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Abstract

Recently, several funding agencies have introduced the distribution of funds by a lottery
system; however, the effects of this system on the productivity of the research community
are unclear. Simulation studies in philosophy of science have argued that a combination of
peer review and lottery is an optimal method. However, these models overlook several
important aspects of research activities, such as baseline funding through block grants. In
this article, I present a general theoretical model that incorporates these aspects and argue
that the conventional combination of peer review and baseline funding outperforms the
combination of peer review and lottery in many situations.

1. Introduction
The research funding system has been dramatically reformed over the past two
decades. Traditionally, research funding has been classified into two categories:
(i) noncompetitive block grants for research institutions and (ii) competitive funding
for research projects. However, many new funding methods have recently been
introduced, and the distinction between them has become ambiguous. Securing funding
for research has also become highly competitive (Larrue et al. 2018). The effects of such
reforms on the efficiency of the scientific community remain to be evaluated.

Project-based research funding by lottery is a recently introduced method in
which funds are awarded to a project chosen by lottery rather than by peer review. It
was first introduced by the Health Research Council of New Zealand in 2013 and was
later adopted by several agencies (Adam 2019). The idea of utilizing a lottery system
has been repeatedly proposed in different disciplines (for a review, see Avin [2019b]).
One of the main reasons for this is the difficulty of peer-review systems in evaluating
proposals reliably. For example, Graves et al. (2011) analyzed the peer-review scores
of the National Health and Medical Research Council of Australia and found variability
in the final decisions. By randomly sampling the original review scores of the review
panels, they obtained 1,000 hypothetical panel judgments for each proposal and found
that only 255 proposals were always funded among 620 proposals that were actually
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funded. Another example by Pier et al. (2018), which replicated the peer-review
process of the National Institutes of Health (NIH), showed less consistency among
reviewers’ evaluations. In addition, it has been argued that a lottery system has two
advantages over a peer-review system (Fang and Casadevall 2016). First, unlike peer
review, a lottery system has no inherent systematic biases,1 whereas the peer-review
process may have several biases. It has been claimed that the peer-review process is
biased toward conservative approaches, such that novel ones tend to be suppressed
(Brezis 2007; Gillies 2014; Fang and Casadevall 2016). Furthermore, there may be
additional biases concerning gender or race (Brezis 2007; Fang and Casadevall 2016). A
lottery system is considered an effective way to reduce these detrimental biases.
Secondly, a lottery system may help reduce the burdens that the peer-review process
imposes on applicants, reviewers, and administrators. Because applicants are
currently required to submit very detailed proposals, the preparation and review
costs are high. A lottery system may reduce these costs because heavily detailed
proposals are no longer necessary. Although some rough prescreenings before the
lottery may be required to exclude inappropriate proposals, the information
necessary for such screenings would be much less than that required for a full peer-
review process.2

The effect of various funding strategies on the productivity of the scientific
community is beginning to be discussed in the field of philosophy of science. Since the
pioneering work by Kitcher (1990), philosophers of science have investigated the
division of cognitive labor (i.e., the diversity of approaches that scientists take) using
theoretical models (Kitcher 1990; Strevens 2003; Weisberg and Muldoon 2009).
Recently, Avin (2015, 2019a) focused on the role of funding strategies in realizing an
efficient division of cognitive labor and compared the performance of various funding
strategies. Using the epistemic landscape model (Weisberg and Muldoon 2009), he
argues that a funding system combining peer review and lottery maximizes the
productivity of the scientific community. This result may be expected, considering
that there are arguably two activities that are important for the efficiency of the
scientific community. One is to investigate well-established research topics
(exploitation), and the other is to search for undiscovered topics (exploration).
The peer-review process would enhance the former type of research because it would
favor the conventional approach. On the other hand, a lottery system would help the
latter type of research, which may not be awarded by peer review. Therefore, it is
reasonable to assume that combining these methods would support the scientific
community by enhancing both types of research in parallel.

However, this cannot be fully concluded because Avin’s model does not consider
conventional baseline funding, such as block grants. Because such grants are also
distributed without bias and do not impose significant costs, they would have similar
advantages to a lottery system. Moreover, unlike a lottery system, baseline funding

1 However, as an anonymous reviewer pointed out, a lottery system may have some biases, depending
on the way the lottery is set up. For example, if applications are categorized by some criteria (e.g.,
research field), and the grant size is varied among categories, then grant allocation by lottery within each
category would lead to systematic biases based on the categories of the applications.

2 However, Liu et al. (2020) reported that the time spent on preparing proposals did not change after
the introduction of a lottery system.
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would promote long-term research because it stably assigns a relatively small amount
of funds to all scientists, whereas a lottery system assigns a larger sum to only a
limited number of scientists. Given the putative benefits of baseline funding, it is
important to elucidate the relative efficiency of these strategies.

The current article aims to compare resource distribution systems based on lottery
and baseline funding from the perspective of the efficiency of the scientific
community. Following Avin (2015; 2019a), I constructed a simulation model that
extends the epistemic landscape model. It is more general than Avin’s model and can
represent a variety of funding strategies, thus allowing for comparisons among them.
It can also incorporate the effects of new researchers’ entry into a scientific discipline.
In Avin’s model, only the entrance of researchers from other disciplines seems to be
considered (see section 3 for more details). However, the difficulty in entering a
discipline may depend on the character of each discipline, and new researchers may
also come from the same discipline (i.e., graduates from one of the laboratories). Thus,
I introduce a parameter that explicitly represents these aspects and investigate their
effects. The results from the model suggest that conventional baseline funding
outperforms lottery funding in many cases. The results also indicate that the optimal
balance of competitive and noncompetitive funding largely depends on the
“openness’’ of a specific discipline to researchers from other disciplines.

In the subsequent section, I briefly review previous studies on the division of
cognitive labor discussed in philosophy of science, especially focusing on the
epistemic landscape models. Recent studies by Avin and some of the limitations of his
model have also been discussed. Finally, I introduce a more general model that can
represent both lottery and baseline funding, compare their efficiency under various
conditions through simulation experiments, and provide general conclusions based
on the outcomes.

2. Models for the division of cognitive labor
Since Kitcher’s (1990) pioneering work on the division of cognitive labor, this topic
has been widely discussed in philosophy of science. Among the most popular
approaches in this field is the epistemic landscape model, first introduced by
Weisberg and Muldoon (2009). Whereas Kitcher’s approach concerns the division of
labor in pursuing different approaches to solve a certain problem, the epistemic
landscape model concerns the division of labor in exploring research projects in a
particular discipline. In this section, I review studies on the division of cognitive labor,
especially focusing on the epistemic landscape model, and identify some problems. In
section 2.1, I discuss epistemic landscape models that focus on the role of the division
of research strategy (i.e., how scientists choose their research projects) in realizing
the optimal division of labor. Although the division of research strategy can enhance
the efficiency of the scientific community (e.g., Pöyhönen 2017), it has been pointed
out that the division of research strategy is difficult to control in the real scientific
community (Heesen 2019). A more promising approach would be to investigate the
role of extrinsic factors, such as funding agencies, in realizing the optimal division of
labor. In section 2.2, I discuss such an approach by Avin, who first introduced a
funding agency into the epistemic landscape model and argued that the partial
introduction of a lottery system in the funding distribution is beneficial in many
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situations (Avin 2015, 2019a). However, I point out that some important aspects of the
scientific community are missing in his model, which would affect his conclusions.

2.1. Epistemic landscape models
Weisberg and Muldoon (2009) considered the division of the scientists’workload among
various research projects on the same broad topic.3 To model this situation, the authors
introduced an epistemic landscape model (see figure 1 for an example of a three-
dimensional landscape). The epistemic landscape model of n dimensions is composed of
an n � 1-dimensional grid where each grid point represents a single research project
characterized by the combination of n � 1 features (research question, instruments,
methods of analysis, background theories, and so on) and a one-dimensional axis that
represents the significance of each project that scientists would discover once it is
completed. The landscape of significance is given by the summation of Gaussian peaks,
such that the significance of adjacent grid points is highly correlated. Scientists explore
this landscape and find the significance of the visiting grid points. When a certain grid
point has already been visited, later visitors do not contribute to the scientific progress
in that area (Weisberg and Muldoon 2009, 237).

Using a three-dimensional epistemic landscape model, the authors argue that the
productivity of the scientific community is improved by the division of scientists’
strategy to explore the epistemic landscape (research strategy, henceforth). To show this,
the authors consider three such strategies: control, follower, and maverick. At each
time step, every scientist can move to one of their Moore neighborhoods (i.e., the
present grid point and grid points surrounding it). Control scientists change direction if
the significance of the visiting grid point is smaller than that of the preceding grid
point; otherwise, they move straight. Control scientists do not use the information
about whether grid points have already been explored (i.e., they are indifferent to what
others are doing). Follower scientists are exploiters who utilize information about the
significance of already-visited grid points and move to the most significant grid point.

research projects

significance

Figure 1. An example of a three-dimensional
epistemic landscape.

3 Unlike the situation considered in Kitcher’s model, the epistemic landscape model considers a
situation in which the success of one group does not mean an ultimate resolution of a certain problem
but rather promotes further exploitation of the topic. Weisberg and Muldoon (2009) described the
synthesis of artificial DNA as an example of such a situation. One group’s success in synthesizing novel
DNA nucleotides stimulates the progress of other research groups in taking these molecules into a DNA
strand.
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Maverick scientists are explorers who move to unvisited grid points (for the detailed
algorithm, see Weisberg and Muldoon [2009]).

The authors found that a pure population of mavericks and a mixed population of
followers and mavericks perform better than a pure population of controls, but a pure
population of followers performs much worse than a population of controls. The
authors point out that a maverick strategy may be costlier than a follower strategy
because conducting completely new things is often laborious. Therefore, the authors
conclude that the division of research strategy between follower and maverick is best
for attaining the most efficient division of cognitive labor.

Although Weisberg and Muldoon (2009) conclude that the division of research
strategy between follower and maverick is important, it has been pointed out that
problems in their model and its implementation make their results less reliable
(Alexander et al. 2015; Thoma 2015; Pöyhönen 2017). The critics, then, propose
modified versions of the model, sometimes leading to different conclusions about the
utility of the division of research strategies.

Although these studies provide valuable insights into the division of cognitive labor,
the merit of discussing the division of research strategies to realize the division of
cognitive labor is still unclear for the following reasons. First, although several studies
have proposed that a mixed population of follower-like strategy and maverick-like
strategy improves the efficiency of the community, they did not consider how the
optimal balance of strategies can be achieved and stably maintained, as pointed out by
Thoma (2015). Heesen (2019) recently explored this problem and concluded that
incentives to maintain the coexistence of two strategies are unlikely. Even if the optimal
balance of strategies is known, it cannot improve the efficiency of the scientific
community. Moreover, as pointed out by Alexander et al. (2015), the division of cognitive
labor is not necessarily equal to the division of research strategy, and there could be
other means to realize the former. The authors demonstrate that a pure population of a
certain strategy, called swarm, can outperform a mixed population of follower-like
strategy and maverick-like strategy. However, this may be due to an unfairly
advantageous assumption regarding swarms.4 Thus, it remains unclear whether there
is a single strategy in which a pure population automatically realizes an optimal
distribution of research projects in a discipline. A more promising method would be to
control the distribution of pursued research projects directly through interventions such
as the distribution of research funding.

2.2. Epistemic landscape model with the funding agency
Recently, Avin (2015; 2019a) developed a model to discuss the effects of funding
distribution on the division of cognitive labor. The central funding agency is
introduced into an epistemic landscape model, where it controls the distribution of

4 To represent a scientist’s occasional inspiration, the authors assume that a swarm in a region of
positive significance can detect the direction to the peak with a low probability of 0.015–0.03, whereas
followers and mavericks are not allowed to detect peaks (Alexander et al. 2015, 443). This assumption
allows swarms to use information that followers and mavericks cannot use. It should be noted that this
makes a difference in the basic ability of the agents and not only in their research strategy. Because it
would greatly enhance the performance of swarms, comparing it with other strategies without such an
ability is not straightforward.
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research projects by determining which research projects are funded. Using
simulations, the author explores how various funding strategies affect the efficiency
of the scientific community.

Similar to previous epistemic landscape models, scientists are placed on a landscape.
However, in this model, only scientists who receive funding can conduct research
activities, and the remaining scientists are replaced by new scientists in a candidate pool.
All scientists in the landscape have the samemoving strategy, so the diversity of research
projects depends only on the funding strategy of the funding agency.

At each time step, the funding agency chooses grant proposals for candidates that
are represented by their positions in the epistemic landscape. Awarded scientists are
added to the landscape and conduct research. At the end of the period, part of the
significance of the grid point is discovered, and the scientists are returned to the
candidate pool. Scientists are assumed to be “hill-climbers,” such that returned
scientists submit a grant proposal of the highest significance in the Moore
neighborhood. Nonawarded candidates are replaced by new candidates whose
positions are determined randomly.

Five funding-agency strategies are compared: best, best visible, lotto, triage, and
oldboys. Best is an ideal strategy that chooses proposals based on the expected
significance of the proposals. Because it is difficult to evaluate proposals that are
completely different from previous studies, this strategy is unrealistic. Best visible
chooses proposals based on the expected significance among those close to previous
studies. It is meant to resemble the conventional peer-review system. Lotto chooses
among all proposals at random. Triage chooses half of the proposals based on the best-
visible strategy and the other half randomly from the proposals that are completely
different from previous studies. Thus, triage can be considered as a combination of
best visible and lotto. Finally, oldboys chooses candidates who worked in the previous
time step, and thus, no replacement of scientists occurs.

Avin (2015; 2019a) compares these strategies under several landscape settings and
demonstrates that triage is the best among the strategies, except for the ideal best.
Triage performs equally well as best. Because best visible chooses significant
proposals that are related to previous studies, it emphasizes the exploitation of
known important topics. On the other hand, because lotto chooses proposals at
random, it emphasizes exploring new research topics. By combining these strategies,
triage realizes an optimal balance between exploitation and exploration. The author
concludes that a partial introduction of a lottery system into the funding decision
improves the scientific community. The author also argues that it is also beneficial in
terms of cost because the peer-review process imposes a large burden on both
applicants and reviewers.

Although Avin’s model demonstrates that society can control the productivity of
the scientific community through the distribution of funding, some important aspects
of science are not taken into account in his model. It does not consider funds that are
distributed equally among scientists, such as block grants. Although a lottery system
improves the division of cognitive labor by funding challenging projects, baseline
funding may also play a similar role. Because baseline funding is a major method of
funding distribution, it is important to consider which method is better for improving
the productivity of the scientific community. Second, unrealistic dynamics of
scientists are assumed. Avin’s model assumes that once scientists fail to obtain a
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grant, they are replaced by new scientists. This leads to an unrealistically frequent
turnover of scientists, especially when a lottery system is introduced (see figure 4 in
Avin [2019a]). Furthermore, it is assumed that new scientists are randomly located in
the epistemic landscape, which means that they are likely to have completely
different research projects from previous ones. However, this assumption is
unrealistic. Even when new scientists are at the beginning of their careers, they
are usually trained in existing laboratories. This assumption seems plausible only
when new scientists come from other disciplines.5 However, the difficulty of entering
a new discipline depends on the nature of each discipline. Because the frequent
replacement of new scientists with new ideas significantly increases the diversity of
research projects and plays an important role in Avin’s model, his conclusions may
change if we modify these assumptions.

In the next section, a new epistemic landscape model is introduced to investigate
the effects of these overlooked aspects. I demonstrate that consideration of these
aspects dramatically changes the results. This result improves our understanding of
how the funding distribution alters the efficiency of the scientific community.

3. Generalized model for optimal funding distribution
In this section, I introduce a revised epistemic landscape model that follows Avin
(2015; 2019a) and aims to discuss the impact of funding strategies on the efficiency of
the scientific community while incorporating the aspects missing from his model. I
incorporate baseline funding (i.e., block grants) into the model. Baseline funding is a
prevalent mode of funding distribution that may play an important role in supporting
challenging research projects. To allow comparison with a lottery system, the present
model can represent both strategies by choosing the appropriate parameters. I also
incorporate more realistic scenarios and various dynamics of scientists. In Avin’s
model, scientists are replaced by new scientists when they fail to win a grant, which
leads to a very frequent turnover of scientists. Instead, in the present model,
scientists are removed from the discipline only when they fail to perform any
research for a certain period. Another assumption in Avin’s model is that new
scientists often have research projects that are completely different from previous
studies. However, as discussed, this is unrealistic when they are from the same
discipline. Although scientists from other disciplines may have novel ideas, as
supported by data analysis (Leahey et al. 2017), the proportion of new scientists from
other disciplines may depend on the characteristics of the discipline. For example, the
proportion would be relatively high in interdisciplinary research fields, whereas it
would be low in conventional research fields. Because the diversity of research
projects fostered by the entry of new scientists plays a crucial role in Avin’s model,
the conclusion may change if we modify this assumption. To formally consider this,
I introduce a parameter that represents the proportion of new scientists from other
disciplines.

5 Recent data analyses have indicated that interdisciplinary research has more novelty. Leahey et al.
(2017) demonstrated that interdisciplinary research tends to be novel and a high-risk, high-reward
activity. It was also found that highly interdisciplinary research tends to receive a low evaluation in
funding decisions (Bromham et al. 2016) and after publication (Uzzi et al. 2013; Yegros-Yegros et al. 2015).
One reason for such a low evaluation could be the novelty of such interdisciplinary research.

Philosophy of Science 609

https://doi.org/10.1017/psa.2023.49 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.49


In line with previous studies, I used a smooth landscape model in which the
significance of nearby grid points is highly correlated. It should be noted that
Alexander et al. (2015) question the validity of assuming a smooth landscape. They
demonstrate that dynamics and conclusions may change when highly rugged
landscapes are considered. Given the lack of knowledge regarding the shape of the
landscape, they argue that conclusions derived from smooth landscape models are
not general. However, the assumption of a smooth landscape may not be so
unrealistic. It is customary for innovative research to lead to a chain of further
publications along similar lines. Such a pattern would not be observed under
extensive ruggedness, where a slight difference would impede the utility of the
approach. Thus, in the present study, I assume a more or less smooth landscape
model.6

This model is used to investigate how a central funding agency can optimize the
scientific community by controlling the funding distribution. I reconfirm Avin’s
general conclusion that a combination of competitive and noncompetitive resource
allocation maximizes the efficiency of the community. However, the optimal ratio of
the two allocations largely depends on the openness of the discipline, which is
represented by the proportion of new scientists from other research fields. I also find
that, as a means of noncompetitive resource allocation, baseline funding performs
better than lottery funding in many cases. The present study highlights that the
minimum guarantee of research resources, such as block grants, plays an important
role in maintaining an efficient scientific community.

3.1. Model description
Parameters and variables are summarized in tables 1 and 2, respectively.

3.1.1. Landscape settings
An epistemic landscape of 101 × 101 grids is assumed. The initial significance of each
grid is set by the summation of n Gaussian peaks. Because the actual research fields
are too complex to be represented by a very smooth landscape, following Pöyhönen
(2017), I introduce a small ruggedness into the landscape. Let µi, hi, and σi be the
center, height, and width of the ith Gaussian peak, respectively. Then, the initial
significance of the position x, S x� �, is set as

S x� � �
Xn
i�1

hiexp � jx � µij2
2σ2

i

� �
� e; (1)

where e is a random variable that obeys a uniform distribution within the interval
0; 1� �. As in Pöyhönen (2017), when a grid is visited by a scientist, the significance of
the grid is reduced to 1 � λ� �S x� �. However, throughout this study, it is assumed that
λ is so large (i.e., � 0:9) that replications of previous studies have only a slight
significance7 (note that λ < 1 prevents scientists from being trapped in local regions).

6 Because actual landscapes may not be completely smooth, I add some ruggedness to the landscape
(see later discussion).

7 This represents the “winner-confers-all” system observed in science, where the honor goes only to
the first discoverer (Merton 1957).
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3.1.2. Settings for the scientists
Initially, N scientists are randomly located in the landscape. At each time step, they
perform research by using the resources provided by the central funding agency. Let Ri be
the amount of resources that the ith scientist has in a focal time step (for the
determination of Ri, see following discussion). On average, a unit of resource is required
to investigate each grid point, and scientists succeed in exploring a grid point at a rate
proportional to the amount of resources. To represent this, the number of grid points
that a scientist with resource Ri visits in a time step, Ai, is determined by the Poisson
distribution with mean Ri.8 All scientists are assumed to be hill-climbers, such that they
move to the grid with the highest significance in the Moore neighborhood until Ai grids
are investigated. When a scientist visits a grid of significance S x� �, λS x� � of significance is
obtained. The total amount of significance that the ith scientist finds in a time step (i.e.,
their performance in the time step) is recorded as Ti and is used to determine Ri in the
next time step (see following discussion).

Table 1. Summary of Parameters

Parameters Definition Default Value

�i Position of the center of the ith Gaussian peak —

hi Height of the ith Gaussian peak 30

�i Width of the ith Gaussian peak 4

� Depletion rate of landscape 0.9

N Total number of scientists on the landscape 20

d Threshold for removal of scientists 2

q Probability that a new scientist comes from other disciplines —

RT Total amount of research resource 50

p Proportion of resources for competitive selection —

Nc Number of scientists who receive competitive funding 5

Nn Number of scientists who receive noncompetitive funding —

Table 2. Summary of Variables

Variables Definition

t Number of time steps since the beginning of the simulation

S x� � Significance at position x

Ri Amount of resources that the ith scientist has in a time step

Ai Number of grid points that the ith scientist visits in a time step

Ti Total amount of significance that the ith scientist finds in a time step

8 A random variable obeying a Poisson distribution with mean λ represents the number of events in a
unit time interval when such events occur with a constant mean rate λ.

Philosophy of Science 611

https://doi.org/10.1017/psa.2023.49 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.49


The turnover of scientists occurs in such a way that inactive scientists are replaced
by new scientists. When scientists do not conduct research (i.e., Ai � 0) in successive d
time steps, they are removed from the landscape, and new scientists are introduced so
that the total number of scientists is kept at N. A parameter q is introduced to
represent the “openness” of the discipline to scientists from other disciplines. Thus,
with probability q, a new scientist is assumed to come from other disciplines and have
a research project that could be completely different from previous studies. In such
cases, the initial position is assigned at random. Alternatively, with probability 1 � q,
a new scientist is assumed to have come from one of the present laboratories in the
discipline. In such cases, a scientist in the landscape is randomly chosen, and the new
scientist is located in the same grid. In either case, Ti � 0 is initially assigned for new
scientists. When q � 1, new scientists always come from other disciplines and have
novel research projects, as in Avin’s model.

3.1.3. Resource distribution
At every time step, the central funding agency distributes resources to the scientists
in the landscape. The total amount of resources is fixed at RT for each time step. The
proportion p of the resources is assigned by competition and distributed equally
among scientists whose Ti (i.e., performance in the previous round) is among the top
Nc . This distribution by competition is expected to work similarly to peer review (and
the best-visible strategy in Avin’s model) because it tends to fund researchers
investigating well-recognized topics.9 The remaining resources are distributed
equally among Nn scientists who win in the lottery system. Then, for those scientists
whose Ti is within the top Nc , Ri in the next time step is given by

Ri �
pRT
Nc

� 1�p� �RT
Nn

if win in the lottery; too
� �

pRT
Nc

otherwise� �:

8<
: (2)

For others, it is given by

Ri �
1�p� �RT
Nn

if win in the lottery
� �

0 otherwise� �:

(
(3)

Various funding strategies can be represented by adjusting p and Nn. p determines
the proportion of resources distributed by competition. Nn determines the chance of
winning noncompetitive resource funding, such that a larger Nn increases the chance
of winning and, interchangeably, reduces the amount of resources allocated to each
winner. When Nn � N, a noncompetitive resource is allocated equally to all scientists
(i.e., baseline funding). The funding distribution through competition only is realized

9 It should be noted that there is a slight difference among the competitive distribution defined in the
present model, the best-visible strategy in Avin’s model, and the actual peer-review process. In this
model, funds are distributed among applicants who have made significant achievements in the past by
investigating hot topics. In Avin’s model, only the research topics, not the applicants, are considered in
the funding decision. In the actual peer-review process, an intermediate situation seems to be the case
because, usually, both past achievements and the importance of the research topic are taken into
account. However, from the perspective of the distribution of research projects, this difference is unlikely
to have a large effect as long as both methods fund hot topics; in fact, Avin’s result is reproduced in the
current model (see section 3.2.1).
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by p � 1. Funding only by lottery is realized by p � 0 and small Nn, and funding only
by baseline funding is realized by p � 0 and Nn � N. A combination of these strategies
is represented at intermediate values of p and Nn.

3.2. Results
Extensive simulations were conducted to investigate the effect of various parameters
on the efficiency of the scientific community, which is measured by the proportion of
significance in the landscape found by scientists. To consider the best resource
allocation strategy by a central funding agency, I focused mainly on two parameters:
p (ratio between competitive and noncompetitive funding) and Nn (chance of
receiving noncompetitive funding). Throughout this section, the same initial
landscape is used, as illustrated in figure 2A. For simplicity, the community size
was fixed as N � 20 and the winning rate of the competitive funding at Nc � 5 to
observe the effects of p and Nn on the productivity of disciplines with various influx
rates q. These assumptions do not affect the qualitative results presented (see
appendix A).

3.2.1. A discipline with an extremely high influx rate
First, I consider a discipline with a very frequent interdisciplinary influx (i.e., q � 1),
a situation similar to that in Avin’s model. The proportion of discovered significance is
plotted with time while changing p for Nn � 5 (figure 2B) and Nn � 20 (figure 2C). The
figure shows that the discovered significance is maximized for intermediate p 	 0:6; 0:8
at all time points in both cases. Consistent with Avin’s model, this indicates that a
combination of competitive and noncompetitive resource assignments is the most
efficient. Also, in this case, Nn (i.e., whether a noncompetitive grant is allocated by lottery
or by baseline funding) does not significantly affect the efficiency.

The reason that intermediate p performs best can be understood by observing the
dynamics of two extreme cases, p 	 0 and p 	 1. As scientists with new research ideas
continuously enter due to the assumption of a high q, scientists are distributed over
the entire landscape. When p is very low, the resource is distributed mostly in a
noncompetitive manner, and research activities are conducted in wide areas; thus,
scientists tend to find all peaks at an early stage. However, due to the low p, this does
not encourage the activities of scientists near the peaks, and the exploitation of the
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Figure 2. (A) The initial shape of the landscape. (B and C) The proportion of significance found by scientists
when q � 1 as a function of the number of time steps for (B) Nn � 5 and (C) Nn � 20, respectively. The
values were averaged over 1,000 replications.
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already-found peaks of significance is slow. On the other hand, when p is very high,
the resource is distributed by competition, and scientific activities are conducted only
in small areas around the already-found peaks. As a result, while the exploitation of
the discovered peaks is very fast, the discovery of other peaks located far from the
already-found peaks is slow. An optimal pattern is observed when p is intermediate,
where exploration of new peaks and exploitation of already-found peaks are
conducted in parallel. Noncompetitive resource allocation allows new scientists near
unfounded peaks to be active, which promotes the early discovery of peaks. Once
peaks are found, competitive funding promotes efficient exploitation of the peaks.
The effect of Nn is subtle, perhaps because any Nn allows new scientists near peaks to
initiate research and obtain further funding based on their achievements.

3.2.2. A discipline with an extremely low influx rate
Next, I consider a conventional discipline that scientists from other disciplines do not
enter (i.e., q � 0). For the lottery distribution (Nn � 5), shown in figure 3A, the
proportion of discovered significance is plotted with time while changing p. This
shows that a larger p is more effective for all time points. The reason for this pattern
is revealed by the distribution of scientists in figure 4. Each white circle represents
the position of each scientist, and its size represents the activity of the scientist in the
preceding time step (i.e., Ai), whereas the background shade represents the
significance landscape S x� �. Because q is very low, new scientists always come from
existing laboratories, and the turnover of scientists leads to the convergence of
scientists’ positions. In fact, convergence is observed irrespective of p in figure 4.
When p is very high, only those scientists close to the peaks survive for a long time
and reproduce their descendants in the same grid around the peak. When p is very
low, those who are lucky enough to keep winning the lottery can survive and
reproduce their descendants in the same grid. However, in this case, their positions
are not necessarily near the peaks. Thus, a larger p promotes the concentration of
scientists around the peaks and improves their performance.

The pattern changes significantly in the case of equal distribution (i.e., Nn � 20). In
figure 3B, the proportion of discovered significance is plotted with time for various p.
In the short term, a relatively large p 
 0:6; 0:8 maximizes the findings. However, in
the long run, a relatively small p 
 0:2; 0:4 yields the best performance.

To inspect the effect of Nn on the community’s performance, the difference in
performance between the noncompetitive resources distributed by lottery (Nn � 5)
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Figure 3. (A and B) The proportion of significance found by scientists when q � 0 as a function of the
number of time steps for (A) Nn � 5 and (B) Nn � 20. The values are averaged over 1,000 replications.
(C) The difference between two cases (the case of Nn � 20 minus the case of Nn � 5).
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and by baseline funding (Nn � 20) was calculated (figure 3C). This shows that baseline
funding works significantly better for all p unless the performance is evaluated in a
very short run. Note that the two lines for p � 1 in figures 3A and 3B are identical
because all the resources are distributed by competition, and the values of Nn make no
difference.

To explore the reason for this result, the distribution of scientists in typical
simulation runs for Nn � 20 is shown in figure 5. As noted earlier, when p is very large
(figure 5C), scientists aggregate in the same manner as in the case of Nn � 5 and
p 	 1. However, when p is very small, a great diversity of research projects is realized
because, unlike the lottery case, continuous resource allocation allows all scientists to
conduct research constantly, and turnovers are significantly reduced (figure 5A).
Although diversity ensures that all peaks are found in a relatively short time, resource
allocation to scientists at a less significant position slows the exploitation of the peak.
A more efficient pattern is observed when p takes intermediate values (figure 5B). In
this case, diversity is maintained by an equal resource allocation, whereas the
exploitation of the peaks is enhanced by competitive resource allocation. The balance
between exploration and exploitation makes intermediate p optimal for both short
and long runs.
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Figure 4. Typical simulation runs for q � 0 and Nn � 5 are shown for three values of p: (A) p � 0:0,
(B) p � 0:4, and (C) p � 1:0. Each white circle represents the position of a scientist, and its size represents
Ai in the preceding time step. The background shade shows the significance landscape S x� �.
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These results suggest that an equal distribution of resources outperforms random
distribution because the equal distribution leads to a lower turnover rate of scientists
compared to that in the distribution by lottery. To investigate whether the lower
turnover rate in the equal distribution is generally observed (i.e., outside the
parameter spaces investigated), I calculated the expected time until a new scientist at
a region of very low significance is replaced under simplified situations. To focus on
scientists in a region of low significance, it is assumed that a focal scientist does not
win a competitive grant and relies solely on noncompetitive resources. Then, the
expected time until the replacement, τ, is given by

τ �
P

i�d�1
i�0

αi

αd

� d for α � 1
1�αd

αd 1�α� � for α≠ 1;

� (4)

where α � 1 � Nn
N

� �� Nn
N exp � 1�p� �RT

Nn

� �
. It can be deduced that τ is a monotonically

increasing function with respect to Nn. In other words, the turnover becomes less
frequent as Nn increases for all combinations of p; RT;N, and d (for details of the
derivations, see appendix B).
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To visualize the effect of Nn, equation (4) is plotted for various p and Nn (figure 6).
When Nn is low, τ is so small that scientists in a valley of significance are likely to be
replaced before reaching another peak of significance, irrespective of p. On the other
hand, when Nn is very large, scientists in a region of low significance can survive for
enough time to find new peaks, especially for low p. These results suggest that in a
discipline with a low influx rate, equal distribution of noncompetitive resources is
superior to random distribution.

Note that these mathematical analyses do not depend on any assumptions about
the shape of the landscape, such as its dimensions, size, and the location of peaks.
Thus, these results would hold for a wide class of landscapes.

3.2.3. A discipline with intermediate influx rates
Finally, I consider cases for intermediate values of q (0 < q < 1). To see how the
performance and optimal p change for both the random distribution (i.e., Nn � 5) and
the equal distribution (i.e., Nn � 20), the performance of the community for each set of
(p; q) is evaluated, where p and q are increased by 0.01. For each parameter set, 1,000
replications of simulations were run, and the average of discovered significance was
calculated at t � 50. Then, for each q, an optimal value of p was estimated. The
performance for the optimum p is plotted along with q for both distribution methods in
figure 7A. The equal distribution (gray line) shows a similar or better performance than
the random distribution (black line). Notably, the equal distribution significantly
outperforms the random distribution for q < 0:2. For q > 0:2, the random distribution
performs slightly better; however, both methods show similar performances.
Considering that it is unclear whether we can identify the influx rate of a given
discipline, this result suggests that equal distribution is a better choice.

The optimal values of p are plotted in figure 7B. For Nn � 20, the optimal p
monotonically increases with q because the need to reduce the turnover rate declines
as the diversity of research projects is maintained by new scientists. For Nn � 5, the
optimal p is reduced from 1 to 	 0:5 around q 
 0:05 because a continuous influx of
new research ideas increases the benefit of noncompetitive resource allocation. For
larger q, dynamics similar to the case of Nn � 20 are observed. These results show
that even in intermediate q, the performance of the community and the optimal value
of p are affected by the way noncompetitive resources are distributed and that,
overall, a combination of competitive and equal distribution is a better choice.10
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Figure 6. The expected time until a new scientist at a region of
low significance is replaced, τ, is plotted for various p and Nn.
The other parameters are set at default values (see table 1).

10 One may also wonder about the combination of lottery and baseline funding. In appendix C,
I explore this case and confirm that the same conclusion is reached (I thank an anonymous reviewer for
suggesting this).
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4. Discussion
The presented results show that baseline funding performs better or similarly in
many situations when compared with lottery funding. This trend is seen in a wide
range of parameter settings (see appendices A and D) and is also supported by general
mathematical analysis. Thus, considering our insufficient knowledge about the
parameters, baseline funding would be a better option than lottery funding as a
general funding strategy. Because baseline funding is easy to implement, it is
preferable from the perspective of cost performance (see appendix E for ideas on how
to explicitly incorporate implementation costs into the model).

The model also shows that a combination of competitive and noncompetitive
distributions is often optimal. In general, the optimal proportion of competitive
funding increases as scientists’ interdisciplinary movement increases. The optimal
proportion also depends on other parameters, such as the shape of the landscape (see
appendix A). These results suggest that funding agencies should change the
proportion of competitive and noncompetitive funding for different disciplines.

At this point, one may question the utility of the landscape approach for actual
policy making. Landscape models simplify many aspects of a complex research
community. Furthermore, currently, we do not have deep knowledge about the
parameters in the model, such as the shape of the landscape and the extent of
interdisciplinary mobility. Given these limitations, one may doubt the usefulness of
landscape models in discussing actual scientific communities.11

However, I argue that the conclusion of the present study—that is, that baseline
funding is a better general strategy than lottery funding—has substantial generality.
First, as discussed in section 3, the assumption of a smooth landscape is not
unrealistic. Second, the conclusion does not depend on specific assumptions
regarding parameter values, and it covers a wide range of parameter spaces. This
generality provides a strong reason to expect that the same conclusion would be
applicable to the actual community.
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Figure 7. (A) The performance using optimal p is plotted against q for Nn � 5 (black line) and Nn � 20 (gray
line). The performance is defined as the average of discovered significance at t � 50. (B) The optimum value
of p is plotted against q for Nn � 5 (black line) and Nn � 20 (gray line).

11 I thank one of the reviewers for suggesting a discussion of this issue.
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The current model can be extended in various ways to make it more realistic (see
appendix E for other ideas for extensions). For instance, in the present model, the
expected activity of the ith scientist (Ai) is assumed to be proportional to the amount
of resources (Ri). This means that the manner in which resources are distributed does
not affect the total amount of activity (i.e., the total number of grids investigated in a
time step in a discipline). However, it is likely that a very small amount of funds would
not allow for any research activity. In such cases, equal distribution among many
scientists would be ineffective. In addition, we could impose an upper limit on a
researcher’s amount of activity in a time step irrespective of their resources. Recent
studies have revealed that research performance is maximized at intermediate grant
sizes (for a review, see Aagaard et al. [2020]). Given that the current funding systems
tend to overly concentrate resources on a small number of scientists (Wahls 2018;
Aagaard et al. 2020), an equal distribution may be beneficial from the perspective of
efficient use of funding resources (see also Vaesen and Katzav [2017]).

Another important assumption in the current model is that scientists’ ability to
conduct research is equal, but this may not be the case. Although one may worry that
the incorporation of such aspects would require evaluation of scientists’ ability and
return to the peer-review system, there are ways in which noncompetitive funding
could also incorporate such an evaluation. For example, the incorporation of some
prescreening processes might be effective in excluding poor-quality proposals or
pseudo-scientific ones, such as the approach implemented by the Health Research
Council of New Zealand. Additionally, minimum quality control may be possible at
earlier stages, such as during education or at the time of employment in research
institutions.

Recently, empirical data on the evolution of the scientific community have become
accessible (for a review, see Fortunato et al. [2018]), leading to evidence-based policy
making. Theoretical analyses should work in a complementary manner to those
empirical studies in policy making. With the accumulation of empirical evidence, more
realistic models can be developed. Such models would be useful for studying
the dependence of the effectiveness of policies on certain parameters, helping to test
the generality of the expected effects of those policies. In turn, this would also help
identify some important parameters, stimulating further empirical research on these
parameters. The strength of the present model is its flexibility, which allows various
types of extensions to better represent the actual dynamics of science (see appendix E).
Thus, the current model provides a useful theoretical framework for future studies.

5. Conclusion
Recently, research funding systems have undergone significant reforms, and many
new methods of funding distribution have been introduced (Larrue et al. 2018). One
such method is funding distribution by lottery, which was first introduced by the
Health Research Council of New Zealand. A rationale for this method is that a lottery
system inherently imposes no systematic bias, whereas conventional peer review
introduces a bias against the innovative approach, which could slow down scientific
progress in the long run (Brezis 2007; Gillies 2014; Fang and Casadevall 2016).

Avin’s work (2015, 2019a) was among the first to address this problem and examine
the effectiveness of various funding strategies of a central funding agency. He
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extended the epistemic landscape model and argued that a combination of
competitive funding, such as the peer-review process, and noncompetitive funding
by lottery is the best funding strategy. However, his model missed two important
aspects: (i) noncompetitive funding distributed equally among scientists, such as
block grants, and (ii) realistic interdisciplinary dynamics of scientists.

To resolve this problem, I extended the epistemic landscape model to consider
more general situations. This model was used to investigate the importance of these
two missing aspects, and it was found that they significantly affected the optimal
funding strategy. Although a combination of lottery and competitive distribution is
recommended in Avin’s studies, the current model shows that when most new
scientists come from the same discipline, a combination of baseline funding, such as
block grants, and competitive funding works better. When new scientists frequently
come from other disciplines, both methods work with similar efficiency. These results
validate that a combination of competitive and noncompetitive distribution is an
optimal strategy and suggest that, as a method of noncompetitive distribution,
baseline funding is a better choice than funding by lottery in many cases.

For simplicity, and owing to the lack of empirical data, several assumptions were
made in the model. Although they could affect the quantitative dynamics of the
proposed model, I expect that the qualitative pattern would remain robust against
these assumptions, considering that similar patterns are observed over a wide range
of parameter spaces. An advantage of the current model is its flexibility to allow
further sophistication. When empirical studies accumulate, future work may
incorporate this information into the model and predict the dynamics of an actual
community more accurately.
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Appendix A: Dynamics in Other Parameters

The effects of the shape of the landscape and the parameter Nc were investigated to
check the generality of the conclusions presented in the main text. Qualitatively
similar dynamics were observed here.

First, the effects of the landscape shape were investigated. Three different peak
widths (i.e., σ) are assumed in figure S1. Consistent with the results presented in the
main text, equal funding distribution outperforms random distribution when q is
small. The advantage decreases as σ increases (figure S1, panels B, E, and H) because a
small valley of significance reduces the need to support scientists who are crossing
the valley. For the same reason, increasing competitive funding is more beneficial as σ
increases (figure S1, panels C, F, and I). When q is large, the two distribution methods
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of noncompetitive funding show similar performance for the three cases. The effect of
the number of peaks was also considered. Three different numbers of peaks are
assumed in figure S2. The qualitative results are very similar for the three cases. In
summary, the shape of the landscape does not significantly affect the quantitative
results.

Next, the effects of parameter Nc were investigated. Nc is the parameter that
determines the acceptance rate of competitive funding. Two different Nc values are
shown in figure S3. Regarding the shape of the landscape, Nc does not affect the
qualitative results.

σ = 10.0

σ = 4.0

Nn = 5
Nn = 20

q q

op
tim

al
 p

Nn = 5
Nn = 20

pr
op

or
tio

n 
of

di
sc

ov
er

ed
 s

ig
ni

fic
an

ce
σ = 7.0

Nn = 5
Nn = 20

q q

op
tim

al
 p

Nn = 5
Nn = 20

pr
op

or
tio

n 
of

di
sc

ov
er

ed
 s

ig
ni

fic
an

ce

Nn = 5
Nn = 20

q q

op
tim

al
 p

Nn = 5
Nn = 20

pr
op

or
tio

n 
of

di
sc

ov
er

ed
 s

ig
ni

fic
an

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Figure S1. The investigated landscape, the performance of the scientific community, and the optimal p are
plotted for (A–C) σ � 4:0, (D–F) σ � 7:0, and (G–I) σ � 10:0, respectively. All parameters except for σ are
the same as that in figure 7, so panels B and C are identical to figures 7A and 7B, respectively.
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Appendix B: Derivation of Equation (4)

Here, a detailed derivation of equation (4) is provided. Proofs for the statements
referred to in the main text are also included.

The probability that no activity is conducted in a time step: Recall that the
number of activities conducted in a time step, Ai, obeys a Poisson distribution with
mean Ri, where Ri is given by equation (S8). The probability that no activity is
conducted in a time step, α, is represented by

α � 1 � Nn

N

� �
� Nn

N
exp � 1 � p

� �
RT

Nn

� �
: (S1)
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Figure S2. The investigated landscape, the performance of the scientific community, and the optimal p are
plotted for (A–C) two peaks, (D–F) four peaks, and (G–I) six peaks, respectively. All parameters except for
the number of peaks are the same as those in figure 7, so panels E and F are identical to figures 7A and 7B,
respectively.
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Corollary: α decreases as Nn increases. The derivative of α with respect to Nn is

dα
dNn

� e�a=Nn

N
1� a

Nn
� ea=Nn

� �
; (S2)

where a � 1 � p
� �

RT0. Note that a � 0 only when p � 1. Let f Nn� � � 1� a
Nn
� ea=Nn .

Then, f 0 Nn� � � a
N2
n
ea=Nn � 1
� � ≥ 0, and f �∞� � � 0, resulting in f Nn� � ≤ 0 for Nn > 0.

From equation (S2), it is clear that α is a monotonically decreasing function with
respect to Nn. Specifically, when p < 1, α is a strictly decreasing function with respect
to Nn.

Derivation for equation (4): Let Ti (i 2 0; 1; 2; � � � ; d � 1f g) be the expected time
until replacement when a scientist fails to conduct research in i successive time steps
in the initial state. By considering the fate in the next time step, the following
recursions are derived:

Ti � 1� αTi�1 � 1 � α� �T0 0 ≤ i ≤ d � 2� �
1� 1 � α� �T0 i � d � 1� �:

�
(S3)

From equation (S3), it is deduced that

Ti�1 � Ti � α Ti�2 � Ti�1
� �

0 ≤ i ≤ d� 3� �
�αTi�1 i � d � 2� �:

�
(S4)
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Figure S3. Performance of the scientific community and the optimal p are plotted for (A and B) Nc � 5 and
(C and D) Nc � 10. All parameters except for Nc are the same as those in figure 7, so panels A and B are
identical to figures 7A and 7B, respectively.
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Then, Ti�1 � Ti � �αd�i�1Td�1. From this equation, T0 is expressed as

T0 � Td�1 �
Pi�d�2

i�0
�Ti�1 � Ti�

� Td�1
Pi�d�1

i�0
αi:

(S5)

By substituting equation (S5) into equation (S3) for i � d � 1, Td�1 � 1
αd
is obtained. By

noting that τ � T0 and substituting it into equation (S5), equation (4) is derived.
Corollary: τ decreases as α increases. The derivative of τ with respect to α is

dτ
dα

� α�d�1

�α � 1�2 g α� �; (S6)

where g α� � � d α � 1� � � α αd � 1
� �

. Because g0 α� � � d� 1� � 1 � αd
� �

0 and g 1� � � 0,
g α� � ≤ 0 for all α < 1. Then, it is shown that τ is a monotonically decreasing function
with respect to α. Note that α � 1 only when p � 1 (see equation [S1]), and when
p < 1, τ is a strictly decreasing function.

It is demonstrated that τ decreases as α increases while α decreases as Nn

increases. By integrating these, it is shown that τ increases as Nn increases.

Appendix C: Coexistence of Baseline Funding and Lottery

In this section, I consider a case where the coexistence of baseline funding and
funding by lottery is allowed. The details of the implementation are as follows. Let pc
and pl (pc � pl ≤ 1) be the proportion of resources assigned by competitive method
and lottery, respectively. The remaining proportion of 1 � pc � pl is granted resources
by baseline funding. I denote by Nl the number of scientists who win a lottery.
Accordingly, equations (2) and (3) are modified as follows. For those who win via
competitive funding,

Ri �
pcRT
Nc

� plRT
Nl

� 1�pc�pl� �RT
N if win in the lottery; too

� �
pcRT
Nc

� 1�pc�pl� �RT
N otherwise� �:

8<
: (S7)

For others,

Ri �
plRT
Nl

� 1�pc�pl� �RT
N if win in the lottery

� �
1�pc�pl� �RT

N otherwise� �:

8<
: (S8)

Using this model, I investigated the optimal funding strategy (pc and pl) for various
q. Consistent with the main study, I assumed Nc � Nl � 5. For each q, pc and pl were
increased by 0.01, and the optimal combination was identified. Figure S4 shows that at
the optimal combination, either pl or 1 � pc � pl is generally 	 0, and the
performance at the optimum is almost equal to the maximum of the performance
of the two cases in figure 7. These results suggest that baseline funding and funding by
lottery are optimally exclusive.
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Appendix D: Effect of Initial Distribution of Scientists

In this section, the effect of scientists’ distribution at the initial state is considered. In
the main text, a random distribution is assumed because it is simple and consistent
with previous studies (Avin 2015, 2019a). Such a random distribution may be
appropriate for representing the initial state of new disciplines, where most
researchers come from other disciplines. However, the distribution may not be
random if a focal discipline has some history before the consideration of the current
funding distribution. In that case, the initial distribution of scientists may be affected
by the manner in which the discipline has evolved.1 To investigate such an effect, I
constructed a slightly different simulation model in which the effect of the funding
method on scientists’ distribution is explicitly taken into account.

In this new model, I assume that a new peak of significance arises at a random
position when the total remaining significance is less than Sc (Sc � 5; 000 is assumed).
A similar situation was considered by Avin (2019a) for the “new avenues” setting.
Such an assumption enables the discipline to evolve for a long time without
exhausting significance. After evolving for 1,000 time steps, the scientists’
distribution would no longer depend on the initial distribution. I then calculated
the speed of discovery of significance in the following 10,000 time steps. Using this
model, I increased p and q by 0.01 for both baseline funding and lottery and registered
their performances.

Despite the large difference in the model setting, roughly similar patterns are
observed in this model: baseline funding is better than lottery funding when q is small
and slightly worse when q is relatively large. The performance (discovered
significance per time step) of each (p; q) set is shown by the shaded colors in
figure S5A. The black line represents the optimal p for each q. This demonstrates that
the performance of lottery funding is worse than that of baseline funding when q is
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Figure S4. (A) The performance of the optimal pc and pi at the optimum is plotted against q (bold line). The
performance is defined as the average of discovered significance at t = 50. For comparison, the two lines in
figure 7 are also drawn in thin lines. (B) The optimum proportion of resources for each funding method is
plotted against q.

1 I thank an anonymous reviewer for suggesting this point.
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small (i.e., < 0:1), whereas lottery is slightly better when q is relatively large
(i.e., > 0:2). I also plotted the performance of each funding method when p is optimal
(in) figure S5B), in a manner similar to that of figure 7A, and observed a similar trend.2

To compare the performance of the two methods in more detail, I plotted the
proportion of the performance change for some sets of (p; q) when baseline funding is
replaced with lottery (figure S5C). When q is small, the switch from baseline funding
to lottery funding decreases the performance for all p. The reduction can be as large
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Figure S5. Performance of the scientific community. (A) Performance at each (p, q) for the lottery (Nn = 5)
and baseline (Nn= 20) cases. Shaded colors represent the performance, and the black line shows the optimal
p for each q. (B) Performance at optimal p. (C) Proportion of performance change after baseline funding is
replaced with funding by lottery.

2 One may wonder why lottery is not a bad strategy even when q is small. This may be due to the
abnormal dynamics in the case of P � 1, which is the optimal strategy for a small q in the lottery case.
Because all resources are distributed based on previous achievements, new scientists are never funded.
Thus, only Nc scientists who can gain funds at the initial time step can conduct research, similar to the
oldboys scenario in Avin (2019a). Constant funding to these scientists ensures the diversity of research
topics and showsrelatively good performance with a small q. However, this strategy is vulnerable to even
a small amount of noncompetitive funding, perhaps because noncompetitive funding allows for new
scientists to enter. For example, the performance at q � 0 is steeply reduced from 130 (p � 1) to 86
(p � 0:95). Thus, the performance of lottery may not be as good as what is shown in figure S5B unless
such an extreme funding method is introduced. It should be noted that such a method is unrealistic and
would be detrimental in the long term because the alternation of generations is inhibited.
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as > 50% when p is small. When q is large, the performance increases for some p, but
the increment is relatively small (< 15%). Because our current knowledge about q is
insufficient, this result seems to suggest that baseline funding is a better choice than
lottery funding as a general policy.

Appendix E: Various Potential Extensions of the Model

In this section, I discuss how various factors, such as the ability of scientists, the
efficiency of resources, and the different costs among the funding methods, could be
incorporated into the present model.

The varying abilities of scientists can be implemented in several ways. Let ci be the
ability of ith scientist. If we want to represent the varying speed of excavating each
research topic (i.e., grid point) among scientists, it may be realized by determining Ai
using a Poisson distribution with mean ciRi, rather than Ri. If we want to incorporate
the varying skills in writing grant applications, it may be introduced in a way that
competitive resources are distributed based on ciTi, rather than Ti.

The varying efficiency of resources can be implemented as follows. We first
consider the case in which the expected activity per unit resource depends on the
total amount of resources of a scientist. If such dependency is given by a function f R� �,
Ai may be determined by the Poisson distribution with mean Rif Ri� �. Instead, we can
represent that each grid point differs in the difficulty of the investigation, such that
some grid points require many resources for success. Let γ x� � be the difficulty of
investigating a grid point at position x. Then, the ith scientist with resource Ri may
take time z to investigate the focal grid point, where z is drawn from an exponential
distribution with mean γ x� �=Ri.3 In each time step, the ith scientist is allowed to move
as long as the sum of z in that time step is less than 1. When γ x� � ≡ 1, this
implementation is mathematically identical to that in the main text. Note that actual
scientists may not be hill-climbers of significance in this case because they may also
take γ x� � into account when choosing the next grid point.

Finally, the cost of implementing each funding method can be calculated as
follows. In reality, different funding methods would require different costs for their
implementation.4 Such implementation costs can be represented by reducing the
amount of resources distributed by each method. For example, if the implementation
of peer review requires the resource cp, the amount of resource that is distributed to

grant winners may be pRT�cp
Nc

. Similar extensions can be considered for other funding

methods. Instead, if we want to consider the cost of scientists spending time in
preparation or review of application documents, it can be modeled such that Ai is
determined by a Poisson distribution with a mean 1 � cp

� �
Ri, where cp is the

proportion of time each scientist invests in such activities.

3 An exponential distribution with mean 1=λ gives a waiting time until a next event occurs when such
events occur with a constant mean rate λ.

4 I thank an anonymous reviewer for suggesting this point.
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