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With a growing demand for ultra-high-density data storage and more energy-efficient electronic devices, 
new magnetic materials and device designs are of critical importance. Theory and experiment both show 
that materials with the skyrmion phase are potential candidates for next generation storage and 
computation because they are robust to defects due to their topological protection and because their size 
can be tuned to less than 10 nanometers in diameter. [1-6] Skyrmions are stabilized by competing 
interactions: the exchange interaction (J) and the Dzyaloshinskii-Moriya (DM) interaction. The 
exchange interaction takes the form of a dot product [−𝐽𝑆 ∙ 𝑆] and is minimized by a parallel spin 
configuration; whereas, the DM interaction results in canted spins because it takes the form of a cross 
product [𝐷 ∙ (𝑆 × 𝑆)]. The DM interaction can be further broken down into contributions from either 
broken bulk inversion symmetry (Dresselhaus DM) or broken mirror symmetry, such as at an interface 
(Rashba DM). Materials with purely Dresselhaus DM interaction such as the FeGe and MnSi B20 
crystals (space group P213) form Bloch skyrmions, which are vortex-like, with spins canting and 
twisting away from the core of the skyrmion. In systems with pure Rashba DM interaction such as 
ultrathin metallic films and perovskite heterostructures, Néel skyrmions form with the so-called 
hedgehog-like structure where spins cant in a radially symmetry fashion away from the core of the 
skyrmion. It has been theoretically predicted that a combination of Dresselhaus and Rashba DM 
interaction will produce a skyrmion with mixed Bloch and Néel character, though these have yet to be 
experimentally observed. [7] 
 
Experimentally, Bloch skyrmions have been observed in a number of systems using conventional 
Lorentz transmission electron microscopy (LTEM) and in situ cooling and variable magnetic field. The 
magnetic character of Néel skyrmions, on the other hand, makes LTEM imaging difficult without large 
sample tilts due to the lack of significant magnetic contrast. [8] To image Néel and potentially mixed 
Néel/Bloch skyrmions, we use in situ Lorentz differential phase contrast scanning transmission electron 
microscopy with variable applied magnetic field and temperatures between 90 K and room temperature. 
 

In this work we study two systems: FeGe capped with various metallic films and bilayer 
SrIrO3/SrRuO3. The FeGe system inherently exhibits Bloch skyrmions because of its non-
centrosymmetric crystal structure; however, the addition of a metallic thin film cap adds a Rashba DM 
interaction, the magnitude of which is dependent on the strength of the spin-orbit coupling of the 
metallic film, which in turn is roughly dependent on Z4. The proximity of the metallic thin film, and thus 
Rashba interaction, is predicted to make skyrmions more stable than in pure FeGe. In the latter system, 
bilayer perovskite SrIrO3/SrRuO3 is grown on SrTiO3 via off-axis magnetron sputtering, as seen in  
Figure 1. The perovskite system has only the Rashba DM interaction with a contribution of large spin-
orbit coupling from the Ir, forming Néel skyrmions with a diameter of roughly 6 nanometers as 
predicted by the presence of a large topological hall signal, which is typically used as indirect evidence 
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of skyrmions. In both systems, the effect of structural and compositional inhomogeneities is also studied 
using high spatial resolution aberration corrected STEM and energy dispersive x-ray spectroscopy [9].  
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Figure 1. High angle annular dark field STEM image of (2 unit cell)SrIrO3 / (10 unit cell)SrRuO3 
bilayer grown on SrTiO3 via off-axis magnetron sputtering. Scale bar is 2 nm. 
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