of the
OLG value for each of their links considered as hypothetical players in the associated link game
([gN], vm∗), i.e.,

YMNPV
i ((g1, g2), vm)=

∑
l∈Li(g1,g2)

1
2
�OLG

l (vm∗)([g1], [g2]).

5.1 Characterization of the Position value
Here, we provide an axiomatic characterization of the Position value for the class of multilayer
network games using axioms of Efficiency and Balanced Link Contribution.

Claim 1 (Efficiency). An allocation rule Y satisfies Efficiency if for any vm ∈MG and (g1, g2) ∈
2gN × 2gN we have, ∑

i∈N(g1,g2)
Yi((g1, g2), vm)= vm(g1, g2).

The Efficiency axiom implies that the payoffs received by players under the allocation rule
should sum to the total worth generated by the multilayer network (g1, g2). This principle is con-
sistent with the notion that an efficient allocation ensures the accurate distribution of the total
worth within a multilayer network among its individual players in accordance with the specified
allocation rules.

Lemma 1. The Position value in a multilayer network game satisfies Efficiency.

Proof. It directly follows from the definition 11. �
Claim 2 (Balanced Link Contribution). An allocation rule Y satisfies Balanced Link Contribution
if for any vm ∈MG and (g1, g2) ∈ 2gN × 2gN and i, j ∈N, we have∑
l∈Lj(g1,g2)

(
Yi((g1, g2), vm)− Yi((g1, g2) \ l, vm)

) =
∑

l∈Li(g1,g2)

(
Yj((g1, g2), vm)− Yj((g1, g2) \ l, vm)

)
.

The Balanced Link Contribution axiom states that, within a multilayer network game and
under an allocation rule, the impact of losing a link, whether multilayer or single-layer is iden-
tical for the involved players. Moreover, the net effects of removal of a X–Z link, remain balanced
between players, ensuring fairness in the allocation process. The unique feature highlighted here
is that the removal of a multilayer link results in its removal from both the networks g1 and g2.

Lemma 2. The Position value in a multilayer network game satisfies Balanced Link Contribution.
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Proof. For a given vm ∈MG, (g1, g2) ∈ 2gN × 2gN and i, j ∈N, let YMNPV
i and YMNPV

j be the ith

and jth components of the Position value. Now,

∑
l∈Lj(g1,g2)

(
YMNPV
i ((g1, g2), vm)− YMNPV

i ((g1, g2) \ l, vm)
)

=
∑

l∈Lj(g1,g2)

( ∑
l1∈Li(g1,g2)

1
2
�OLG

l1 (vm∗)([g1], [g2])−
∑

l′1∈Li(g1\l,g2\l)

1
2
�OLG

l′1
(vm∗)([g1 \ l], [g2 \ l])

)

=
∑

l∈Lj(g1,g2)

( ∑
l1∈Li(g1,g2)

1
2
�Sh

l1 ([g1]∪ [g2],V)−
∑

l′1∈Li(g1\l,g2\l)

1
2
�Sh

l′1
([g1 \ l]∪ [g2 \ l],V)

)

= 1
2

∑
l∈Lj(g1,g2)

( ∑
l1∈Li(g1,g2)

∑
P⊆([g1]∪[g2]) : l1∈P

cP
|P| −

∑
l′1∈Li(g1\l,g2\l)

∑
P′⊆([g1\l]∪[g2\l]) : l′1∈P′

cP′

|P′|
)

= 1
2

( ∑
P⊆[g1]∪[g2]

|Pj| cP|P| |Pi| −
∑

P′⊆[g1\l]∪[g2\l]
|P′

j|
cP′

|P′| |P
′
i|
)

=
∑

l∈Li(g1,g2)

(
YMNPV
j ((g1, g2), vm)− YMNPV

j ((g1, g2) \ l, vm)
)
,

where the first equality follows by definition, the second and third equalities are derived from
Eq.(6), and the fourth equality is obtained through the rearrangement of terms. Here, for each
S⊆N, |Si| denotes the number of hypothetical players in S corresponding to the links involving
player i ∈N. Note that the expression after the fourth equality sign is symmetric in both i and j.�

Next, we will establish that the Position value for the class of multilayer network games is the
unique allocation rule that satisfies these two axioms: Efficiency and Balanced Link Contribution.

Theorem 1. The Position value YMNPV is the unique allocation rule determined by the axioms of
Efficiency and Balanced Link Contribution.

Proof. The proof proceeds through induction on �(g1, g2), where (g1, g2) ∈ 2gN × 2gN . Let N =
{i, j} such that �(g1, g2)= 1. Then, one of the following scenarios arises:

Case (i) g1 = {ij}, g2 =∅,
Case (ii) g1 =∅, g2 = {ij} and
Case (iii) g1 = {ij}, g2 = {ij}.
Case (i): If possible let, Y , Y ′ be two allocation rules that satisfy Efficiency and Balanced Link

Contribution. It follows directly from Balanced Link Contribution that,

∑
l∈Lj(g1,g2)

(
Yi((g1, g2), vm)− Yi((g1, g2) \ l, vm)

) =
∑

l∈Li(g1,g2)

(
Yj((g1, g2), vm)− Yj((g1, g2) \ l, vm)

)
⇒ Yi((g1, g2), vm)− Yi((g1, g2) \ ij, vm) = Yj((g1, g2), vm)− Yj((g1, g2) \ ij, vm)
⇒ Yi((g1, g2), vm)− Yi((∅,∅), vm) = Yj((g1, g2), vm)− Yj((∅,∅), vm)
⇒ Yi((g1, g2), vm) = Yj((g1, g2), vm).

Similarly, Y ′
i ((g1, g2), vm)= Y ′

j ((g1, g2), vm). Therefore, by Efficiency, we have Y = Y ′.
Cases (ii) and (iii) are similar to Case (i), and so the proofs are omitted here. Thus, the result

holds for a single link.
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Let �(g1, g2)> 1. For �(g1, g2)≤ k− 1, suppose the allocation rule for vm which satisfies
Efficiency and Balanced Link Contribution is unique. From Balanced Link Contribution, we have

∑
l∈L2(g1,g2)

(
Y1((g1, g2), vm)− Y1((g1, g2) \ l, vm)

) =
∑

l∈L1(g1,g2)

(
Y2((g1, g2), vm)− Y2((g1, g2) \ l, vm)

)
,

∑
l∈L3(g1,g2)

(
Y1((g1, g2), vm)− Y1((g1, g2) \ l, vm)

) =
∑

l∈L1(g1,g2)

(
Y3((g1, g2), vm)− Y3((g1, g2) \ l, vm)

)
,

...
...

...∑
l∈Ln(g1,g2)

(
Y1((g1, g2), vm)− Y1((g1, g2) \ l, vm)

) =
∑

l∈L1(g1,g2)

(
Yn((g1, g2), vm)− Yn((g1, g2) \ l, vm)

)
.

This would further imply,

�2(g1, g2)Y1((g1, g2), vm)− �1(g1, g2)Y2((g1, g2), vm) =
∑

l∈L2(g1,g2)
YMNPV
1 ((g1, g2) \ l, vm)

−
∑

l∈L1(g1,g2)
YMNPV
2 ((g1, g2) \ l, vm),

�3(g1, g2)Y1((g1, g2), vm)− �1(g1, g2)Y3((g1, g2), vm) =
∑

l∈L3(g1,g2)
YMNPV
1 ((g1, g2) \ l, vm)

−
∑

l∈L1(g1,g2)
YMNPV
3 ((g1, g2) \ l, vm),

...
...

...

�n(g1, g2)Y1((g1, g2), vm)− �1(g1, g2)Yn((g1, g2), vm) =
∑

l∈Ln(g1,g2)
YMNPV
1 ((g1, g2) \ l, vm)

−
∑

l∈L1(g1,g2)
YMNPV
n ((g1, g2) \ l, vm),

and by Efficiency, ∑
i∈N(g1,g2)

Yi((g1, g2), vm)= vm(g1, g2).

Here, we have a system of n linearly independent equations with n variables: Y1, Y2, . . ., Yn. The
coefficient matrix is of full rank, n. Hence, the system possesses a unique solution. Therefore,
for �(g1, g2)= k, the allocation rule that upholds Efficiency and Balanced Link Contribution is
unique. In conclusion, the Position value stands as the unique allocation rule meeting the axioms
of Efficiency and Balanced Link Contribution. �

6. Concluding discussions
In this section, we explore the distinctions and parallels of multilayer network games, bi-
cooperative network games, and multigraphs. By understanding how links and nodes operate
within these different frameworks, we can better address various network challenges.

In a multilayer network, a link acts as an X–Z link, displaying both X and Z characteristics
simultaneously. It is possible that the set of links for both multilayer network games and bi-
cooperative network games are the same. However, in a bi-cooperative network, a link can either
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1 2 3

4

5

Figure 3. Multigraph: g1 + g2 = {12, 23, 23, 24, 34}.

be exclusively X or Z but not both at the same time, see Figure 2. Hence, even though the set of
links are same, their roles may differ in each case. For instance, consider (h1, h2)= ({12, 23}, {23})
and (g1, g2)= ({12}, {23}). In this scenario, L(h1, h2)= L(g1, g2)= {12, 23}. However, {23} acts as
a X–Z link in (h1, h2) and as a Z link in (g1, g2). Consequently, (h1, h2) belongs to a multilayer
network, while (g1, g2) belongs to a bi-cooperative network.

Multigraph is a graph in which multiple links (arcs) between two given nodes and loops
(links ending at the same nodes) can occur (Forlicz et al., 2018). Consider, g1 = {12, 23} and
g2 = {23, 24, 34} on N = {1, 2, 3, 4, 5}. Here, the pair (g1, g2) forms a multilayer network (see
Figure 2). However, if we combine the two networks, viz., g1 + g2 = {12, 23, 23, 24, 34}, then
g1 + g2 represents a multigraph as shown in Figure 3.

Further, an allocation rule (or a point-value solution) in a multigraph (Forlicz et al., 2018) or
multilayer network allows for determining the role of each player within it. For example, players
(2, 3, and 4 in Figure 3) connected by more links are considered more important in multigraphs
than players with fewer links (such as player 1 in Figure 3). Similarly, in multilayer networks,
players connected by X–Z links are more significant than those connected only by X or Z links.
Therefore, an allocation rule in both multigraphs and multilayer networks should prioritize these
players. However, the distinction between a multigraph and a multilayer network lies in how we
deal with the links. In a multigraph, all links between nodes are considered to be distinct, and
there are no overlaps among them (Forlicz et al., 2018). On the contrary, in the multilayer net-
work games, we have “multilayer links” that belong to two different networks simultaneously.
Although a multilayer link belongs to two different networks, it acts as a single link with two dis-
tinct attributes (say, X and Z). For example, in Figure 2 multilayer link {23} acts as a single link.
Therefore, when determining the Position value, we count multilayer links only once. Forlicz et
al. (2018) define the Shapley value for multigraphs that considers every individual link between
two given nodes, including both single and multiple links, as well as loops. To illustrate, in the
multigraph g1 + g2 depicted in Figure 3, nodes 2 and 3 are connected through two links. In the
model proposed by Forlicz et al. (2018), each link between nodes 2 and 3 is evaluated separately
when computing the Shapley value for each player in g1 + g2.

The multilayer network games, bi-cooperative network games, and multigraphs offer valu-
able insights into managing, optimizing, and decision-making in complex network systems.
Multilayer network games highlight the interconnectedness across different network layers,
acknowledging nodes’ multiple roles in managing internal data and external communications
simultaneously. This understanding supports integrated network management and optimizes
resource allocation based on critical multilayer connections. Bi-cooperative network games sim-
plify interactions within distinct network structures (X or Z), clarifying responsibilities in simpler
contexts. Multilayer network games address decision-making complexities to comprehensively
assess risks and balance security, efficiency, and operational continuity in dynamic environ-
ments. Multigraphs provide detailed insights into network structure and the significance of
nodes, contributing to enhanced network security and efficiency and ensuring resilience across
interconnected layers of network infrastructures.
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In conclusion, we have studied the allocation rule of players in a network in presence of an
another network having common or shared players. Our multilayer network game in the coop-
erative framework has proven to be more effective in addressing real life scenarios arising in
the government and private sectors. The proposed framework is free from the limitations of
bi-cooperative network game and classical network game. Our model offers more flexibility in
terms of network connections while calculating utilities of players, enabling us to solve real life
complexities.
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Note
1 g1 has 3 links, so the total number of subnetworks of g1 is given by

∑3
i=0

(3
i
) = 8, including the empty network. Similarly,

g2 also has 3 links, so the total number of subnetworks of g2 is also 8. Therefore, the total number of possible collaborations
between g1 and g2 is 8× 8= 64.
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