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Abstract
Let r be any positive integer. We prove that for every sufficiently large k there exists a k-chromatic vertex-
critical graph G such that χ(G− R)= k for every set R⊆ E(G) with |R| ≤ r. This partially solves a problem
posed by Erdős in 1985, who asked whether the above statement holds for k≥ 4.
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1. Introduction
The chromatic number χ(G) of a graph G is among the oldest and most fundamental graph
parameters, but despite its intensive study by researchers across the field for more than a cen-
tury, many fundamental open problems remain. In many instances, we would like to show that for
some number k, all graphs in an infinite class G of graphs have chromatic number less than k. Often
times, the graph class G at hand will also have the property that it is closed under taking induced,
or even arbitrary, subgraphs. In this case, a central idea for bounding the chromatic number is to
consider the minimal graphs in G with chromatic number k. These graphs have the special prop-
erty that removing any vertex (if G is closed under induced subgraphs) or any edge (if G is closed
under subgraphs) reduces the chromatic number from k to k− 1. This enforces many constraints
on such minimal graphs, for instance sufficiently high minimum degree and edge-connectivity,
among others. Such properties can then prove useful when showing the non-existence of minimal
k-chromatic graphs in G, which in turn establishes that the chromatic number of graphs in G is
less than k.

Because of this and many other applications, the notion of colour-critical graphs has emerged.
Given an integer k, a graphG is called k-chromatic vertex-critical if χ(G)= k, but χ(G− v)= k− 1
for every v ∈V(G). Similarly, it is called k-chromatic edge-critical, if χ(G)= k but χ(G− e)= k for
every e ∈ E(G). Note that edge-criticality implies vertex-criticality if we exclude redundant cases
in which G has isolated vertices.

A considerable amount of effort has been put into understanding how different the notions
of vertex-criticality and edge-criticality can be. Already in 1970, G. Dirac [5] conjectured that
for every integer k≥ 4, there exists a k-chromatic vertex-critical graph G which at the same time
is very much not edge-critical, in the sense that the deletion of any single edge does not lower
its chromatic number. In the following, let us say that such a graph has no critical edges. Dirac’s
problem for a long time remained poorly understood. It was not before 1992 that Brown [1] finally
found a first construction of some vertex-critical graph with no critical edges, in fact, he found
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such a construction for k= 5. Later, in 2002, Lattanzio [5] found a more general construction
which proved Dirac’s conjecture for every integer k≥ 5 such that k− 1 is not a prime number.
Shortly after, Jensen [6] provided a construction of k-chromatic vertex-critical graphs with no
critical edges for every k≥ 5. This leaves only the case k= 4 of Dirac’s conjecture open today,
which remains an intriguing open problem. A wide-ranging strengthening of Dirac’s conjecture
was proposed by Erdős in 1985 [4], as follows.

‘I recently heard from Toft the following conjecture of Dirac: Is it true that for every k≥ 4 there
is a k-chromatic vertex-critical graph which remains k-chromatic if any of its edges is omitted. If the
answer as expected is yes, then one could ask whether it is true that for every k≥ 4 and r there is a
vertex-critical k-chromatic graph which remains k-chromatic if any r of its edges are omitted’.

(Paul Erdős, 1985, top of page 113 in [4])

This problem is also mentioned in several other sources, for instance it is listed as Problem 5.14
in the book [8] by Jensen and Toft and on page 66 in Chapter 4 of the Erdős open problem
collection by Chung and Graham [2], see also the online version of the problem [3].

The question of Erdős can be rephrased as asking whether for arbitrarily large numbers r there
exist k-chromatic vertex-critical graphs for k≥ 4 that are ‘pretty far’ from any of their (k− 1)-
chromatic spanning subgraphs, in the sense that one has to remove more than r edges to reach
any such subgraph. As described above, the case r = 1 of this problem is well-understood, however,
not much seems to be known beyond that, when r ≥ 2.

Our contribution. In this paper, we resolve the problem by Erdős for any value r and all suffi-
ciently large values k. To the best of our knowledge, these are the first known examples of such
graphs for arbitrarily large values of r.

Theorem 1.1. For every r ∈N there is some k0 ∈N such that for every k≥ k0 there exists a
k-chromatic vertex-critical graph G such that χ(G− R)= k for every R⊆ E(G) with |R| ≤ r.

We remark that the graphs in Theorem 1.1 have the additional feature that also their fractional
chromatic number χf (G) is large (in fact, bigger than k− 1), whichmay be useful to know in some
applications.

Our result still leaves open Erdős’ question when k≥ 4 is fixed as a small value and r tends to
infinity, and this remains an interesting open case of the problem. The rest of this note is devoted
to presenting our proof of Theorem 1.1. The main idea of the construction is to use the existence
of uniform hypergraphs that admit a perfect matching upon the removal of any single vertex, but
at the same time are locally rather sparse. Such hypergraphs in turn can be constructed randomly,
using the recent advances on Shamir’s hypergraph matching problem.

Notation. For a graph G and a subset X ⊆V(G) of its vertices, G[X] denotes the subgraph of
G induced by X. A hypergraph is a tuple (V , E) where V is a finite set and E⊆ 2V \ {∅}. Given a
hypergraphH = (V , E), we denote byV(H)=V its vertex- and by E(H)= E its hyperedge-set. For
v ∈V(H), we denote by H − v the hypergraph with vertex-set V(H) \ {v} and hyperedge-set {e ∈
E(H)|v /∈ e}. For e ∈ E(H), H − e := (V(H), E(H) \ {e}) is the hypergraph obtained by omitting e.
For a vertex subset X ⊆V , we denote by HX the hypergraph obtained by restricting H to X, i.e.,
V(HX) := X and E(HX)= {e∩ X|e ∈ E(H), |e∩ X| ≥ 2}.

2. Proof of Theorem 1.1
Outline. In order to ease the reader’s orientation, we give a brief outline of the proof. The main
goal of the proof is to construct, given a number r ∈N and every sufficiently large k, a graph G on
n= s(k− 1)+ 1 vertices for some s ∈N, such that:
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(a) For every v ∈V(G), there exists a partition of V(G) \ {v} into k− 1 independent sets, each
of size s, and

(b) α(G− R)= s for every R⊆ E(G) of size at most r.

The first property guarantees that χ(G− v)≤ k− 1 for every v ∈V(G), while the second property
guarantees that χ(G− R)≥ n

α(G−R) ≥ s(k−1)+1
s > k− 1 for every set R of at most r edges. Hence,

G has the properties required for Theorem 1.1. The way we will find such a graph G is by looking
for an s-uniform hypergraph H on n vertices with the following properties:

(a’) H − v has a perfect matching for every v ∈V(H), and
(b’) For every subset X ⊆V(H) of size s+ 1 there are more than r pairs of vertices in X that

together are not included in any hyperedge of H.

Once such a hypergraph is found, one can define G as the graph with the same vertex-set as H,
in which two vertices are adjacent if and only if there is no hyperedge of H that contains both of
them. One can then easily verify that properties (a’), (b’) of H will imply the properties (a), (b) of
G, and hence G will be a suitable example for Theorem 1.1.

Finally, in order to construct such hypergraphs H, the idea is to show that a suitably chosen
binomial random s-uniform hypergraph satisfies both properties simultaneously w.h.p. While (a’)
can be easily deduced from the advances on Shamir’s hypergraph matching problem, verifying
(b’) needs more technical work: We first show that w.h.p. the random binomial hypergraph is
locally sparse, in the sense that there are not too many hyperedges concentrated on any small part
of the hypergraph (Lemma 2.2 (ii)). The remaining technical work is then dedicated to proving
Lemma 2.3, which says that every s-uniform hypergraph satisfying the local sparsity condition has
property (b’), where r grows with s.

We now start with the details of the proof. In the following, given positive integers n, k and a
probability value p ∈ [0, 1], we denote by Hs(n, p) the binomial s-uniform random hypergraph
on vertex-set V = [n]= {1, . . . , n}, obtained by including every s-subset of V as a hyperedge
independently with probability p. Given a hypergraph H, a perfect matching of H is a collec-
tion {e1, . . . , et} ⊆ E(H) of hyperedges that form a set-partition of V(H). Note that if H is an
s-uniform hypergraph, then the existence of a perfect matching necessitates |V(H)| ≡ 0 (mod s).
One of the most famous problems in probabilistic graph theory for a long time was Shamir’s prob-
lem, that asked to determine the threshold for the random hypergraphHs(n, p) with n≡ 0 (mod s)
to contain a perfect matching. This threshold was determined up to a multiplicative error in a
breakthrough result by Johannson, Kahn and Vu [9] in 2008, as follows.

Theorem 2.1 (cf. [9]). For every integer s≥ 1 there exists a constant C = C(s)> 0 such that with
p= p(n)= C log n

ns−1 it holds thatHs(n, p) has a perfect matching w.h.p. provided that n≡ 0 (mod s).

It is worth noting that Theorem 2.1 can alternatively be deduced from the recent resolution
by Park and Pham [11] of the Kahn-Kalai expectation-threshold conjecture. We further remark
that recently, Kahn [10] has determined the threshold in Shamir’s problem even more precisely,
showing that taking C = (1+ o(1))(s− 1)! is sufficient (and best-possible). We now use this prob-
abilistic result to deduce the existence of uniform hypergraphs with special properties, as follows.

Lemma 2.2. Let s≥ 2,m≥ 1 be fixed integers. Then for every sufficiently large integer n such that
n≡ 1 (mod s), there exists an s-uniform hypergraph H on n vertices with the following properties.

(i) For every v ∈V(H), the hypergraph H − v admits a perfect matching.
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(ii) For every set F ⊆ E(H) of hyperedges with |F| ≤m, we have
∣∣∣∣∣
⋃
e∈F

e

∣∣∣∣∣≥ (s− 1)|F|.

Proof. Let p(n) := C log n
ns−1 be as in the statement of Theorem 2.1. Then, for every n≡ 1 (mod s)

chosen large enough, by Theorem 2.1 we have

P(Hs(n− 1, p(n− 1)) has a perfect matching)≥ 1
2
. (1)

Now, define q(n) := 
2 log2 (n)�p(n− 1)= �
(
log2 n
ns−1

)
. In the following, we show thatHs(n, q(n))

satisfies both (i) and (ii) w.h.p. provided n≡ 1 (mod s), which will then imply the statement of the
lemma.

Consider sprinkling l := 
2 log2 (n)� independently generated copiesH1, . . . ,Hl ofHs(n, p(n−
1)) on vertex-set [n]. Their union H̃ forms a binomial random hypergraph with edge-probability
q′(n)≤ l · p(n− 1)= q(n). Now fix a vertex v ∈ [n]. From the above we have

P(Hs(n, q(n))− v has no perfect matching)
≤ P(Hs(n, q′(n))− v has no perfect matching)
= P(H̃ − v has no perfect matching)

≤
l∏

i=1
P(Hi − v has no perfect matching).

By inequality 1, we have that P(Hi − v has no perfect matching)≤ 1
2 for i= 1, . . . , l. Altogether, it

follows that the probability that Hs(n, q(n))− v has no perfect matching is at most
( 1
2
)2 log2 (n) =

1
n2 . Hence, by a union bound over all choices of v, the probability that there exists a vertex v
for which Hs(n, q(n))− v has no perfect matching is at most 1

n . Thus, w.h.p. Hs(n, q(n)) satisfies
property (i).

Let us now move on to property (ii). For that purpose, we want to show that w.h.p. for every
number f = 1, . . . ,m, no subset of [n] of size (s− 1)f − 1 contains f hyperedges fromHs(n, q(n)).
By a union bound over all configurations containing (s− 1)f − 1 vertices and f hyperedges, we
obtain that the probability that there exist f hyperedges inHs(n, q(n)) spanning less than (s− 1)f
vertices is at most

(
n

(s− 1)f − 1

)
·O(1) · q(n)f =O

⎛
⎝n(s−1)f−1 ·

(
log2 n
ns−1

)f
⎞
⎠=O

(
log2f n

n

)
.

Thus, w.h.p. we have that Hs(n, q(n)) also satisfies item (ii) of the lemma. This concludes the
proof. �

Next, we would like to use the hypergraphs from the previous lemma to construct graphs that
satisfy the conditions of Theorem 1.1. To do so, we need a technical result about the number of
edges that can be spanned by any (s+ 1)-subset of vertices in the so-called 2-shadow of these
hypergraphs, namely Lemma 2.3 below. Given a hypergraph H, its 2-shadow is the graph GH

2 on
the same vertex-set and where uv ∈ E(GH

2 ) if and only if there is some e ∈ E(H) with u, v ∈ e.
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Lemma 2.3. Let s be a positive integer, let H be an s-uniform hypergraph, and let G be the 2-shadow
of H. If ∣∣∣∣∣

⋃
e∈F

e

∣∣∣∣∣≥ (s− 1)|F|

holds for all F ⊆ E(H) with |F| < 2s+1, then

|E(G[X])| ≤
(
s
2

)
+ 2

for all X ⊆V(G) of size s+ 1.

To prove Lemma 2.3, we first establish an auxiliary result on hypergraphs in the form of
Lemma 2.5 below, which in turn needs the following standard fact, a proof of which we include for
completeness. In the following, we say that a hypergraph is connected, if its 2-shadow is connected
as a graph.

Observation 2.4. Let H = (V , E) be a connected hypergraph. Then

|V| ≤ 1+
∑
e∈E

(|e| − 1).

Proof. Let T be a spanning tree of GH
2 . For every edge t ∈ E(T), assign a hyperedge e(t) ∈ E such

that t ⊆ e(t). For each e ∈ E, let Te ⊆ T be the forest induced by the edges {t ∈ E(T)|e(t)= e}.
Clearly, V(Te)⊆ e for every e ∈ E, and thus

|V| − 1= |E(T)| =
∑
e∈E

|E(Te)| ≤
∑
e∈E

max{0, |V(Te)| − 1} ≤
∑
e∈E

(|e| − 1),

as desired. �
Lemma 2.5. Let H = (V , E) be a hypergraph with |V| ≥ 4 and V /∈ E. Suppose further that for every
set F ⊆ E of hyperedges, we have ∣∣∣∣∣

⋃
e∈F

e

∣∣∣∣∣≥
∑
e∈F

(|e| − 1).

Then there exists a set W ⊆V of size at most 2 such that GH
2 −W is disconnected.

Proof. Suppose first that there exists at least one hyperedge e0 ∈ E with |e0| ≥ 3. By assumption,
V /∈ E, and thus there exists some vertex v ∈V \ e0. Let us now consider the graph G=GH−e0

2 ,
the 2-shadow of the hypergraph H − e0 obtained from H by deleting e0. Let C be the vertex-set
of the unique connected component of G that contains v. We claim that |C ∩ e0| ≤ 2. To that
end, define F as the set of hyperedges of H − e0 that are contained in C. Note that, since every
hyperedge e ∈ E \ {e0} induces a clique in G, we have that

⋃
e∈F e= C and that the hypergraph

H′ = (C, F) is connected. These facts imply via Observation 2.4 that∣∣∣∣∣
⋃
e∈F

e

∣∣∣∣∣= |C| ≤ 1+
∑
e∈F

(|e| − 1).

On the other hand, by applying the assumption of the lemma to the edge-set F ∪ {e0}, we find
∑

e∈F∪{e0}
(|e| − 1)≤

∣∣∣∣∣e0 ∪
⋃
e∈F

e

∣∣∣∣∣= |e0 ∪ C| = |e0| + |C| − |e0 ∩ C|.
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Subtracting (|e0| − 1) from both sides yields∑
e∈F

(|e| − 1)≤ |C| + 1− |e0 ∩ C|.

Plugging the above into the first inequality we get |C| ≤ |C| + 2− |e0 ∩ C|, and thus |e0 ∩ C| ≤ 2,
as claimed. We now set W := e0 ∩ C and claim that GH

2 −W is disconnected. Indeed, it follows
readily from the definition of C that no edge in GH

2 −W connects a vertex in C \W = C \ e0 to
a vertex in V \ C. Further, since v ∈ C \ e0 we have that the first set is non-empty, and since |V \
C| ≥ |e0 \ C| = |e0| − |e0 ∩ C| ≥ 3− 2= 1> 0, the second set is also non-empty. Thus, GH

2 −W
is indeed disconnected, which concludes the proof in this case.

For the second case, assume that |e| ≤ 2 for every e ∈ E.W.l.o.g. (since they do not have an effect
on GH

2 ) we may assume that H contains no hyperedges of size 1, i.e., H is a graph and GH
2 =H. If

H has a vertex of degree at most 1, then the statement of the lemma trivially holds, so suppose that
H has minimum degree at least 2. The condition of the lemma now yields |E| =∑

e∈E (|e| − 1)≤
|⋃e∈E e| ≤ |V|. This directly implies via the handshake-lemma that H is a 2-regular graph. It is
trivial to see that every such graph on at least 4 vertices contains a cut-setW consisting of at most
2 vertices, and this concludes the proof. �

We are now ready to present the proof of Lemma 2.3. The main idea is to use that by
Lemma 2.5, the subgraph of the 2-shadow of H induced on any subset of s+ 1 vertices must
contain a cut consisting of 2 vertices, which then ensures that this graph must have a substantial
number of non-edges.

Proof of Lemma 2.3. The statement of the lemma holds trivially when s ∈ {1, 2}, so suppose s≥ 3
in the following. Let us consider the hypergraph HX obtained by restricting H to X, and note that
the 2-shadow ofHX equalsG[X]. Further note that for every subset F ⊆ E(H) of size less than 2s+1,
it holds that ∣∣∣∣∣

⋃
e∈F

(e∩ X)

∣∣∣∣∣≥
∣∣∣∣∣
⋃
e∈F

e

∣∣∣∣∣−
∑
e∈F

|e \ X|

≥ (s− 1)|F| −
∑
e∈F

|e \ X| =
∑
e∈F

(s− 1− |e \ X|)=
∑
e∈F

(|e∩ X| − 1).

This directly implies that
∣∣⋃

e∈F e
∣∣≥∑e∈F (|e| − 1) for every subset F ⊆ E(HX). We can therefore

apply Lemma 2.5, which implies that there exists a setW ⊆ X of size at most 2 such thatG[X]−W
is disconnected. Thus, there exist disjoint non-empty sets A, B such that A∪ B= X \W and no
edge inG[X] connectsA and B. Note that as |A|, |B| ≥ 1 and |A| + |B| = |X| − |W| ≥ (s+ 1)− 2=
s− 1, we have |A||B| ≥ s− 2. We conclude that

|E(G[X])| ≤
(
s+ 1
2

)
− |A||B| ≤

(
s+ 1
2

)
− (s− 2)=

(
s
2

)
+ 2.

This concludes the proof. �
Proof of Theorem 1.1. Let an integer r ≥ 1 be given. Define s := r + 3 and m := 2s+1. By
Lemma 2.3 there exists some n0 ∈N such that for every integer n≥ n0 with n≡ 1 (mod s), there
exists an s-uniform hypergraph H on n vertices with the following properties.

• For every v ∈V(H), the hypergraph H − v admits a perfect matching.
• For every set F ⊆ E(H) of hyperedges with |F| ≤m= 2s+1, we have∣∣∣∣∣

⋃
e∈F

e

∣∣∣∣∣≥ (s− 1)|F|.
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Define k0 := 
n0−1
s � + 1 and let k≥ k0 be any given integer. LetH be an s-uniform hypergraph on

n := s(k− 1)+ 1≥ n0 vertices satisfying the properties above. Finally, we define a graph G as the
complement of the 2-shadow GH

2 of H. We claim that it satisfies the properties required by the
theorem, that is,

• G− v is (k− 1)-colourable for every v ∈V(G), and
• for every set R⊆ E(G) of edges with |R| ≤ r, we have χ(G− R)≥ k.

To verify the first statement, consider any vertex v and a perfect matching of H − v. Since H
is s-uniform, the perfect matching forms a partition of V(H) \ {v} =V(G) \ {v} into n−1

s = k− 1
sets, each inducing a hyperedge inH and thus an independent set inG. Hence we have χ(G− v)≤
k− 1.

Now let R⊆ E(G) with |R| ≤ r be given. We claim that α(G− R)≤ s, i.e., that there exists no
independent set in G− R of size s+ 1, which will then imply χ(G− R)≥ n

α(G−R) ≥ n
s > k− 1, as

desired. Suppose towards a contradiction that there is some X ⊆V(G) of size s+ 1 that is inde-
pendent in G− R. Then G[X] contains at most r edges, and thus its complement graph, namely
GH
2 [X], contains at least

(s+1
2
)− r = (s

2
)+ s− r = (s

2
)+ 3 edges. However, by Lemma 2.3 applied

toH, we find that |E(GH
2 [X])| ≤

(s
2
)+ 2, a contradiction. This shows that indeed, α(G− R)≤ s for

every R⊆ E(G) with |R| ≤ r, concluding the proof. �
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