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We shall discuss solutions of linear partial differential equations of the 
form 

(1) $(£>, xi, x2, . . . xn) u + ^(D, i) u = 0, 

where ^ is an ordinary differential operator of order s with respect to t. Our 
first theorem gives a solution of (1) for the Cauchy data; 

(2) u(Xi, X2, . . . Xn, 0 ) = P ( X i , X2, . . . Xn), 

dju 
—j (xi, x2,...xn,0)=0, j = 1, 2, . . . , ^ - 1, 

whenever the function P is annihilated by a finite iteration of the operator <ï>. 
This situation occurs if P is a polynomial and $ any differential operator 
with constant coefficients and no constant term or if P is polyharmonic and <£ 
the Laplacian operator. The solution hinges upon the integration of a finite 
system of ordinary differential equations. 

THEOREM 1. Suppose for some integer k we have 

(3) $*(P) ^ 0, ^k+1(P) = 0; 

urther suppose that Uo, uu . . . uk are a set of solutions of the system of ordinary 
differential equations 

(4) ¥(uj) + Uj-! = 0, j = 1, 2, . . . , &, 

*Oo) = 0, 

with initial conditions 

( 5 ) «o(0) = 1, u,(fl) = 0, j> h 

^ (0) = 0 , m = 1, 2 , . . . , s — 1, allj', 

then a solution of (I) satisfying (2) is 

k 

(6) u(xlt x2, . • . xn, i) = X &(P)"Uj. 
j=0 
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Proof. 
k 

[$ + *]tt = [$ + V] S $J(P)'Uj 

= Z [* + * ] * ' ( P ) - « , 

= P - [ ¥ («o)] + Z * ' (P) [*(«>) + ^ - i ] + * " + 1 ( P ) ' ^ 

= o, 
by (3), (4) and the linearity of the operators <ï> and &. The conditions (5) on 
the Uj ensure that (6) satisfies conditions (2) and the proof of the theorem is 
complete. 

As an application of this theorem we construct a solution of 

M\ du . .du . dil „ , v 2 

(7) a — + b — + c — = 0, u(x, y, 0) = x y. 

We note that 3>(P) = 2axy + bx2, $2(P) = 4abx + 2a2y, $3(P) = 6a2b and 
$4(P) = 0. 

— / t2 — / 3 

« 0 = 1 , » ! = — > M 2 = - - 5 ) M 3 = - - 3 

and 

(8) u(x, y, t) = x2y + {2axy + bx2)(--J + ^abx + 2 a
2

; y ) U O + 

' < $ 
_ {ex — at)2(cy — bt) 

cz 

The last form of (8) may also be obtained from the general solution of (7), 
F {ex — at, cy — bt), by requiring that it reduce to x2y when / = 0. 

An alternate set of Cauchy data frequently encountered for (1) when \I> is 
a second order operator is 

(9) u(xi, x2l . . . xni 0) = 0, ut(xu x2j . . . xn, 0) = Q(xi, x2, . . . xn). 

For this case an analogous theorem holds: 

THEOREM 2. Suppose (3) holds and F0, Vu . . . Vk are the solutions of 

(10) ¥ ( 7 0 ) = 0 , ¥ ( 7 , ) + 7,-1 = 0, 7 = 1 , 2 , . . . * , 

7m/& initial conditions 
(11) 7,(0) = 0 , j = 0 , l , . . . i , 

r 0 ( 0 ) = 1, Vfj(0) = 0 , j = 1 , 2 , . . . * ; 

then the Cauchy problem for (1) with boundary values (9) has a solution 

(12) « = è &{Q) Vj. 

Qa% 
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The authors have recently obtained basic sets of homogeneous polynomial 
solutions (1) for the Laplace and wave equations in k variables. Although 
Theorems 1 and 2 were not discovered until after these basic sets were 
developed, they provide a natural way for deriving them. Let us consider the 
wave equation in three space variables and one time variable, 

(13) V2u - ^ = 0. 

A general homogeneous polynomial W, of degree n in (x, y, z, f), has ( o ) 

(n + l\ 
arbitrary coefficients. Requiring W to be a solution of (13) gives ( o ) 

independent1 conditions on these coefficients showing that 

v 3 y - \ 3 y = (w + 1) 

of them are independent. We may construct our basic set of (n + l ) 2 homo­
geneous polynomial solutions of degree n for (13) by first applying Theorem 1 

to each of the ( 1 monomials P(x,yyz) of type xaybzc, a + b + c = n 

(n _|_ A 
and then applying Theorem 2 to each of the I 9 ) monomials Q(x,y,z) 

of type xay^zy, a-\-/3-\-y = n — 1. The resulting homogeneous polynomial 
solutions of (13) are 

V 2 ) + \ 2 ; = ̂  + 1) 
in number. The polynomials generated by Theorem 1 contain only one term 
of degree less than 2 in t, the generator term xaybzc; likewise those generated 
by Theorem 2 contain only one term xay^zy t of lowest degree in t. Thus our 
set of solutions is independent and, since it is correctly numbered, is a basic 
set of solutions. 

The basic set constructed in the above manner may be represented as 
follows: for each set of non-negative integers a, b, c, d, a + b + c + d — n, 
d < 1 

(14) Watb,e,d(x, y, z, t) = E V2 V / O 

a\ ft! cl[$D] xAyBzctD 

(^)s(l^L),(i^ç)wmc,,D, 
1Independence of these conditions may be readily established by a generalization of Whit-

taker's footnote on the corresponding harmonic polynomials (Whittaker & Watson, Modern 
Analysis, 4th éd., p. 389) or, as suggested by the referee, by using an argument like that in 
Courant-Hilbert, vol. I, English éd., at the bottom of p. 512. 
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where the final summation extends over all non-negative A, B, C and D such 
that A+B + C + D = n, A =a , B=b, C = c, D= d mod 2, and A < a, 
B < 6, C < c. The final form of (14) corresponds, except for a constant 
factor, to the basic set for the wave equation developed in (1), but the inter­
mediate form given here for the first time is much simpler to describe and 
use. 

Instead of trying to solve Cauchy's problem for the wave equation in terms 
of the basic set of polynomials (14) when our initial conditions are suitable 
we may use: 

THEOREM 3. The solution of (13) with initial conditions 

u(x, y, z, 0) = P{x, y, z), ut(x, y, z, 0,) = Q(x, y, z), 

where P(x,y,z) and Q(x,y,z) are polyharmonic functions of order p and q 
respectively, is given by the sum: 

p-l ,2j q-\ ,2fc+l 

(15) U(X, y, Z, t) = g V - ( P ) f2]Tl + g V»(Q) ^ ^ • 

This theorem is established by applying Theorem 1 to (13) with boundary 
conditions, u(x,y,z,0) = P , ut(x, y, z} 0) = 0 and Theorem 2 to (13) with 
boundary conditions, u(x, y} z, 0) = 0, ut(x, y, z, 0) = Q, and adding the 
resulting solutions. 

As an illustration of Theorem 3 we display a solution of the wave equation 
(13), with initial conditions 

(16) u(x,y,z,0) =xexcosy-z*, ut(x, y, z, 0) = 0 , 

(17) u(x} y, z, t) = ex cos y[xz* + (zA + 6xs2) t2 + (2z2 + x)/4 + | / 6 ] . 

In another recent paper (2) the authors gave basic sets of polynomial 
solutions for the Euler-Poisson-Darboux equation 

(18) V2u - [utt + kt-iut] = 0 

and for the closely associated Beltrami equation. For the E.P.D. equation 
with k > 0 a direct application of Theorem 1 to the generator monomials 
xaybzc, a + b + c — n, gives a more usable form of the basic sets similar to 
that given for the wave equation in (14) with d = 0 and t2j/(2j) ! replaced by 
0/(1 + fc)(3 + *) . . . (2/ - 1 + *) -20'!. 

However, if k is negative, the system of differential equations (4) associated 
with the solution of (18) under conditions (2) has a solution, 

.2j-2n+l-Jc 

(19) u, - g 2 i - n ( j _ n ) ! ( 1 _ a ) ( 3 _ £) . . . çy _ 2» + 1 - k) 

+ e1 
2s j\{\ + Jfe)(3 + *) . . . (2j - 1 + *) ' 
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provided k ^ — 1, — 3, . . . , — (2/ — 1), which is not unique since the an 

are arbitrary. 
Weinstein has recently shown (see for instance (3)), that for odd negative 

integral values of k, solutions of (18) satisfying certain differentiability con­
ditions exist only if the initial value function is polyharmonic of order (1 — k)/2 
and that, in this case, the addition to the solution of any function of the 
type 

tl~k u2-k(xu . . ,xm /), 

(u2~k denotes a solution of (18) with k replaced by 2 — k) which vanishes 
with its / derivative at t = 0, gives another solution of the problem. We may 
illustrate this result of Weinstein by applying Theorem 1 to (18) with boundary 
conditions (16). As a first solution we may take an = 0, n = 0, 1, 2, . . . and 
obtain 

(20) u(x, y, z, t) = ex cos y\ xz4 + (z4 + 6xz2) 
1 +k 

+ (6s2 + 3*)(1 + i ) ( 3 + k) + (1 + k)(3 + i ) ( g + k)j . 

The solution (20) is invalid for k = — 1, —3, —5, but holds for k = — 7, 
— 9, . . . etc. Since xex cosy-z4 is polyharmonic of order |{1 — ( — 7)} = 4, 
this illustrates the result of Weinstein quoted above. As a further illustration 
of Weinstein's result we may let a0 ^ 0 in (19) and augment the solution 
(20) by 

tl~k T 4 4 2 t2 

(21) a0 7~ZTb e* c o s y\ xzA + ^ 4 + ^xz^ n 4. (2 [1 + (2 - *)] 
2 . « x t + (6s' + Sx) 

+ 

[1 + (2 - *)][3 + (2 - *)] 
3/6 

[1 + (2 - k)][3 + (2 - k)][5 + (2 - *)] - * ) ] J 
which is clearly an arbitrary constant multiple of tl~k by a solution of (18) 
with k replaced by (2 — k) which vanishes with its / derivative at / = 0 for 
all negative k. 

Where condition (3) does not hold, the above methods may lead us to solu­
tions in infinite series form. As an illustration we may consider the vibrating 
string problem 

(22) uxx — a~2 utt = 0, u(xt 0) = P(x), ut(x, 0) = 0, w(0, /) = u(L, t) = 0, 

where the function P(x) has the Fourier expansion 

(23) P(x) = Ë ^ s i n - - ^ . 
1 -L> 

We then obtain 
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(24) $ 'P = E ( - 1 ) b\Z) S m 
L 

and 

(25) u, = ^ , j = 0, 1, 2, 

Taking 

(26) M = SS ( - 1 } HTJ smT-w 
we have a formal solution. If the order of summation be interchanged we 
obtain 
, ^ x ^ , . nirx rnrat 
(27) u = 2-r *n s i n T~ c o s ~T~~ » 

which is the usual form of the solution of this problem. The one dimensional 
heat flow problem may also be solved by this method but the applicability 
of the method to other problems, because of convergence questions, is a 
matter requiring further study. 
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