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Abstract
Effective searching for target objects in indoor scenes is essential for household robots to perform daily tasks. With
the establishment of a precise map, the robot can navigate to a fixed static target. However, it is difficult for mobile
robots to find movable objects like cups. To address this problem, we establish an object search framework that
combines navigation map, semantic map, and scene graph. The robot updates the scene graph to achieve a long-
term target search. Considering the different start positions of the robots, we weigh the distance the robot walks and
the probability of finding objects to achieve global path planning. The robot can continuously update the scene graph
in a dynamic environment to memorize the position relation of objects in the scene. This method has been realized
in both simulation and real-world environments. The experimental results show the feasibility and effectiveness of
this method.

1. Introduction
Indoor mobile robots have developed rapidly in recent years thanks to the achievements of environ-
ment perception, mapping, and path planning. Especially in well-structured environments, such as
hotels, exhibition halls, etc., the robots have achieved remarkable success because of the pre-established
accurate maps by SLAM [1, 2, 3, 4] in such scenarios.

In these scenarios, the robot can accurately reach a fixed target location on the map, during which
it can successfully avoid dynamic obstacles [5, 6, 7, 8, 9] such as people. A typical example is that a
hotel guest can get a toothbrush by just informing the service center that will employ a robot to send
the toothbrush. However, the robots are limited in these tasks in which the fixed position of the targets
is stored in advance.

We can still follow the above methods if the robot search almost fixed targets such as refrigerators
and beds in indoor scenes. In fact, the techniques of SLAM, sensor-based obstacle detection, and path
planning [10] have solved the tasks in such known scenarios. However, when looking for objects such
as apples and remote controls, the positions of these objects are easy to be changed. For example, an
apple can be on the table or the coffee table. Even if the robot has good location and obstacle avoidance
capabilities, the robot still does not know where to find the target. Searching for “semi-dynamic objects”
is still a non-trivial task.

The effective way to solve this problem is to introduce prior knowledge. Although the robot does
not know the location of the apple, it can infer possible candidate targets through objects that often
coexist with the cup (such as a table, a coffee table, etc.). We can transform the problem of searching for
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Figure 1. The robot performs the task of searching for an apple. In the process of searching, the robot
find a tomato (semi-dynamic object) in the fridge (static object). The robot can update the scene graph
according to the location relationship of the object. The updated scene graph is helpful for the next
search task.

semi-dynamic objects into searching for related static objects. This idea has recently been widely used
in visual semantic navigation [11, 12, 13].

However, using the pre-established fixed knowledge graph to help search for unseen objects is inef-
ficient since the relation between the target and other objects is just learned by public datasets without
considering the specific scenery. In our concern, the navigation target location is not fixed, or unseen
objects that do not appear in the knowledge graph. This motivates us to develop a long-term object
search method. As shown in Fig. 1, the core of this problem is how to develop a framework in which the
robots can update the scene graph to describe the scenery during the search task.

Compared with the existing work [12, 13, 14, 15], our work can directly use the physical platform
of the mobile robot. And comprehensively use the perceptual learning ability of the embodied intelli-
gence field and the SLAM, path planning, and other technologies in the robotics field to build a target
search platform with long-term learning ability. We use a scene graph to represent the concurrent rela-
tionship between the target object and other static objects. The robot can first explore around known
static objects and gradually approach semi-dynamic objects. Because of the different initial positions
of the robot, global path planning is realized by weighing the length of the path and the probability of
object discovery. To memorize the scene quickly in the process of performing the task, we propose an
incremental scene graph updating method in the semi-dynamic environment to dynamically update the
scene graph. The updated scene graph will be helpful in planning a path for the next object search task.
The main contributions of this study are summarized as follows:

• For object search in a known environment, we propose a framework of object search com-
bined with established navigation, semantic, and semantic relation maps. Global path planning
is realized by weighing the length of the path and the probability of object discovery.

• The robot can continuously update the semantic relation graph in a dynamic environment to
memorize the position relation of objects in the scene.

• Real-world experiments have shown that our proposed method can be applied perfectly to
physical robots.
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The rest of this paper is organized as follows. Section 2 demonstrates the related works of Map-
based navigation approaches, Learning-based approaches, and Scene Graph. In Section 3, the problem
definition is introduced. In Section 4, we introduce the framework we propose and its components
in detail. In Section 5, we introduce the semi-dynamic object search and incremental scene graph
updating. We introduce the experiment details and analysis in Section 6 and conclude our method in
Section 7.

2. Related work
Map-based navigation approaches: Classical navigation methods have divided the problem into two
parts, mapping and path planning. A geometric map is usually built using SLAM [4, 16] technology.
Once the environment map has been constructed, the robot can use a path planning algorithm, such as
A∗ [17] or RRT∗ [18], to generate a collision-free trajectory to reach the target location, even if there
are obstacles [19, 20]. With the development of deep learning, some work [21, 22, 23] built detailed
semantic maps from images for complex indoor navigation learning in simulator [24, 25, 26]. However,
the above method of building a semantic map is based on the premise that the robot can obtain accurate
camera coordinates. However, accurate indoor positioning of robots in unknown physical environments
is still a problem. On the one hand, we provide accurate location information to the robot through SLAM.
On the other hand, we combine semantic map and navigation map to assist the object search task.

Learning-based approachs: To tackle the problem of object search in unknown scenes [27, 28, 29,
30], Zhu et al. [31] first proposed a target-driven navigation task. They used a pair of twin networks
with shared parameters to extract the features of the currently observed image and the target image
information. Then, they used the A3C reinforcement learning algorithm as the decision-making part of
the robot. After that, many navigation methods [14, 15, 32] use deep reinforcement learning and imita-
tion learning to train navigation strategies. Yang et al. [14] used graph convolutional neural networks to
combine the prior information of the scene into the deep reinforcement model, and the categories of tar-
get objects were also encoded as word vectors. Wortsman et al. [15] also proposed a meta-reinforcement
learning strategy that encourages agents to continue learning in a test environment using self-supervised
interaction losses. Then, Mousavian et al. [32] used the semantic mask obtained using the current state-
of-the-art computer vision algorithm as the result of the current observation image and used the deep
network to learn the navigation strategy. They are made great progress in simulation environments.
However, the end-to-end learning methods require a series of abilities, such as object detection [33],
semantic prior [34], and obstacle avoidance [35]. The diversity of light, object materials, colors, and
layouts in real environments have prevented the transfer of this progress in simulation platforms to real-
world scenarios. The robot is still unable to adapt to the complex and changeable physical environment
effectively. In the physical environment, the robot is likely to bump into people or other objects because
of the defect of obstacle avoidance ability, and the cost of its wrong decision is very expensive.

Scene Graph: Many researchers [11, 12, 36] have noticed a concurrence between objects, for example,
the remote control often appears next to the television. This concurrence between objects has been
studied for tasks such as image retrieval [34] using scene graphs, visual relation detection [37], and
visual question-answering [38]. By learning this relationship, the robot can narrow the scope of the
search and improve the efficiency of object search. Qiu et al. [13] proposed a hierarchical object relation
learning method to solve the problem of object-driven navigation. Although this method of using object
relationships can help the robot determine where to go, in the face of a real-world complex, the robot
still does not know how to go because of the lack of robot navigation ability. Zeng et al. [39] used the
spatial relationship between room landmarks and target objects to introduce a semantic link map model
to predict the next best view posture to search for the target objects. However, no connection exists
between the tasks performed by the robot. The robot performing the last task will be helpful for the next
task in our method, even if the target object is different.
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3. Problem formulation
We set a semi-dynamic environment Et that changes with time, and all objects in the room
O = {o1, . . . , on}, which contains static object os and semi-dynamic object od (explained in detail
in Section 4.2).

When the robot executes the search task at a certain time t, given the robot’s initial scene graph
SGt = (O, E), where each node o ∈ O represents the category of an object. Each edge e ∈ E represents
the value of the relationship between a static object and a semi-dynamic object Rel (od, os) ∈ [0, 1].

The robot is placed at the initial position pt in the environment Et and gives the robot a semi-dynamic
object target Otarget, such as a cup. The robot passes through the scene graph to establish the association
between otarget and the static object os. The robot plans a most efficient path to find the semi-dynamic
object and gets close to the object.

The position of semi-dynamic objects will change over time, such as a mobile phone is sometimes on
the table and sometimes on the sofa. Therefore, in the search process, the robot needs to continuously
obtain the experience of correlation between objects in Et, it can be denoted Expt. At the end of the task,
these associated experiences are used to update the scene graph:

SGt+1 = UPDATE (SGt;Expt) (1)

The robot can use the updated scene graph SGt+1 for path planning of the next task.
The operating environment of our robot is a semi-dynamic scene, which allows the robot to build

auxiliary maps M in advance, including navigation Mnav and semantic maps Msem, before performing the
object search task. The navigation map consists of several navigable viewpoints Nnav, and the distance
between the navigable viewpoints and adjacent navigable viewpoints is 0.25 m. On the basis of this, the
robot can not only obtain the accurate pose xt ∈R

3 but also realize the path planning from one viewpoint
to another.

4. Framework
4.1. Overview
The search target of the robot belongs to a semi-dynamic object, and the robot tends to find the target
object near the static object. When the target is found, the nearest navigable viewpoint is reached. As
shown in Fig. 2, the robot combines the semantic map and the scene graph to plan a path that is most
likely to find the target object within the shortest distance. The path consists of the starting point of the
robot, the nearest navigable viewpoint of the static object with a non-zero relation value to the target
object, and the endpoint. When the robot finds the target object, the robot carries out local semantic
reconstruction of the target object. It reaches the nearest navigable viewpoint of the target object, which
is the destination.

In the process of searching the target object along the path, the robot will store the relationship pairs
between semi-dynamic objects and static objects in the experience pool, such as the bowl with the table
and the cup with the sink. Then, the scene graph is updated through such relationship pairs to help
find the target faster next time. Specifically, our method updates the object relationship value between
semi-dynamic objects and static objects and then adjusts the path of the next search target object.

4.2. Scene graph
Following the classification of objects by Meyer-Delius et al. [40], we have slightly modified the
classification as follows:

• Static objects: objects are large and not easily moved in a room are called static objects. For
example, a refrigerator is a static object in a kitchen scene, and a bed is a static object in a
bedroom. Such objects will help the robot to find semi-dynamic objects.
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Figure 2. The architecture overview of our propose navigation method equipped with the scene graph
and semantic map.

• Semi-dynamic object: it is static during the search process, but its position can be easily
changed, such as an apple or cup. This type of object is what the robot’s search target.

• Dynamic objects: The position of an object changes easily, even during the search, such as
moving people and moving pet dogs. Such objects are not the search target of the robot.

Following Yang et al. [14], we also extract the relationship between semi-dynamic and static objects
from the image captions in the Visual Genome dataset (VG) [41]. But the difference is that our relation-
ship graph has definite values for the strength of the relationship between objects. For a semi-dynamic
object od and a static object os, the object relationship can be expressed as Rel (od, os) ∈ [0, 1], the larger
the value, the closer the relationship between them. Rel (od, os) can be calculated as follows:

Rel (od, os) = C(od, os)

C(od)
(2)
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Figure 3. (a) Local semantic reconstruction: The robot obtains the semantic point cloud of each static
object from the RGB and depth image observed on the pose xt ∈R

3. (b) Semantic map generation: it
consists of two parts: first, the global semantic reconstruction is carried out, and then the semantic map
is projected from top to bottom.

where C(d, s) represents the number of times that the semi-dynamic object d and a static object s appear
together in the image captions, and C(d) represents the total number of the semi-dynamic object appears
in the image caption. In addition, we combine aliases of objects, such as “Cellphone” and “Phone”.

4.3. Semantic map
As shown in Fig. 2, on the boundary of all navigable viewpoints, the navigable viewpoint of the median
coordinate of all navigable viewpoints on the boundary is taken as the sampling point. The robot captures
information about the room by collecting RGB and depth images of the view every 45 degrees at each
sampling point. As shown in Fig. 3, Similar to ref. [22], we first perform local semantic reconstruction
for a single view of a single sampling point. We can obtain the robot pose xt ∈R

3 through SLAM, which
represents the coordinates and orientation of the robot on the navigation map. In the real world, we can
predict the semantic mask of the current observation by the existing target detector Mask-RCNN [42]
and project it into the point cloud.

The robot performs local semantic reconstruction at each perspective of each sampling point. In
order to overcome the shortcoming of insufficient environmental information obtained from a single
perspective, we integrate semantic point clouds generated by multiple sampling points and multiple
perspectives to complete local to global semantic reconstruction. The voxel of static objects contains
semantic information in the whole room. By projecting from top to bottom, we can get a semantic map
with information about the spatial distribution of static objects.

5. Simultaneous search and scene graph updating
5.1. Semi-dynamic object search
In order to facilitate the robot to reach the nearest navigable viewpoint of the static object os, we perform
the following calculations on the objects on the semantic map: (a) calculate the center of mass of an
object semantic point cloud as the object’s position absolute position locs in the semantic map. (b) the
nearest viewpoint: a navigable viewpoint Ns ⊂ Nnav that is closest to the absolute position of the static
object. (c) the appropriate observation angle θs: according to the position of the object and the nearest
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navigable viewpoint, the robot can calculate the angle at which the robot can observe the static object
after moving to the navigable viewpoint.

For semi-dynamic objects, the search strategy is that the robot first looks for the area around the
static objects related to the target object and then gradually approaches the target object. Specifically,
the robot will first search in the room where the starting point is located. If it does not find it, the
remaining unexplored rooms are sorted according to the size of Rel

(
otarget, R

)
, which can be defined as

the sum of all Rel (od, os) in room R. According to the sorted results, the robot selects the next room to
explore until the robot finds the target object.

Because of the difference in initial positions, the robot needs to weigh the path’s length against the
probability of finding the object. We propose a path length weighting (WPL) method to evaluate all
possible paths. If there are n static objects associated with otarget in the room, then the number of all
possible search paths is n!. The WPL can be expressed as

WPL =
n∑

i=0

Li(
1 + α ∗ Rel

(
otarget, os

)) ∗ 2i
(3)

Among them, Li represents the distance from the previous position to the nearest navigable viewpoint
of the static object. Rel

(
otarget, os

)
represents the relationship value between the static object and the

target object. The hyperparameter α can control the influence of the object relationship value on the
path. Choose the path with the smallest WPL value as the path searched by the robot.

We divide static objects into two types: container type, such as refrigerator and microwave oven,
and non-container type, such as table and bed. For container-like static objects, the robot needs to
open the container and find the target. When the robot reaches the vicinity of a non-container static
object, the robot will rotate 45 degrees left and right to find the target object. If the robot finds an object
on the planned path, it will perform a local 3D semantic reconstruction of the target object and find
the navigable viewpoint and orientation closest to the target object to approach the target object. If the
target is not found, the task is failed.

5.2. Incremental scene graph updating
Because the object relationship is extracted from the visual genome, and it is not necessarily suitable for
all scenes, and the position of the semi-dynamic object may change with time, the robot needs to update
the value of the relationship between the semi-dynamic object and the static object. When the robot is
performing a search task, if a semi-dynamic object is found on the navigable viewpoint Ns closest to a
static object os, the robot considers the relationship between the static object and the dynamic object as
relationship pair. The robot can store this relationship pair in the experience pool. Only when the area
of the detected object mask reaches a certain threshold, the object is considered to be seen. Therefore,
to a certain extent, when the distance between the semi-dynamic object and the static object is relatively
close, the robot can store this relationship pair in the experience pool. At the end of the task, the robot
updates the relationship graph based on the relationship pairs in the experience pool. For each semi-
dynamic object od, the strategy for updating the object relationship between it and the static object os is
as follows:

Rel (od, os)
′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rel (od, os), if od is not visible

Rel (od, os) /2, if od is visible but not at Ns

Rel (od, os) /2 + 0.5, if od is visible at Ns

(4)

Among them, Rel (od, os) and Rel (od, os)
′ are the relationship values between od and os before and

after the update, respectively.
As shown in Fig. 4, the robot according to the relationship pairs store in the experience pool in

the process of finding the cup in Fig. 2. The scene graph is updated based on the relationship of the
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Figure 4. Update the original relationship graph according to the relationship pair corresponding to
the bowl and cup in the experience pool. Please note that the semantic relationship values in the updated
scene graph on the right have changed compared to the left.

Figure 5. The top view of the combined room, and the location of the starting point.

experience pool and has no direct relationship with the task’s success. If the task is successful, but no
other semi-dynamic objects are found during the search, there is only one relationship pair of the target
object and the static object in the experience pool. If the search task fails and no other semi-dynamic
objects are found during the search process, the experience pool is empty, and the relationship graphs
of all semi-dynamic objects are not updated.

6. Experiment
We conduct experiments in the simulator and physical environment, respectively. To verify the effec-
tiveness of our proposed method, we use path length (PL) as an evaluation indicator; it can be defined
as the total mileage of the robot from the starting point to the discovery of the object.

6.1. Simulation experiment
We first conduct our experiments in Ai2thor [43] simulation environment. The simulator includes four
different room categories: kitchen, living room, bedroom, and bathroom. As shown in the Fig. 5, similar
to ref. [44], we take a room in each room category to form a home scene together. To verify the adapt-
ability of our method, the robot distributes two starting points in each room. When the robot arrives
at the door of a room, it can be directly teleported to any other room. The list of our static objects is
as follows: Sink, Table, Microwave, Fridge, Shelf, Sofa, Bed, Toilet, Bathtub, Stoveburner, Desk. In the
simulation environment, the detection results from the robot’s perspective, such as the object category
and mask, are provided by the simulator. The robot can detect even objects that are far away. In addition,
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Table I. The robot uses different methods to search for the results of the path length.

Apple Cup Bowl Phone Laptop Vase Pillow Toilet paper avg
SDP 28.63 8.88 20.88 13.13 16.25 8.31 7.5 13.88 14.68
RVP 15.06 6.50 10.63 8.56 20.5 8.48 5.75 6.69 10.27
Ours 14.25 6.18 10.13 9.00 19.81 8.48 5.75 6.69 10.04

to simulate the real scene, we set a threshold for each object, and the object is considered visible if it
masks above a certain threshold.

6.1.1. Comparison of different methods
In this experiment, we count the robot’s success rate in finding different objects and the path length in
the case of mission success. To ensure the unity of the task, we removed the bowl, laptop, and pillow in
the living room, phone, and vase in the bedroom and kept only one Toilet paper in the bathroom. The
positions of other objects remain unchanged. Our benchmark includes the following methods:

• The shortest distance priority (SDP): The robot arrives next to the static object related to the
target object in the shortest path, regardless of the object relationship value, that is, α = 0 in
Eq. (4). The robot randomly selects the next room to search.

• The relationship value priority (RVP): The robot only considers the scene graph, sorts according
to the value of the object relationship, and arrives next to the corresponding static objects in turn.
The robot selects the next room to search according to the value of Rel

(
otarget, R

)
.

• Ours: The robot integrates the position of the static object in the scene graph and the semantic
map, and weighs the length of the search path and the probability of finding the object. We set
α = 10 in Eq. (4).

In this experiment, because the semantic map containing the spatial distribution information of static
objects is used to search for semi-dynamic objects, the robot can achieve a 100% success rate. From
Table I, we can see that if the scene graph is not considered, the robot does not know that the target
object can be found in that room, and can only blindly search for the static object. However, after adding
the scene graph, our method can significantly reduce the search path length of most objects.

However, for laptops and vases, after adding the scene graph, the length of the search path is increased.
Our analysis shows that the scene graph we extract from VG does not completely conform to the current
spatial distribution of semi-dynamic and static objects. In addition, after the introduction of WPL, the
robot weighs the distance and the probability of finding the target, once again shortening the length of
the search path.

6.1.2. Long-term object search
In this experiment, our main purpose is to verify that we can realize the memory of the scene by updating
the scene graph, which can significantly reduce the length of the search path in a dynamic environment.
As shown in Table II, the bold font indicates that the position of the object has changed. Some semi-
dynamic objects appear in different positions in a room. Every time the robot looks for an object, it will
start from eight starting points.

It can be seen from Fig. 6 that whether it is to update only the relationship pair related to the target
object in the experience pool or to update all the relationship pairs in the experience pool. Compared
with not updating the scene graph, the average path length after updating the scene graph is shortened
by 25.27%. In the task of searching for an object once performed by the robot, updating the semantic
relationship value of the target object will help the robot to find the target object next time. We use the
scene graph update method can effectively shorten the path length of the target search. During the search
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Table II. The distribution of semi-dynamic objects in the scene.

Scene 1 2 3 4 5 6 7 8 9 10
Apple Sink Sink Sink Sink Fridge Fridge Fridge Fridge Table Table
Cup Table Table Sink Sink Sink Table Table Sink Sink Table
Bowl Table Sink Sink Table Table Table Sink Sink Table Table
Phone Table Table Table Desk Desk Desk Desk Table Table Table
Laptop Sofa Sofa Bad Bad Bad Table Table Table Desk Desk
Pillow Bad Bad Bad Bad Sofa Sofa Bad Bad Bad Bad
Vase Shelf Shelf Shelf Table Table Table Shelf Shelf Shelf Shelf
Toilet paper Toilet Toilet Toilet Toilet Shelf Shelf Shelf Toilet Toilet Toilet

Figure 6. The robot consumes the path length according to the updated scene graph.

process, the robot will also find other semi-dynamic objects. If all semi-dynamic objects are found in
the search process, updated scene graph will help the robot to quickly find the newly discovered semi-
dynamic objects in next tasks. It can be found that updating other objects during the search process can
significantly help the next search task.

Figure 7 shows in detail the trajectories of the robot using the updated and the un-updated scene graph.
If the robot finds an object on the planned path, it will perform a local 3D semantic reconstruction of the
target object and find the navigable viewpoint and orientation closest to the target object to approach the
target object. As shown by the blue line, when the robot reaches the cup in location 2, it will perform a
local 3D semantic reconstruction of the target object and find the navigable viewpoint and orientation
closest to the target object and reach location 3.

6.2. Real-world experiment
To verify the effectiveness of the long-term target search method in a real-world indoor environment.
We construct an experimental scene of about 60 square meters in an office area, including two rooms
and a bathroom. The robot is custom built on a business general base, with a 2D Hokuyo Lidar used for
localization, and a Kinect RGBD camera for perception. To resolve the limited computation resources on
the robot in long processing times by the computer vision software, we use Intel NUC11PHKi7C with
Nvidia RTX2060 GPU. A picture of the robot can be seen in Fig. 8(a). After semantic reconstruction,
the semantic map of the scene is as shown in Fig. 8(b). In addition, we also artificially set up an obstacle
in each task.

Figure 9 shows the path of our robot looking for dynamic objects. We place the cup next to the sink
and the scissors on the dining table. During the first search for the cup, the robot plans the path according
to the initial scene graph. Although the robot can find the object, it has a long walking route as shown in
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Figure 7. The trajectory of without updating (yellow) and with updating the scene graph (gree) to find
pillows. The trajectory of blue to find cup.

(a) (b)

Figure 8. Our moving robot platform and semantic map of the real-world experimental scene.

Fig. 9(a). Because the robot finds the cup next to the sink during the last task, the relationship of the cup
will be updated. When the robot looking for the cup for the second time, the robot is more inclined to
look for it next to the sink as shown in Fig. 9(b). It is worth noting that in the process of searching for the
cup first time, the scissors are found on the table, so the robot can quickly find the scissors in the task of
finding the scissors in Fig. 9(c). If the connection between the table and the scissors is not established,
the robot does not know where it is more likely to find. According to the distance to the static object, the
robot first searches inside the refrigerator and microwave and then searches near the table. The results
shall be better viewed in the supplementary videos.
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(a)

(b)

(c)

(d)

Figure 9. The trajectory of the robot in the real environment.

7. Conclusions
In this paper, we propose a long-term target search method in a semi-dynamic indoor scene, and it can
effectively find objects that are easy to move. First, the robot builds a navigation map for path planning,
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a semantic map containing the location information of static objects, and a scene graph containing the
closeness of the relationship between static objects and semi-dynamic objects. Then the path length
weighting method is used to balance the distance and the probability of finding an object. Finally, to
establish a scene-specific scene graph, we propose a method of scene memory to be applied to update the
scene graph. We conduct experiments in both simulation and physical environments, which demonstrate
the effectiveness of our method. However, when semi-dynamic objects are placed in areas without static
objects, it will be difficult for the robot to find the target. In future work, our main work is how to find
semi-dynamic objects that are less related to static objects.
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