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Abstract

We show that for every finite set of prime numbers S, there are at most finitely many
singular moduli that are S-units. The key new ingredient is that for every prime num-
ber p, singular moduli are p-adically disperse. We prove analogous results for the Weber
modular functions, the λ-invariants and the McKay–Thompson series associated with
the elements of the monster group. Finally, we also obtain that a modular function that
specializes to infinitely many algebraic units at quadratic imaginary numbers must be
a weak modular unit.

1. Introduction

A singular modulus is the j-invariant of an elliptic curve with complex multiplication. These
algebraic numbers lie at the heart of the theory of abelian extensions of imaginary quadratic
fields, as they generate the ring class fields of quadratic imaginary orders. This was predicted by
Kronecker and referred to by himself as his liebsten Jugendtraum.

A result going back at least to Weber, states that every singular modulus is an algebraic
integer [Web08, § 115, Satz VI ]. Thus, the absolute norm of a singular modulus is a rational
integer, and the same holds for a difference of singular moduli. Gross and Zagier gave an explicit
formula for the factorization of the absolute norms of differences of singular moduli [GZ85].
Roughly speaking, this formula shows that these absolute norms are highly divisible numbers.
In fact, Li showed recently that the absolute norm of every difference of singular moduli is
divisible by at least one prime number [Li21]. Equivalently, that no difference of singular moduli
is an algebraic unit. Li’s work extends previous results of Habegger [Hab15] and of Bilu, Habegger
and Kühne [BHK20]. These results answered a question raised by Masser in 2011, which was
motivated by results of André–Oort type.

In view of these results, one is naturally led to look at differences of singular moduli whose
absolute norms are only divisible by a given set of prime numbers. To be precise, recall that for
a set of prime numbers S, an algebraic integer is an S-unit if the only prime numbers dividing
its absolute norm are in S. The following is our main result.

Main Theorem. Let S be a finite set of prime numbers and j0 a singular modulus. Then, there
are at most finitely many singular moduli j such that j − j0 is an S-unit.

To prove this result we follow Habegger’s original strategy in the case where S = ∅ in [Hab15].
The main new ingredient is that for every prime number p, singular moduli are p-adically disperse
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(Theorem B in § 1.2). We also prove analogous results for a more general class of modular
functions that includes the Weber modular functions, the λ-invariants and the McKay–Thompson
series associated with the elements of the monster group (Theorem A in § 1.1). In the course of
the proof of these results, we obtain that a modular function that specializes to infinitely many
algebraic units at quadratic imaginary numbers must be a weak modular unit (Theorem D in
§ 1.4).

We also propose a conjecture whose affirmative solution would yield a vast generalization of
the Main Theorem. The conjecture is that for every prime number p, every algebraic number
is p-adically badly approximable by singular moduli (Conjecture 1.3 in § 1.3). We show that an
affirmative solution to this conjecture, would imply a version of the Main Theorem for every
nonconstant modular function f for a congruence or genus zero group and every algebraic value
of f (Corollary 5.2 in § 5).

1.1 Singular moduli that are S-units
Consider the usual action of SL(2,R) on the upper-half plane H and consider the j-invariant as
a holomorphic function defined on H that is invariant under SL(2,Z). Moreover, denote by Q

the algebraic closure of Q inside C.
A subgroup Γ of SL(2,R) is commensurable to SL(2,Z), if the intersection Γ ∩ SL(2,Z) has

finite index in Γ and in SL(2,Z). For such a group, denote by X(Γ) the Riemann surface obtained
by compactifying the quotient Γ\H. The genus of Γ is the genus of X(Γ). A modular function
for Γ is a meromorphic function defined on H that is obtained by lifting the restriction to Γ\H

of a meromorphic function defined on X(Γ). A meromorphic function defined on H is a modular
function if and only if it is algebraically dependent with the j-invariant over C (Proposition 2.1).

A modular function is defined over Q, if it is algebraically dependent with the j-invariant
over Q. In this case, a singular modulus of f is a finite value that f takes at a quadratic imaginary
number. Every singular modulus of f is in Q (Proposition 2.3(i) in § 2.2). We show that every
modular function whose Fourier series expansion at i∞ has coefficients in Q is defined over Q

(Proposition A.1 in Appendix A).
Recall that for a set of prime numbers S, a number in Q is an S-unit if the leading and

constant coefficients of its minimal polynomial in Z[X] have all their prime factors in S.

Theorem A. Let f be a nonconstant modular function defined over Q for a genus-zero group.
Moreover, let f0 be a singular modulus of f and let S be a finite set of prime numbers. Then,
there are at most finitely many singular moduli f of f such that f − f0 is an S-unit.

Since SL(2,Z) is of genus zero and the j-invariant is a nonconstant modular func-
tion for SL(2,Z) defined over Q, the Main Theorem is Theorem A applied to the
j-invariant. Theorem A also applies to the Weber modular functions, the λ-invariants and the
McKay–Thompson series associated with the elements of the monster group. See § 1.5 for details.

The following corollary is a direct consequence of Theorem A with f equal to the j-invariant
and f0 = 0, which is the j-invariant of every elliptic curve whose endomorphism ring is isomorphic
to Z[(1 +

√
3i)/2].

Corollary 1.1. For every finite set of prime numbers S, there are at most finitely many
singular moduli of the j-invariant that are S-units.
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When restricted to the j-invariant and S = ∅, Theorem A is a particular instance of [Hab15,
Theorem 2] and of [Li21, Corollary 1.3 with m = 1].1 This last result extends the main result
of [BHK20], that in the case where S = ∅ the set of singular moduli in Corollary 1.1 is empty.
In contrast to these results, the proof of Theorem A, which follows the strategy of proof of
[Hab15, Theorem 2] in the case where f is the j-invariant and S = ∅, does not give an effectively
computable upper bound.

The number −215 is an example of a singular modulus of the j-invariant that is a {2}-unit.
In fact, −215 is the j-invariant of every elliptic curve whose endomorphism ring is isomor-
phic to Z[(1 +

√
11i)/2]. Numerical computations suggest an affirmative answer to the following

question; see, e.g., [Sut].

Question 1.2. Is −215 the unique singular modulus of the j-invariant that is a {2}-unit?

For j0 = 0 or 1728 and for the infinite set of prime numbers S for which every elliptic curve
with j-invariant equal to j0 has potential ordinary reduction, Campagna showed the following
in [Cam21]: if j is a singular modulus of the j-invariant such that j − j0 is an S-unit, then j − j0 is,
in fact, an algebraic unit. A combination of the Main Theorem and the arguments of Campagna
shows that when j0 = 0 or 1728, the conclusion of the Main Theorem holds for some infinite sets
of prime numbers S; see § 1.5.

1.2 Singular moduli are disperse
Denote by MQ the set of all prime numbers together with ∞, put C∞ := C and denote by | · |∞
the usual absolute value on C. Moreover, for each prime number p let (Cp, | · |p) be a completion
of an algebraic closure of the field of p-adic numbers Qp, and identify the algebraic closure of Q

inside Cp with Q. For all v in MQ, α in Cv and r > 0, put

Dv(α, r) := {z ∈ Cv : |z − α|v < r}.
For a finite extension K of Q inside Q, consider the Galois group Gal(Q|K) and for each α in Q

denote by OK(α) its orbit by Gal(Q|K). The following result is stated for a modular function
that is ‘defined over K’ in the sense of Definition 2.2 in § 2.2. For a modular function to be
defined over K, it is sufficient that its Fourier series expansion at i∞ has coefficients in K
(Proposition A.1 in Appendix A).

Theorem B (Singular moduli are disperse). Let K be a finite extension of Q inside C and let f
be a nonconstant modular function defined over K. Then, for all v in MQ, α in Cv and ε > 0,
there is r > 0 such that the following property holds. For every singular modulus f of f such
that # OK(f) is sufficiently large, we have

#(OK(f) ∩ Dv(α, r)) ≤ ε · # OK(f).

We first establish this result for the j-invariant, and then deduce the general case from
this special case. The case where v = ∞ and f is the j-invariant is a direct consequence of the
fact that the asymptotic distribution of the singular moduli of the j-invariant is given by a
nonatomic measure [Duk88, CU04]. In the case where v is a prime number p, there are infinitely
many measures that describe the p-adic asymptotic distribution of the singular moduli of the
j-invariant. The main ingredient in the proof of Theorem B is that none of these measures has
an atom in Cp (Theorem 3.1 in § 3). We also prove an analogous result for the Hecke orbit of
every point in Cp (Theorem 3.2 in § 3.1). As a consequence, we obtain that a Hecke orbit cannot

1 See Theorem D in § 1.4 for an extension of Habegger’s result to a general modular function defined over Q and
§ 1.5 for further comments on Li’s result.
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have a significant proportion of good approximations of a given point in Cp (Corollary 3.4 in
§ 3.1), thus improving a result of Charles in [Cha18]. The proofs of these results are based on the
description of all the measures describing the p-adic asymptotic distribution of singular moduli
and Hecke orbits, given in the companion papers [HMR20, HMR21].

1.3 Approximation by singular moduli
Let f be a nonconstant modular function, denote by Γ its stabilizer in SL(2,R) and denote
by f0 the meromorphic function defined on X(Γ) induced by f . A complex number is a cuspidal
value of f if it is a value that f0 takes at a cusp of X(Γ). Note that the number of cuspidal
values is finite. Moreover, f is a Hauptmodul if X(Γ) is of genus zero and f0 is a biholomorphism
from X(Γ) onto the Riemann sphere.

Let f be a nonconstant modular function defined over Q and let v be in MQ. A number α
in Cv is badly approximable in Cv by the singular moduli of f , if there are constants A > 0 and B
such that for every singular modulus f of f different from α we have

− log |f − α|v ≤ A log(# OQ(f)) +B.

If this property does not hold, then α is well approximated in Cv by the singular moduli of f .

Theorem C. Let f be a nonconstant modular function defined over Q, let f0 be a singular
modulus of f and let v be in MQ. In the case where v = ∞, assume that f0 is a non-cuspidal
value of f and in the case where v is a prime number, assume that f is a Hauptmodul. Then, f0
is badly approximable in Cv by the singular moduli of f .

In the case where v = ∞, the hypothesis that f0 is a non-cuspidal value of f is necessary; see
Proposition 2.7(i).

In the case where f is the j-invariant and v = ∞, the theorem above is a direct consequence
of a result of Habegger [Hab15, Lemmas 5 and 8 and formula (11), or the proof of Lemma 6]. In
fact, using results of David and Hirata-Kohno in [DH09], Habegger proved the stronger result
that every algebraic number is badly approximable in C by the singular moduli of the j-invariant.
It is unclear to us whether the analogous result holds in the p-adic setting.

Conjecture 1.3. Let p be a prime number. Then, every algebraic number is badly approx-
imable in Cp by the singular moduli of the j-invariant.

We show that an affirmative solution to this conjecture would yield a version of Theorem A
for a general congruence or genus zero group and a general algebraic value (Corollary 5.2 in § 5).

1.4 Weak modular units are the only source of singular units
A modular unit is a modular function without zeros or poles in H. A weak modular unit is a
modular function u for which 0 is a cuspidal value of u and of 1/u. Note that every nonconstant
modular unit is a weak modular unit.

The singular moduli of modular units defined over Q are a natural source of algebraic units;
see, e.g., [KL81]. Roughly speaking, the following result asserts that among modular functions
defined over Q, weak modular units are the only source of singular moduli that are algebraic
units.

Theorem D. Let f be a nonconstant modular function defined over Q that is not a weak
modular unit. Then, there are at most finitely many singular moduli of f that are algebraic
units.
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We also show that an affirmative solution to Conjecture 1.3 would imply a version of
Theorem D for S-units (Corollary 5.1 in § 5) and a version of Theorem D that holds under
the weaker hypothesis that f is not a modular unit, but that is restricted to congruence or to
genus-zero groups (Corollary 5.2 in § 5). Note that for every modular unit f defined over Q,
there is a finite set of prime numbers S such that every singular modulus of f is an S-unit; see
Corollary 2.5(ii) in § 2.3.

An elliptic unit is an algebraic unit that is the value of a modular unit defined over Q

at a quadratic imaginary number. A natural problem that arises from Theorem D is to deter-
mine those modular units that specialize to infinitely many elliptic units at quadratic imaginary
numbers. Examples of such can be easily extracted from Weber’s book [Web08]. Recall that the
Weber modular functions f , f1 and f2 are given in terms of Dedekind’s η function by

f(τ) := exp
(
−πi

24

)
η((τ + 1)/2)

η(τ)
, f1(τ) :=

η(τ/2)
η(τ)

and f2(τ) :=
√

2
η(2τ)
η(τ)

;

see, e.g., [Web08, § 34, (9)]. If p is a prime number satisfying p ≡ −1 mod 8 and we put τp :=
√
pi,

then the singular modulus f((τp − 1)/(τp + 1)) of f is equal to
√

2/f(τp) by [Web08, § 34, (18)]
and it is an algebraic unit by [Web08, § 142, p. 540]. Together with [Web08, § 34, (13), (14)],
this implies that the singular moduli f1(−2/(τp + 1)) and f2((τp + 1)/2) of f1 and f2 are both
algebraic units.

Other examples of modular units that specialize to infinitely many elliptic units can be found
in [KL81]. We mention the λ-invariants or modular λ functions. These are six Hauptmoduln for
the principal congruence group of level two, which can be defined as the roots of

256(1 −X +X2)3 − jX2(1 −X)2 = 0; (1.1)

see, e.g., [Lan87, Chapter 18, § 6]. Clearly, every singular modulus of a λ-invariant is a {2}-unit.
By, e.g., [Lan87, Chapter 12, § 2, Corollary of Theorem 5] or the more recent results of Yang, Yin
and Yu [YYY21, Theorem 1.1], each of the six λ-invariants has infinitely many singular moduli
that are algebraic units.2

To prove Theorem D, we follow the strategy of proof of [Hab15, Theorem 2]. In particular,
we use [Hab15, Lemmas 5 and 8 and formula (11)], whose proof is based on results of David and
Hirata-Kohno in [DH09].

1.5 Notes and references
Theorem A applies to the Weber modular functions f , f1 and f2; see § 1.4 for the definition. In
fact, f2 is a Hauptmodul by [YY16, Theorem 1.3(2)(a) and p. 19], and therefore so are f and f1
by [Web08, § 34, (13) and (14)]. On the other hand, each of these functions is defined over Q in
the sense of Definition 2.2 in § 2.1 because it is a root of either

(X24 − 16)3 −X24j = 0 or (X24 + 16)3 −X24j = 0; (1.2)

see, e.g., [YZ97] or [Web08, § 126, (1)]. The singular moduli of Weber modular functions provide
generators of ring class fields of quadratic imaginary orders; see [Web08, § 126] and [Sch76,
Satz 4.2]. In addition, the arithmetic complexity of these generators is sometimes significantly
lower than that of the corresponding singular moduli of the j-invariant; see [YZ97] and [ES10]
for a computational perspective. Since each of the functions f , f1 and f2 is a root of one of

2 Although these results only apply directly to one of the six λ-invariants, they automatically imply analogous
results for each of the remaining five λ-invariants. Note that for every pair of λ-invariants λ0 and λ1, there is γ
in SL(2, Z) such that λ1 = λ0 ◦ γ.
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the polynomials in (1.2), each of their singular moduli is an algebraic integer and a {2}-unit.
Moreover, as mentioned in § 1.4, the results of Weber imply that the singular moduli of f , f1
and f2 are often algebraic units, in contrast to the singular moduli of the j-invariant. Note that 0
is a singular modulus of the j-invariant, but not of f , f1 or f2. In fact, f , f1 and f2 are all modular
units; see, e.g., Corollary 2.5(ii) in § 2.3.

Theorem A also applies to each of the six λ-invariants; see § 1.4 for the definition. This solves
affirmatively a conjecture of Habegger (private communication, 2021). Note that each of these
functions is defined over Q, because it is a root of (1.1). As mentioned in § 1.4, the singular moduli
of each of the six λ-invariants are often algebraic units, in contrast to those of the j-invariant.
Note that each of the λ-invariants is a modular unit; see, e.g., Corollary 2.5(ii) in § 2.3.

The representation theory of the monster group provides a wealth of modular functions sat-
isfying the hypotheses of Theorem A. In fact, by Borcherds’ solution [Bor92, Theorem 1.1] of the
monstrous moonshine conjecture of Conway and Norton [CN79], the McKay–Thompson series
associated with a given element of the monster group is a Hauptmodul defined over Q; see
Proposition A.1 in Appendix A. Moreover, the singular moduli of a fundamental
McKay–Thompson series are often algebraic integers [CY96, Theorem I].

For distinct singular moduli j and j′ of the j-invariant, Li gives in [Li21] an explicit lower
bound for the absolute norm of j − j′ that implies that this algebraic integer is not an algebraic
unit. When restricted to j′ = 0, this is [BHK20, Theorem 1.1]. In fact, Li proves a stronger result
for the values of modular polynomials at pairs of singular moduli of the j-invariant. Li’s approach
makes use of (extensions of) the work of Gross and Zagier in [GZ85], and it is different from
those in [Hab15, BHK20]. Li does not treat the case of S-units in [Li21].

In the case where j0 = 0 (respectively, 1728), the conclusion of the Main Theorem holds for
certain classes of infinite sets of prime numbers S. In fact, if we put

S0 := {q : prime number, q ≡ 1 mod 3}
(respectively, {q : prime number, q ≡ 1 mod 4}),

then the conclusion of the Main Theorem holds for every set of prime numbers S such that S � S0

is finite and does not contain {2, 3, 5} (respectively, {2, 3, 7}). This is a direct consequence of the
Main Theorem and the proof of [Cam21, Theorems 1.2 and 6.1].

1.6 Organization
In § 2 we establish general properties of modular functions (§ 2.1), their singular moduli (§ 2.2)
and their cuspidal and omitted values (§ 2.3).

In § 3 we prove Theorem B. We first establish it in the special case of the j-invariant. The
main ingredient in the proof of this special case, is that no measure describing the v-adic asymp-
totic distribution of the singular moduli of the j-invariant has an atom in Cv. This follows from
[CU04, Théorème 2.4] if v = ∞ and is stated as Theorem 3.1 in the case where v is a prime
number. Together with [HMR21, Theorems A and B], this implies Theorem B in the case of
the j-invariant as a direct consequence. The proof of Theorem 3.1 is based on the description of
all these measures given in the companion papers [HMR20, HMR21]. We also use an analogous
description for Hecke orbits given in [HMR20, HMR21]. We first establish a result analogous
to Theorem 3.1 for Hecke orbits (Theorem 3.2) in § 3.1, and in § 3.2 we deduce Theorem 3.1
from this result. To prove Theorem 3.2, we first show that the images of a point under Hecke
correspondences associated with different prime numbers are nearly disjoint (Lemma 3.5). We
use this to show that an atom in Cp of an accumulation measure of a Hecke orbit would
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replicate indefinitely, thus creating infinite mass.3 In § 3.3 we deduce Theorem B in the gen-
eral case from the special case of the j-invariant, using the results about modular functions
in § 2.

In § 4 we prove Theorem C. We first establish it in the special case of the j-invariant, which
is stated in a slightly different form as Proposition 4.1. After a brief review of the work of
Gross and Hopkins on deformation spaces of formal modules in § 4.1, in § 4.2 we give the proof
of Proposition 4.1. First, we use that singular moduli are isolated in the ordinary reduction
locus [HMR20, Corollary B], to restrict to the case where j and j0 are both in the supersingular
reduction locus. In the case where the conductors of Dj and Dj0 are both p-adic units, we use an
idea in the proof of [Cha18, Proposition 5.11]. To extend this estimate to the general case, we
use a formula in [HMR21] that shows how the canonical branch of the Hecke correspondence Tp

relates CM points whose conductors differ by a power of p. In § 4.3 we deduce Theorem C in the
general case from the special case of the j-invariant, using the results about modular functions
in § 2.

In § 5 we prove Theorems A and D. We follow Habegger’s original strategy in the case of the
j-invariant and S = ∅ in [Hab15], to prove a more general result that we state as Theorem A′. In
particular, we use in a crucial way Colmez’s bound [Col98, Théorème 1] in the form of [Hab15,
Lemma 3]. The main new ingredient to implement Habegger’s strategy is Theorem B. Theorem A′

implies Theorem D as a direct consequence. Another direct consequence of Theorem A′ is
that an affirmative solution to Conjecture 1.3 would yield a version of Theorem D for S-units
(Corollary 5.1) and a version of Theorem A for a general congruence or genus-zero group and
a general algebraic value (Corollary 5.2). We prove Theorem A′ in § 5.1 and derive Theorem A
and Corollary 5.2 from Theorem A′ in § 5.2.

2. Modular functions and their special values

In this section we prove general properties of modular functions, their singular moduli and their
cuspidal and omitted values. In § 2.1 we establish some general properties of modular functions
(Proposition 2.1). In § 2.2 we study arithmetic properties of singular moduli of modular functions
defined over Q (Proposition 2.3). Finally, in § 2.3 we study cuspidal and omitted values of modular
functions.

2.1 Modular functions
The goal of this section is to prove the following proposition.

Proposition 2.1. Every modular function is algebraically dependent with the j-invariant
over C. Conversely, let K be a subfield of C and let f be a nonconstant meromorphic func-
tion defined on H that is algebraically dependent with the j-invariant over K. Then, f is a
modular function and there is a polynomial Φ(X,Y ) with coefficients in a finite extension of K
inside C that is irreducible over C and such that Φ(j, f) vanishes identically. Furthermore,
Φ(X,Y ) depends on both X and Y , and it satisfies the following properties.

(i) For every (z, w) in the zero set of Φ in C × C, there is τ in H satisfying

z = j(τ) and w = f(τ).

(ii) Up to a constant factor, Φ is the unique irreducible polynomial in C[X,Y ] such that Φ(j, f)
vanishes identically.

3 See Remark 3.6 for a different strategy of proof.
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In the proof of this proposition, which is given below, and in the rest of the paper, we use
the following property: for every subfield K of C, a polynomial in K[X,Y ] is irreducible over C

if and only if it is irreducible over an algebraic closure of K.

Definition 2.2. Let K be a subfield of C. A modular function f is defined over K, if there
is a polynomial Φ(X,Y ) in K[X,Y ] that is irreducible over C and such that Φ(j, f) vanishes
identically. In this case, Φ(X,Y ) is a modular polynomial of f .

In view of Proposition 2.1, in the case where K = Q this definition coincides with that
given in § 1.1. Note that if K is a subfield of C, then every modular function having a modular
polynomial in K[X,Y ] is defined over K. On the other hand, by Proposition 2.1 for every
modular function f there is a modular polynomial of j and f in C[X,Y ] and if, in addition, f
is algebraically dependent with the j-invariant over K, then there is a modular polynomial of j
and f with coefficients in a finite extension of K. Furthermore, a modular polynomial in K[X,Y ]
of j and a modular function is unique up to a multiplicative constant in K×.

Proof of Proposition 2.1. Let f be a modular function. The case where f is constant being triv-
ial, assume f is nonconstant. Let Γ be a subgroup of SL(2,R) that is commensurable to SL(2,Z)
and such that f is invariant under Γ. Replacing Γ by Γ ∩ SL(2,Z) if necessary, assume that Γ is a
finite index subgroup of SL(2,Z). Then, the j-invariant and f induce meromorphic functions j0
and f0 defined on X(Γ). Since the field of meromorphic functions defined on X(Γ) has transcen-
dence degree one over C, there is a nonzero polynomial Φ(X,Y ) in C[X,Y ] such that Φ(j0, f0)
vanishes identically. It follows that the function Φ(j, f) vanishes identically. This implies that the
j-invariant and f are algebraically dependent over C.

To prove the second assertion, let K be a subfield of C and let f be a nonconstant meromor-
phic function defined on H that is algebraically dependent with the j-invariant over K. Then,
there is a polynomial Φ0(X,Y ) in K[X,Y ] such that Φ0(j, f) vanishes identically. Suppose Φ0

is not irreducible over C. Then, we can find a finite extension K̂ of K inside C and a finite
family (Φi)i∈I of polynomials in K̂[X,Y ] that are irreducible over C and whose product is equal
to Φ0. It follows that at least one of the meromorphic functions in {Φi(j, f) : i ∈ I} vanishes
identically. This proves that in all the cases there is a polynomial Φ with coefficients in a finite
extension of K that is irreducible over C and such that Φ(j, f) vanishes identically. Note also
that, since the j-invariant is nonconstant and f is nonconstant by assumption, the polynomial Φ
depends on both variables.

To prove that f is a modular function, denote by M (H) the field of all meromorphic functions
defined on H. Note that the polynomial Φ(j, Y ) in M (H)[Y ] is nonconstant and denote by Z its
finite number of zeros in M (H). The set Z contains f and is invariant under the action of SL(2,Z)
on M (H) given by (γ, g) 	→ g ◦ γ. Since Z is finite, it follows that the stabilizer Γ of f in SL(2,R)
is a finite index subgroup of SL(2,Z). Thus, to prove that f is a modular function, it is sufficient
to prove that f is the lift of the restriction to Γ\H of a meromorphic function defined on X(Γ).
To do this, it is sufficient to show that for every γ in SL(2,Z) the function f ◦ γ is meromorphic
at i∞; see, e.g., [Shi71, Proposition 1.30 and § 1.4]. Note that the functions f ◦ γ and j ◦ γ = j
are algebraically dependent over C. Thus, replacing f ◦ γ by f if necessary, it is sufficient to
prove that f is meromorphic at i∞. To do this, denote by δ the degree of Φ(X,Y ) in Y and
for each k in {0, . . . , δ} denote by Pk(X) the coefficient of Y k in Φ(X,Y ) and by dk the degree
of Pk. Then, there are constants R > 0 and C > 0, such that for every z in C satisfying |z| ≥ R
we have |Pδ(z)| ≥ C−1|z|dδ , and such that every k in {0, . . . , δ − 1} we have |Pk(z)| ≤ C|z|dk .
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Thus, if we put
d := −dδ + max{d1, . . . , dδ−1},

then for every τ in H satisfying

|j(τ)| ≥ R and |f(τ)| ≥ 1,

we have

|f(τ)|δ = |Pδ(j(τ))|−1

∣∣∣∣
δ−1∑
k=0

Pk(j(τ))f(τ)k

∣∣∣∣ ≤ C2δ|j(τ)|d|f(τ)|δ−1.

Since the j-invariant has a pole at i∞ (see, e.g., [Lan87, Chapter 4, § 1]), we conclude that for
every τ in H whose imaginary part is sufficiently large we have |f(τ)| ≤ C2δ|j(τ)|d. This implies
that f is meromorphic at i∞ and completes the proof that f is a modular function.

To prove item (i), let j0 and f0 be as above, note that the set of poles of j0 is equal to the
complement of Γ\H in X(Γ) and denote by P the set of poles of f0 in X(Γ). Moreover, denote
by Φ̂ the homogenization of Φ in C[X,Y, Z], so that Φ̂(X,Y, 1) = Φ(X,Y ), and let Z(Φ̂) its zero
set in P2(C). Then,

(Γ\H) � P → Z(Φ̂)
x 	→ ι(x) := [j0(x) : f0(x) : 1]

has a unique continuous extension ι : X(Γ) → Z(Φ̂) and this map is surjective; see, e.g., [Har77,
Chapter II, Proposition 6.8]. Thus, for every (z, w) in C × C in the zero set of Φ there is x in
(Γ\H) � P such that ψ(x) = [z : w : 1]. This implies item (i).

To prove item (ii), let qΦ(X,Y ) be an irreducible polynomial in C[X,Y ] such that qΦ(j, f)
vanishes identically. Then, by item (i) the polynomial qΦ vanishes on the zero set of Φ and,
therefore, qΦ is a multiple of Φ. Since, by assumption, qΦ is irreducible, it follows that it is a
constant multiple of Φ. This completes the proof of item (ii) and of the proposition. �

2.2 Singular moduli of modular functions
The goal of this section is to establish some arithmetic properties of singular moduli of modular
functions defined over Q. These are gathered in Proposition 2.3 below. To state it, we introduce
some terminology.

For a finite extension K of Q inside Q, consider the Galois group Gal(Q|K) and for each α
in C denote by OK(α) its orbit by Gal(Q|K). Note that, with the notation introduced in § 1.2
we have O(α) = OQ(α).

In this paper, a discriminant is the discriminant of an order in a quadratic imaginary
extension of Q. For every discriminant D denote by h(D) the class number of the order of
discriminant D in Q(

√
D). For a singular modulus j, the discriminant of the endomorphism ring

of an elliptic curve over C whose j-invariant is equal to j only depends on j. Denote it by Dj. We
use that for every singular modulus j of the j-invariant, we have

OQ(j) = {singular modulus j′ of the j-invariant with Dj′ = Dj} (2.1)

and
# OQ(j) = h(Dj); (2.2)

see, e.g., [Lan87, Chapter 10, Theorem 5].

Proposition 2.3. Let K be a finite extension of Q inside C. Then, for every nonconstant
modular function f defined over K the following properties hold.
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(i) Every singular modulus f0 of f is in Q and every element of OK(f0) is also a singular modulus
of f .

(ii) There is a constant C0 > 0 such that for every quadratic imaginary number τ0 in H that is
not a pole of f , the singular modulus f(τ0) of f satisfies

C−1
0 · # OQ(j(τ0)) ≤ # OK(f(τ0)) ≤ # OQ(f(τ0)) ≤ C0 · # OQ(j(τ0)).

(iii) For every ε > 0 there is a constant C1 > 0 such that the following property holds. For every
quadratic imaginary number τ in H that is not a pole of f , we have

C−1
1 · # OK(f(τ))2−ε ≤ |Dj(τ)| ≤ C1 · # OK(f(τ))2+ε.

(iv) For every ε > 0 there is a constant C2 > 0, such that for every R > 0 we have

#{singular modulus f of f such that # OK(f) ≤ R} ≤ C2R
3+ε. (2.3)

Proof. Let Φ(X,Y ) be a modular polynomial of f in K[X,Y ]. Denote by δX (respectively, δY)
the degree of Φ(X,Y ) in X (respectively, Y ).

To prove items (i) and (ii), let f0 be a singular modulus of f and let τ0 be a quadratic
imaginary number in H such that f0 = f(τ0). Then, j0 := j(τ0) is a singular modulus of the
j-invariant and, therefore, it is in Q. On the other hand, the polynomial Φ(j0, Y ) is nonzero
because Φ is irreducible over C and j is nonconstant. Since f0 is a root of Φ(j0, Y ), it is in an
extension of K(j0) of degree at most δY . In particular, f0 is in Q. To complete the proof of
item (i), let σ in Gal(Q|K) be given, and note that Φ(σ(j0), σ(f0)) = 0. Since Φ is irreducible
over C, by Proposition 2.1 there is τ in H such that

σ(j0) = j(τ) and σ(f0) = f(τ).

By (2.1), the number σ(j0) is a singular modulus of the j-invariant and, therefore, τ is a quadratic
imaginary number. It follows that σ(f0) is a singular modulus of f . This completes the proof of
item (i). To prove item (ii), note that by (2.2) and the fact that f0 is in an extension of K(j0) of
degree at most δY we have

# OQ(f0) ≤ δY [K(j0) : Q] ≤ δY [K : Q] · # OQ(j0).

On the other hand, the polynomial Φ(X, f0) is nonzero because Φ is irreducible over C and f is
nonconstant. Since j0 is a root of Φ(X, f0), it is in an extension of K(f0) of degree at most δX ,
and we have

# OQ(j0) ≤ δX [K(f0) : Q] = δX [K : Q] · # OK(f0).

This completes the proof of item (ii) with C0 = [K : Q] max{δX , δY}.
Item (iii) is a direct consequence of (2.1), (2.2), item (ii) and of the following estimate: for

every ε > 0 there is C > 0 such that for every discriminant D, we have

C−1|D|1/2−ε ≤ h(D) ≤ C|D|1/2+ε.

In the case where D is fundamental this is Siegel’s estimate [Sie35, (1)]. To deduce the general
case from the fundamental case; see, e.g., [Lan87, Chapter 8, § 1, Theorem 7] or [HMR21, (5.12)
and Lemma 5.12].

To prove item (iv), let C0 and C1 be the constants given by items (ii) and (iii), respectively.
Moreover, for each singular modulus f of f choose a quadratic imaginary number τ in H such
that f(τ) = f, and put j(f) := j(τ). For every singular modulus j of the j-invariant there are at
most δY singular moduli f of f such that j(f) = j. Thus, by items (ii) and (iii) the left-hand side
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of (2.3) is bounded from above by

δY · #{singular modulus j of the j-invariant such that # OQ(j) ≤ C0R and |Dj| ≤ C1R
2+ε}

≤ δY C0C1R
3+ε.

This proves item (iv), and completes the proof of the proposition. �

2.3 Cuspidal and omitted values of modular functions
Let f be a nonconstant modular function. A complex number α is a value of f if there is τ in H

such that f(τ) = α, and it is an omitted value of f if it is not a value of f .
For a modular function f , the following proposition gives a characterization of the cuspidal

and omitted values of f . It shows, in particular, that every omitted value is cuspidal; see also
Remark 2.6. Moreover, in Proposition 2.7 below we show that in the case where f is defined
over Q, every cuspidal value of f is well approximated in C by the singular moduli of f and that
for every prime number p, every omitted value of f is badly approximable in Cp by the singular
moduli of f .

Proposition 2.4. Let f be a nonconstant modular function and let Φ(X,Y ) be a modular
polynomial of f . Then, for every complex number α the polynomial Φ(X,α) is nonzero and the
following properties hold.

(i) The number α is an omitted value of f if and only if the polynomial Φ(X,α) is constant.
(ii) The number α is a cuspidal value of f if and only if the degree of the polynomial Φ(X,α) is

strictly smaller than the degree of Φ(X,Y ) in X.

In particular, every omitted value is cuspidal. Furthermore, if f is defined over a subfield K of C,
then every cuspidal value of f is in the algebraic closure of K inside C.

The following corollary is an immediate consequence of this proposition. Note that a modular
function f is holomorphic if and only if 0 is an omitted value of 1/f , and f is a modular unit if
and only if 0 is an omitted value of f and of 1/f .

Corollary 2.5. Let f and Φ be as in Proposition 2.4. If we consider Φ(X,Y ) as a polynomial
in Y with coefficients in C[X], then the following properties hold.

(i) The modular function f is holomorphic if and only if the leading coefficient of Φ(X,Y ) does
not depend on X. In particular, for every holomorphic modular function f defined over Q,
there is a finite set of prime numbers S such that every singular modulus of f is an S-integer.

(ii) The modular function f is a modular unit if and only if neither the constant nor the leading
coefficients of Φ(X,Y ) depend on X. In particular, for every modular unit f defined over Q,
there is a finite set of prime numbers S such that every singular modulus of f is an S-unit.

Proof of Proposition 2.4. If the polynomial Φ(X,α) were zero, then Φ(X,Y ) would be divisible
by Y − α. This is impossible since Φ(X,Y ) is irreducible in C[X,Y ] and it depends on both
variables (Proposition 2.1). This proves that Φ(X,α) is nonzero.

To prove item (i), let α be a complex number such that Φ(X,α) is nonconstant and let β
be a root of this polynomial. Then, by Proposition 2.1(i) there is τ in H such that j(τ) = β and
f(τ) = α. In particular, α is a value of f and, therefore, it is not an omitted value of f . To prove
the reverse implication, let τ in H be such that f(τ) is finite. Then, the number j(τ) is a zero of
the polynomial Φ(X, f(τ)). Since Φ(X, f(τ)) is nonzero, it follows that it is nonconstant. This
completes the proof of item (i).
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To prove item (ii), denote by d the degree of Φ(X,Y ) in X and let P (Y ) be the coefficient
of Xd in Φ(X,Y ), seen as a polynomial in X with coefficients in C[Y ]. Furthermore, put

Δ(X,Y ) := P (Y )Xd − Φ(X,Y ) (2.4)

and note that the degree in X of this polynomial is strictly less than d. Let Γ be the stabilizer
of f in SL(2,R) and denote by f0 the meromorphic function defined on X(Γ) induced by f .
Suppose that α is a cuspidal value of f . That is, α is a value that f0 takes at a point in
Γ\P1(Q). Since SL(2,Z) acts transitively on P1(Q), there is γ in SL(2,Z) such that f ◦ γ(τ) → α
as (τ) → ∞; see, e.g., [Shi71, Proposition 1.30]. Combined with (2.4), this implies

|P (α)| = lim
�(τ)→∞

|P ((f ◦ γ)(τ))| = lim
�(τ)→∞

|Δ(j(τ), (f ◦ γ)(τ))|
|j(τ)|d = 0.

This proves P (α) = 0 and, therefore, that the degree of Φ(X,α) is strictly less than d. To prove
the reverse implication, suppose that α is a non-cuspidal value of f and let A be a finite subset
of H such that f−1

0 (α) = Γ\(Γ ·A). Let r > 0 be sufficiently small so that there is a compact
neighborhood N of A in H such that

f−1
0 (D∞(α, r)) = Γ\(Γ ·N).

Reducing r if necessary, suppose that for every α′ in B(α, r) � {α} we have P (α′) �= 0 and
let (αi)∞i=1 be a sequence in B(α, r) � {α} converging to α. Then, for every i the polyno-
mial Φ(X,αi) is of degree d and, therefore, by Proposition 2.1(i) there are τ (1)

i , . . . , τ
(d)
i in N

such that

Φ(X,αi) = P (αi)
d∏

�=1

(X − j(τ (�)
i )). (2.5)

Taking a subsequence if necessary, suppose that for every � in {1, . . . , d} the sequence (τ (�)
i )∞i=1

converges to an element τi of N . Letting i→ ∞ in (2.5), we obtain

Φ(X,α) = P (α)
d∏

�=1

(X − j(τ (�))).

Since Φ(X,α) is nonzero, it follows that P (α) is nonzero and, therefore, that the degree of Φ(X,α)
is d. This completes the proof of item (ii).

To prove the remaining assertions, note that by combining items (i) and (ii) we obtain that
every omitted value is cuspidal. On the other hand, by item (ii) the cuspidal values of f are
precisely the zeros of P (Y ). In particular, there are at most finitely many cuspidal values of f .
If f is defined over a subfield K of C, then we can assume that the polynomial Φ(X,Y ) is
in K[X,Y ]. This implies that P (Y ) is in K[Y ] and, therefore, that all of the cuspidal values of f
are in the algebraic closure of K inside C. �
Remark 2.6. The modular function

g :=
j

j2 − 1

provides an example of a cuspidal value that is not omitted. In fact, this function is invariant
under SL(2,Z) and the meromorphic function g0 on X(SL(2,Z)) induced by g vanishes at the
cusp i∞. But 0 is not an omitted value of g, because g((1 +

√
3i)/2) = 0.

Proposition 2.7. For every nonconstant modular function f defined over Q, the following
properties hold.
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(i) Every cuspidal value of f is well approximated in C by the singular moduli of f . In particular,
every omitted value of f is well approximated in C by the singular moduli of f .

(ii) Let p be a prime number and let α be an omitted value of f . Then, there is r > 0 such
that Dp(α, r) contains no singular modulus of f . In particular, α is badly approximable
in Cp by the singular moduli of f .

The proof of this proposition is after the following lemma.

Lemma 2.8. Let v be inMQ and let Φ(X,Y ) be an irreducible polynomial in Cv[X,Y ] depending
on both variables. Then, for every α in Cv there are constants

C3 > 1, θ > 0, η > 0 and η′ > 0

such that for every z in Cv and every w in Cv � {α} sufficiently close to α and such that
Φ(z, w) = 0, exactly one of the following properties holds.

(i) The polynomial Φ(X,α) is nonconstant and, denoting by Z its finite set of zeros in Cv, we
have

min{|z − z0|v : z0 ∈ Z} < C3|w − α|θv. (2.6)

(ii) The degree of Φ(X,α) is strictly smaller than that of Φ(X,Y ) in X and we have

C−1
3 |w − α|−η

v < |z|v < C3|w − α|−η′
v . (2.7)

Proof. Put Q0(X) := Φ(X,α) and note that our hypotheses that Φ(X,Y ) is irreducible
in Cv[X,Y ] and that it depends on both variables, implies that Q0(X) is nonzero. Denote by �0
the degree of Q0(X) and let R0 > 1 and M0 in ]0, 1[ be constants so that for every z in Cv

satisfying |z|v ≥ R0, we have

M0|z|�0v ≤ |Q0(z)|v ≤M−1
0 |z|�0v . (2.8)

Reducing M0 if necessary, suppose that in the case where Q0(X) is constant we have

|Q0(0)|v ≥M0, (2.9)

and that in the case where Q0(X) is nonconstant for every z in Cv we have

|Q0(z)|v ≥M0 min{|z − z0|v : z0 ∈ Z}�0 . (2.10)

Note that Y − α divides Φ(X,Y ) −Q0(X). Let m0 in Z>0 be the largest integer such
that (Y − α)m0 divides Φ(X,Y ) −Q0(X), and let Ψ(X,Y ) be the polynomial in Cv[X,Y ] such
that

Φ(X,Y ) −Q0(X) = (Y − α)m0Ψ(X,Y ). (2.11)

Denote by δ the degree of Ψ(X,Y ) in X. Regarding Ψ(X,Y ) as a polynomial in X with coeffi-
cients in Cv[Y ], for each i in {0, . . . , δ} let Pi(Y ) be the coefficient of Xi in Ψ(X,Y ). Furthermore,
denote by m1 the order of Pδ(Y ) at α. Then, there is a constant M1 > 1 such that for every w
in Cv � {α} that is sufficiently close to α, we have

|Pδ(w)|v > M−1
1 |w − α|m1

v , (2.12)

and such that for every i in {0, . . . , δ} we have |Pi(w)|v ≤M1. Thus, for every z in Cv such that
Φ(z, w) = 0, we have

|Ψ(z, w)|v ≤ (δ + 1)M1 max{1, |z|v}δ (2.13)

and
|Ψ(z, w) − Pδ(w)zδ|v ≤ δM1 max{1, |z|v}δ−1. (2.14)
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To prove the desired assertion, put

M2 :=
M0

(δ + 1)M1
,

and let w in Cv � {α} be sufficiently close to α so that (2.12), (2.13) and (2.14) hold and so that

|w − α|m0
v < M2R

−δ
0 . (2.15)

Furthermore, let z in Cv be such that Φ(z, w) = 0.

Case 1. |z|v < R0. If Q0(X) were constant, then by (2.9), (2.11) and (2.13) we would have

|w − α|m0
v =

∣∣∣∣ Q0(z)
Ψ(z, w)

∣∣∣∣
v

> M2R
−δ
0 ,

which contradicts (2.15) and proves that Q0(X) is nonconstant. Denoting by Z the nonempty
set of zeros of Q0(X) in Cv, by (2.10), (2.11) and (2.13) we have

|w − α|m0
v =

∣∣∣∣ Q0(z)
Ψ(z, w)

∣∣∣∣
v

> M2R
−δ
0 min{|z − z0|v : z0 ∈ Z}�0 .

This proves (2.6) with C3 = M
−(1/�0)
2 R

δ/�0
0 and θ = m0/�0 and completes the proof that

property (i) holds.

Case 2. |z|v ≥ R0. By (2.8), (2.11) and (2.13), in this case we have

M0|z|�0v · |w − α|−m0
v ≤ |Q0(z)| · |w − α|−m0

v = |Ψ(z, w)|v ≤ (δ + 1)M1|z|δv. (2.16)

If we had �0 ≥ δ, then we would obtain |w − α|m0
v ≥M2. This contradicts (2.15) and proves that

the degree �0 of Q0(X) is strictly less than the degree δ of Φ(X,Y ) in X. Together with (2.16),
this implies the first inequality in (2.7) with C3 = M

1/(δ−�0)
2 and η = m0/(δ − �0). To prove the

second inequality in (2.7), suppose

|z|v ≥ 2δM2
1 |w − α|−m1

v .

Then, by (2.12) and (2.14) we have

|Pδ(w)zδ|v ≥ 2δM2
1 |w − α|−m1

v |Pδ(w)zδ−1|v > 2δM1|z|δ−1
v ≥ 2|Ψ(z, w) − Pδ(w)zδ|v.

Together with the triangle inequality, (2.8), (2.11) and (2.12), this implies

M−1
0 |z|�0v · |w − α|−m0

v ≥ |Q0(z)| · |w − α|−m0
v = |Ψ(z, w)|v > 1

2 |Pδ(w)zδ|v 1
2M

−1
1 |w − α|m1

v |z|δv.

Rearranging, we obtain the second inequality in (2.7) with

C3 = max{2δM2
1 , (2M

−1
0 M1)1/(δ−�0)} and η′ = max

{
m1,

m0 +m1

δ − �0

}
.

This completes the proof that property (ii) holds.
Finally, note that for w in Cv � {α} that is sufficiently close to α, the inequality (2.6) and

the first inequality in (2.7) cannot hold at the same time. This proves that properties (i) and (ii)
cannot hold simultaneously and completes the proof of the lemma. �
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Proof of Proposition 2.7. Let Φ(X,Y ) be a modular polynomial of f in Q[X,Y ] and note that
for every v in MQ the polynomial Φ(X,Y ) is irreducible in Cv[X,Y ].

To prove item (i), let α be a cuspidal value of f and let C3 and η′ be the constants given by
Lemma 2.8 with v = ∞. That is, if we denote by Γ the stabilizer of f in SL(2,R), then α is a
value that f takes at a point in Γ\P1(Q). Since SL(2,Z) acts transitively on P1(Q), there is γ
in SL(2,Z) such that f ◦ γ(τ) → α as (τ) → ∞; see, e.g., [Shi71, Proposition 1.30]. Let C > 0
be a constant such that for every τ in H such that (τ) is sufficiently large, we have

|j(τ)| ≥ C exp(2π(τ)); (2.17)

see, e.g., [Lan87, Chapter 4, § 1]. Given a prime number p′ satisfying p′ ≡ 1 mod 4, put

τp′ := i
√
p′, j(p′) := j(τp′) and f(p′) := f ◦ γ(τp′),

and note that j(p′) is a singular modulus of the j-invariant satisfying Dj(p′) = −4p′ and that f(p′)
is a singular modulus of f . If p′ is sufficiently large, then by (2.17) with τ = τp′ property (i) in
Lemma 2.8 cannot be satisfied with z = j(p′) and w = f(p′). Thus, property (ii) holds and we
have

− log |f(p′) − α| > 1
η′

log |j(p′)| − 1
η′

logC3 ≥ π

η′
√
|Dj(p′)| −

1
η′

log
C3

C
.

In view of Proposition 2.3(iii), this implies that α is well approximated in C by the singular
moduli of f . The second assertion of item (i) follows from the first and from the fact that every
omitted value is cuspidal (Proposition 2.4).

To prove item (ii), let C3 and η be the constants given by Lemma 2.8 with v = p and put
r := C

−1/η
3 . By Proposition 2.4(ii), our hypothesis that α is an omitted value of f implies that

the polynomial Φ(X,α) is constant. Thus, if there were a quadratic imaginary number τ in H

such that f(τ) is sufficiently close to α in Cp, then f(τ) would be in Dp(α, r) and by Lemma 2.8
the singular modulus j(τ) of the j-invariant would satisfy

|j(τ)|p > C−1
3 |f(τ) − α|−η

p > 1.

This is absurd, since j(τ) is an algebraic integer. This completes the proof of item (ii) and of the
proposition. �

3. p-Adic limits of CM points

The goal of this section is to prove Theorem B. The main ingredient is Theorem 3.1 below.
Together with [HMR21, Theorems A and B], which are summarized in Theorem 3.7 in § 3.2,
Theorem 3.1 implies Theorem B in the case of the j-invariant as a direct consequence. The
general case is deduced from this special case in § 3.3.

Throughout this section, fix a prime number p and let (Cp, | · |p) be as in the introduction.
Denote by Y (Cp) the coarse moduli space of elliptic curves over Cp. We consider Y (Cp) as a
subspace of the Berkovich affine line A1

Berk over Cp, using the j-invariant to identify Y (Cp) with
the subspace Cp of A1

Berk. We endow the space of Borel measures on A1
Berk with the weak topology

with respect to the space of bounded and continuous real functions. Denote by xcan the ‘Gauss’
or ‘canonical’ point of A1

Berk. For x in A1
Berk denote by δx the Dirac measure at x. An atom of a

Borel measure ν on A1
Berk is a point x in A1

Berk such that ν({x}) > 0. A measure is nonatomic if
it has no atoms.

The endomorphism ring of an elliptic curve over Cp only depends on the corresponding
class E in Y (Cp) of the elliptic curve. It is isomorphic to Z or to an order in a quadratic imaginary
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extension of Q. In the latter case E is a CM point and its discriminant is the discriminant of its
endomorphism ring. For every discriminant D, the set

ΛD := {E ∈ Y (Cp) : CM point of discriminant D}
is finite and nonempty. Denote by δD,p the Borel probability measure on Y (Cp), defined by

δD,p :=
1

#ΛD

∑
E∈ΛD

δE .

In contrast to the complex case, as the discriminant D tends to −∞ the measure δD,p does not
converge in the weak topology. In fact, there are infinitely many different accumulation measures
[HMR21, Corollary 1.1].

Theorem 3.1. Let p be a prime number. Then every accumulation measure of

{δD,p : D discriminant} (3.1)

in the weak topology that is different from δxcan is nonatomic. In particular, no accumulation
measure of (3.1) in the weak topology has an atom in Y (Cp).

One of the main ingredients in the proof of this result is the description of all accumulation
measures of (3.1) given in the companion papers [HMR20, HMR21]. We also use an analogous
description for Hecke orbits given in [HMR20, HMR21]. We first establish a result analogous to
Theorem 3.1 for Hecke orbits (Theorem 3.2) in § 3.1, and in § 3.2 we deduce Theorem 3.1 from
this result.

Denote by Qp the algebraic closure of Qp inside Cp, and by Op and O
Qp

the ring of integers

of Cp and Qp, respectively. For E in Y (Cp) represented by a Weierstrass equation with coefficients
in O

Qp
having smooth reduction, denote by FE the formal group of E and by End(FE) the

ring of endomorphisms of FE that are defined over the ring of integers of a finite extension
of Qp. Then End(FE) is either isomorphic to Zp, or to a p-adic quadratic order; see, e.g., [Frö68,
Chapter IV, § 1, Theorem 1(iii)]. In the latter case, E is said to have formal complex multiplication
or to be a formal CM point.

An elliptic curve class E in Y (Cp) has supersingular reduction, if there is a representative
elliptic curve over Op whose reduction is smooth and supersingular. Denote by Ysups(Cp) the set
of all elliptic curve classes in Y (Cp) with supersingular reduction.

3.1 On the limit measures of Hecke orbits
The goal of this section is to prove Theorem 3.2 below, which is the main ingredient in the proof
of Theorem 3.1. To state it, we introduce some notation.

A divisor on Y (Cp) is an element of the free abelian group

Div(Y (Cp)) :=
⊕

E∈Y (Cp)

ZE.

For a divisor D =
∑

E∈Y (Cp) nEE in Div(Y (Cp)), the degree and support of D are defined by

deg(D) :=
∑

E∈Y (Cp)

nE and supp(D) := {E ∈ Y (Cp) : nE �= 0},
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respectively. If, in addition, deg(D) ≥ 1 and for every E in Y (Cp) we have nE ≥ 0, then

δD,p :=
1

deg(D)

∑
E∈Y (Cp)

nEδE

is a Borel probability measure on Y (Cp).
For n in Z>0, the nth Hecke correspondence is the linear map

Tn : Div(Y (Cp)) → Div(Y (Cp))

defined for E in Y (Cp) by

Tn(E) :=
∑

C≤E of order n

E/C,

where the sum runs over all subgroups C of E of order n. For background on Hecke
correspondences, see [Shi71, §§ 7.2 and 7.3] for the general theory, or the survey [DI95, Part II].

Theorem 3.2. For each E in Y (Cp), every accumulation measure of (δTn(E),p)∞n=1 in the weak
topology that is different from δxcan , is nonatomic. In particular, no accumulation measure
of (δTn(E),p)∞n=1 in the weak topology has an atom in Y (Cp).

To prove Theorem 3.2, we first recall some results in [HMR21]. For E in Ysups(Cp), define a
subgroup NrE of Z×

p as follows. If E is not a formal CM point, then NrE := (Z×
p )2. In the case

where E is a formal CM point, denote by Aut(FE) the group of isomorphisms of FE defined
over O

Qp
, and by nr the norm map of the field of fractions of End(FE) to Qp. Then,

NrE := {nr(ϕ) : ϕ ∈ Aut(FE)}.
In all the cases NrE is a multiplicative subgroup of Z×

p containing (Z×
p )2. In particular, the index

of NrE in Z×
p is at most two if p is odd, and at most four if p = 2.

For a coset N in Q×
p /NrE contained in Zp, the partial Hecke orbit of E along N is

OrbN(E) :=
⋃

n∈N∩Z>0

supp(Tn(E)).

In the following theorem we use the action of Hecke correspondences on compactly supported
measures; see, e.g., [HMR21, § 2.8]. For n in Z>0, put

σ1(n) :=
∑

d≥1,d|n
d.

Theorem 3.3 [HMR21, Theorem C and Corollary 6.1]. For every E in Ysups(Cp) and all cosets N

and N′ in Q×
p /NrE contained in Zp, the following properties hold.

(i) The closure OrbN(E) of OrbN(E) in Ysups(Cp) is compact. Moreover, there is a Borel prob-

ability measure μE
N on Y (Cp) whose support is equal to OrbN(E), and such that for every

sequence (nj)∞j=1 in N ∩ Z>0 tending to ∞, we have the weak convergence of measures

δTnj (E),p → μE
N as j → ∞.

(ii) For every E′ in OrbNrE
(E) and every n in N ∩ Z>0, we have

Tn(OrbN′(E′)) = OrbN·N′(E) and
1

σ1(n)
(Tn)∗μE′

N′ = μE
N·N′ .

The following corollary is an immediate consequence of Theorems 3.2 and 3.3 and [HMR20,
Theorem C].
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Corollary 3.4. For every E in Y (Cp), α in Cp, and ε > 0, there exists r > 0 such that the
following set is finite:

{n ∈ Z>0 : deg(Tn(E)|Dp(α,r)) ≥ εσ1(n)}.
Previously, Charles showed that the set above with Z>0 replaced by Z>0 � pZ>0 has zero

density [Cha18, Proposition 3.2].
The proof of Theorem 3.2 is given after the following lemma.

Lemma 3.5. Let E0 be in Y (Cp). If for distinct prime numbers q and q′ we put

I := supp(Tq(E0)) ∩ supp(Tq′(E0)),

then we have deg(Tq(E0)|I) ≤ 24.

Proof. Given an elliptic curve Ê over Cp, denote by End(Ê) and Aut(Ê) the set of all endo-
morphisms and the set of all automorphisms of Ê, respectively. Furthermore, for every elliptic
curve Ê′ over Cp and every m in Z>0, denote by Homm(Ê, Ê′) the set of all isogenies from Ê

to Ê′ of degree m.
Choose an elliptic curve Ê0 representing E0 and for each E in I choose an elliptic curve Ê

representing E and an isogeny φE in Homq′(Ê, Ê0). Let φ be in Homq(Ê0, Ê) and set ψ := φE ◦ φ.
The isogeny ψ determines both E in I and φ. Indeed, suppose that there are E′ in I and φ′

in Homq(Ê0, Ê
′) with φE′ ◦ φ′ = ψ. The group Ker(ψ) has qq′ elements, so it has a unique

subgroup of order q. Since Ker(φ) and Ker(φ′) are two such subgroups, we have Ker(φ) = Ker(φ′).
Then E = E′ by [Sil09, Chapter III, Proposition 4.12], and from the equality φE ◦ φ = φE ◦ φ′
we deduce φ = φ′. We thus have

deg(Tq(E0)|I) =
∑
E∈I

# Homq(Ê0, Ê)/# Aut(Ê)

≤
∑
E∈I

# Homq(Ê0, Ê)

≤
∑
E∈I

#{φE ◦ φ : φ ∈ Homq(Ê0, Ê)}

≤ #{ψ ∈ End(Ê0) : deg(ψ) = qq′}. (3.2)

If E0 is not a CM point, then this last number is equal to zero and the lemma follows in this
case. Suppose E0 is a CM point, so the field of fractions K of End(Ê0) is a quadratic imaginary
extension of Q. Denote by OK the ring of integers of K. Since each of the ideals qOK and q′OK

is either prime or a product of two conjugate prime ideals, there are at most four ideals of OK

of norm qq′. We thus have

#{ψ ∈ End(Ê0) : deg(ψ) = qq′} ≤ #{x ∈ OK : xx = qq′} ≤ 4#O×
K ≤ 24.

Together with (3.2) this completes the proof of the lemma. �

Proof of Theorem 3.2. By [HMR20, Theorem C], it is sufficient to assume that E is in Ysups(Cp).
Moreover, using Theorem 3.3(i) and [HMR20, Theorem C] again, it is sufficient to prove that
for every coset N in Q×

p /NrE contained in Zp the measure μE
N has no atom in OrbN(E).

Fix E0 in OrbN(E) and let N ≥ 1 be a given integer. Choose a set P of 2N prime numbers
that are contained in (Z×

p )2 and that are larger than 100N . Note that every q in P is a p-adic
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square and that by Theorem 3.3(ii) we have

1
σ1(q)

(Tq)∗μE
N = μE

N.

Moreover, for all distinct q and q′ in P denote by I(q, q′) the set I in Lemma 3.5 and put

Sq := supp(Tq(E0)) �
⋃

q′∈P,q′ �=q

I(q, q′).

Then by the inequality q > 100N and Lemma 3.5, we have

deg(Tq(E0)|Sq) ≥ deg(Tq(E0)) −
∑

q′∈P,q′ �=q

deg(Tq(E0)|I(q,q′))

≥ q + 1 − 24(#P − 1)

≥ q + 1
2

. (3.3)

On the other hand, note that the signed measure μE
N − μE

N({E0})δE0 is nonnegative, thus the
same holds for (Tq)∗(μE

N − μE
N({E0})δE0). Combined with Theorem 3.3(ii), this implies that for

every E′ in Y (Cp) we have

μE
N({E′}) =

(
1

q + 1
(Tq)∗μE

N

)
({E′})

≥ μE
N({E0})
q + 1

((Tq)∗δE0)({E′})

=
μE

N({E0})
q + 1

deg(Tq(E0)|{E′}).

Together with (3.3) this implies

1 = μE
N(OrbN(E)) ≥

∑
q∈P

μE
N(Sq) ≥

∑
q∈P

μE
N({E0})
q + 1

deg(Tq(E0)|Sq) ≥ NμE
N({E0}).

Since N is arbitrary, this implies that E0 is not an atom of μE
N and completes the proof of the

theorem. �
Remark 3.6. A different strategy to prove Theorem 3.2 is to use that for every E in Ysups(Cp)
and every coset N in Q×

p /NrE contained in Zp, the measure μE
N is the projection of a certain

homogeneous measure under an analytic map of finite degree. Theorem 3.2 then follows from
the fact that the partial Hecke orbit OrbN(E) is infinite.

3.2 On the limit measures of CM points
The goal of this section is to prove Theorem 3.1. The proof is based on Theorem 3.2 and on
the description of all accumulation measures of (3.1) given in the companion papers [HMR20,
HMR21]. We start recalling some results in the latter.

Recall from § 2.2 that a discriminant is the discriminant of an order in a quadratic imaginary
extension of Q. A fundamental discriminant is the discriminant of the ring of integers of a
quadratic imaginary extension of Q. For each discriminant D, there is a unique fundamental
discriminant d and a unique integer f ≥ 1 such that D = df2. In this case, d and f are the
fundamental discriminant and conductor of D, respectively. A discriminant is prime, if it is
fundamental and divisible by only one prime number. If d is a prime discriminant divisible
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by p, then

p ≡ −1 mod 4 and d = −p, or p = 2 and d = −4 or d = −8.

A p-adic quadratic order is a Zp-order in a quadratic extension of Qp, and a p-adic discriminant
is a set formed by the discriminants of all Zp-bases of a p-adic quadratic order. Every p-adic
discriminant is thus a coset in Q×

p /(Z
×
p )2 contained in Zp.

The p-adic discriminant of a formal CM point E, is the p-adic discriminant of the p-adic
quadratic order End(FE). Given a p-adic discriminant D, put

ΛD := {E ∈ Y (Cp) : formal CM point of p-adic discriminant D}.
Theorem 3.7 [HMR21, Theorems A and B]. For every p-adic discriminant D, the following
properties hold.

(i) The set ΛD is a compact subset of Y (Cp), and there is a Borel probability measure νD

on Y (Cp) whose support is equal to ΛD and such that the following equidistribution property
holds. Let (Dn)∞n=1 be a sequence of discriminants in D tending to −∞, such that for every n,
the fundamental discriminant of Dn is either not divisible by p, or not a prime discriminant.
Then we have the weak convergence of measures

δDn,p → νD as n→ ∞.

(ii) Suppose that there is a prime discriminant d divisible by p and an integer m ≥ 0 such that
D := dp2m is in D. Then there are Borel probability measures ν+

D and ν−D on Y (Cp) such
that the following equidistribution property holds. For every sequence (fn)∞n=0 in Z>0 tending
to ∞ such that for every n we have (d/fn) = 1 (respectively, (d/fn) = −1), we have the weak
convergence of measures

δD(fn)2,p → ν+
D (respectively, δD(fn)2,p → ν−D) as n→ ∞.

The proof of Theorem 3.1 is given after the following proposition, in which we gather further
properties of the limit measures in Theorem 3.7. To state it, we introduce some notation.

A p-adic discriminant is fundamental, if it is the p-adic discriminant of the ring of integers
of a quadratic extension of Qp. Let d be a fundamental p-adic discriminant. For Δ in d, the
field Qp(

√
Δ) depends only on d, but not on Δ. Denote it by Qp(

√
d). Choose a formal CM

point Ed such that End(FE) is isomorphic to the ring of integers of Qp(
√

d), as follows. If d

does not contain a prime discriminant that is divisible by p, then choose an arbitrary formal CM
point Ed in Λd. In the case where d contains a prime discriminant d that is divisible by p, then d
is the unique fundamental discriminant in d with this property and we choose Ed in Λd. Note
that if Qp(

√
d) is unramified over Qp, then NrEd = Z×

p , and that if Qp(
√

d) is ramified over Qp,
then NrEd is a subgroup of Z×

p of index two; see, e.g., [HMR21, Lemma 2.3].
Denote by vp Katz’s valuation on Ysups(Cp), as defined in [HMR20, § 4.1] and put

Np :=
{
E ∈ Ysups(Cp) : vp(E) <

p

p+ 1

}
.

For E in Np, denote by H(E) the canonical subgroup of E (see [Kat73, Theorem 3.10.7]).
The canonical branch of the Hecke correspondence Tp is the map t : Np → Ysups(Cp) defined by
t(E) := E/H(E). The map t is analytic in the sense that it is given by a finite sum of Laurent
series, each of which converges on all of Np; see, e.g., [HMR20, Theorem B.1].
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Given a fundamental p-adic discriminant d and an integer m ≥ 0, define the affinoid

Adp2m :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v−1
p

(
1
2
· p−m

)
if Qp(

√
d) is ramified over Qp;

v−1
p ([1,∞]) if Qp(

√
d) is unramified over Qp and m = 0;

v−1
p

(
p

p+ 1
· p−m

)
if Qp(

√
d) is unramified over Qp and m ≥ 1.

In the following proposition we summarize some of the results from [HMR21, Proposition 7.1,
(7.13) and §§ 7.2 and 7.3].

Proposition 3.8. For every fundamental p-adic discriminant d we have

νd =

⎧⎨
⎩
μEd

Z
×
p

if Qp(
√

d) is unramified over Qp;

1
2(μEd

Nrd
+ μEd

Z
×
p �Nrd

) if Qp(
√

d) is ramified over Qp,
(3.4)

and for every integer m ≥ 1 we have

νdp2m =

⎧⎪⎪⎨
⎪⎪⎩

1
pm−1(p+ 1)

(tm|Adp2m)∗νd if Qp(
√

d) is unramified over Qp;

1
pm

(tm|Adp2m)∗νd if Qp(
√

d) is ramified over Qp.

(3.5)

If, in addition, d contains a prime discriminant, then we also have

ν+
d = μEd

Nrd
and ν−d = μEd

Z
×
p �Nrd

, (3.6)

and (3.5) holds for ν+
dp2m (respectively, ν−

dp2m), with νd replaced by ν+
d (respectively, ν−d ).

Proof of Theorem 3.1. Let (Dn)∞n=1 be a sequence of discriminants tending to −∞ such that the
sequence of measures (δDn,p)∞n=1 converges weakly to a measure different from δxcan . By [HMR20,
Theorem A], there is a constant c > 0 such that for every n we have |Dn|p > c and ΛDn ⊆
Ysups(Cp). This implies that (Dn)∞n=1 is contained in a finite union of p-adic discriminants; see,
e.g., [HMR21, Lemmas 2.1 and A.1]. Taking a subsequence if necessary, assume that (Dn)∞n=1 is
contained in a p-adic discriminant D. Let d be the fundamental p-adic discriminant and m ≥ 0
the integer such that D = dp2m; see, e.g., [HMR21, Lemma A.1(i)].

Passing to a subsequence if necessary, there are two cases.

Case 1. For every n the fundamental discriminant ofDn is either not divisible by p, or not a prime
discriminant. In this case the sequence (δDn,p)∞n=1 converges to νD by Theorem 3.7(i). Then (3.4)
in Proposition 3.8 and Theorem 3.2 imply that νd is nonatomic. This is the desired assertion
in the case where m = 0. If m ≥ 1, then the fact that νD is nonatomic follows from (3.5) in
Proposition 3.8, together with the fact that νd is nonatomic and the analyticity of the canonical
branch t of Tp.

Case 2. There is a prime discriminant d that is divisible by p and a sequence (fn)∞n=1 in Z>0 such
that for every n we have Dn = df2

n and (d/fn) = 1 (respectively, (d/fn) = −1). In this case the
sequence (δDn,p)∞n=1 converges weakly to ν+

D (respectively, ν−D) by Theorem 3.7(ii). Then (3.6) in
Proposition 3.8 and Theorem 3.2 imply that ν+

d and ν−d are both nonatomic. This is the desired
assertion in the case where m = 0. If m ≥ 1, then that ν+

D and ν−D are both nonatomic follows
from the fact that ν+

d and ν−d are both nonatomic, from the last assertion of Proposition 3.8 and
from the fact that the canonical branch t of Tp is analytic. �
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3.3 Proof of Theorem B
In the case where f is the j-invariant, the desired estimate is a direct consequence of (2.2) and
[CU04, Théorème 2.4] if v = ∞ and of Theorem 3.1 and [HMR21, Theorems A and B], which
are summarized in Theorem 3.7 in § 3.2, if v is a prime number.

To prove Theorem B in the general case, let K be a finite extension of Q inside Q, let f be
a nonconstant modular function defined over K and let Φ(X,Y ) be a modular polynomial of f
in K[X,Y ]. Note that Φ(X,Y ) is irreducible in Cv[X,Y ]. Let C3, θ and η be given by Lemma 2.8
and denote by δX (respectively, δY ) the degree of Φ(X,Y ) in X (respectively, Y ). Furthermore,
note that Φ(X,α) is nonzero (Proposition 2.4) and denote by Z the (possibly empty) finite set
of zeros of this polynomial in Cv.

Let τ be a quadratic imaginary number in H that is not a pole of f , and put

j := j(τ) and f := f(τ).

Then, j is a singular modulus of the j-invariant and f is a singular modulus of f . Noting that for
every σ in Gal(Q|K) we have Φ(σ(j), σ(f)) = 0, by Lemma 2.8 there is r0 > 0 independent of τ
such that for every r in ]0, r0[ we have

#(OK(f) ∩ Dv(α, r)) ≤ δY #{j′ ∈ OK(j) : |j′|v ≥ C−1
3 r−η}

+ δY
∑
z0∈Z

#(OK(j) ∩ Dv(z0, C3r
θ)). (3.7)

In the case where v is a prime number, we have

{j′ ∈ OK(j) : |j′|v > 1} = ∅,
so the desired estimate for f follows from that for the j-invariant, together with (3.7) and
Proposition 2.3(ii). To prove the theorem in the case where v = ∞, we use the fact that the limit
measure μ∞ in [CU04, Théorème 2.4], seen as a measure on P1(C), is nonatomic. Thus, there is
R > 1 such that

μ∞({z ∈ Cv : |z|v > R}) ≤ ε

2δY
,

and, if Φ(X,α) is nonconstant, such that for every z0 in Z we have

μ∞(Dv(z0, R−1)) ≤ ε

2δXδY
.

Then, the desired estimate for f and v = ∞ follows from that for the j-invariant, together
with (3.7) and Proposition 2.3(ii).

4. p-Adic approximation by singular moduli

The goal of this section is to prove the following proposition, from which we derive Theorem C.
Throughout this section, fix a prime number p.

Proposition 4.1. Let j0 be a singular modulus of the j-invariant. Then, there exists a constant
A > 0 such that for every singular modulus j of the j-invariant that is different from j0 we have

− log |j − j0|p ≤ A log |Dj|.
The archimedean counterpart of this estimate was shown by Habegger [Hab15, Lemmas 5

and 8 and formula (11)]. See also Conjecture 1.3 in § 1.3.
After some preliminaries in § 4.1, the proofs of Proposition 4.1 and Theorem C are given in

§§ 4.2 and 4.3, respectively. To prove Proposition 4.1, we use that CM points outside Ysups(Cp)
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are isolated [HMR20, Corollary B] to restrict to the case where the CM points corresponding
to j and j0 are both in Ysups(Cp). In the case where the conductors of Dj and Dj0 are both p-adic
units, we use an idea in the proof of [Cha18, Proposition 5.11]. To deduce the general case from
this particular case, we use a formula in [HMR21] showing how the canonical branch of Tp relates
CM points whose conductors differ by a power of p (Theorem 4.5).

Denote by Ysups(Fp) the (finite) set of isomorphism classes of supersingular elliptic curves
over Fp. For e in Ysups(Fp), denote by De the set of all E in Y (Cp) having good reduction, and
such that the reduced class is e. The set De is a residue disc in Y (Cp).

4.1 Formal Zp-modules and elliptic curves
In this section, we briefly recall the work of Gross and Hopkins in [HG94], on deformation spaces
of formal modules. See also [HMR21, §§ 2.4 to 2.7] for a more detailed account of the results
needed here. For every e in Ysups(Fp), we describe an action of (End(e) ⊗ Zp)× on a certain
ramified covering of De. In the proof of Proposition 4.1 we use a relation between the metric
on De and the natural metric of the covering, which is stated as Theorem 4.2 below.

Fix e in Ysups(Fp) and a representative elliptic curve defined over Fp2 that we also denote
by e. Denote by Fe the formal group of e endowed with its natural structure of formal Zp-module
and set

Be := End
Fp

(Fe) ⊗ Qp, Re := End
Fp

(Fe) and Ge := Aut
Fp

(Fe).

Then, Be is a division quaternion algebra over Qp and the sets Re and Ge embed in Be as
the maximal order and its group of units, respectively. Denote by g 	→ g the involution of Be,
and for g in Be denote by nr(g) := gg in Qp its reduced norm. On the other hand, the function
ordBe : Be → Z ∪ {∞} defined for g in Be by ordBe(g) := ordp(nr(g)), is the unique valuation
extending the valuation 2 ordp on Qp. Identifying Re and Ge with their images in Be, we have

Re = {g ∈ Be : ordBe(g) ≥ 0} and Ge = {g ∈ Be : ordBe(g) = 0}.
The function distBe : Be × Be → R defined for g and g′ in Be by

distBe(g, g
′) := p−(1/2) ordBe (g−g′),

defines an ultrametric distance on Be that makes Be into a topological algebra over Qp.
Identify the residue field of Cp with an algebraic closure Fp of Fp and denote by π : Op → Fp

the reduction map. Moreover, denote by Qp2 the unique unramified quadratic extension of Qp

inside Cp, and by Zp2 its ring of integers.
Let R0 be a complete, local, Noetherian Zp-algebra with maximal ideal M0 and residue field

isomorphic to a subfield k0 of Fp that contains Fp2 . Fix a reduction map R0 → k0. We are mainly
interested in the special case where R0 the ring of integers of a finite extension of Qp contained
in Cp together with the restriction of π, or a quotient of such ring of integers together with the
morphism induced by the restriction of π. We stick to the general case for convenience.

A deformation of Fe over R0 is a pair (F , α), where F is a formal Zp-module over R0

and α : F̃ → Fe is an isomorphism of formal Zp-modules defined over k0. Here, F̃ is the formal
group over k0 obtained as the base change of F under the reduction map R0 → k0. Two such
deformations (F , α) and (F ′, α′) are isomorphic, if there exists an isomorphism ϕ in IsoR0(F ,F ′)
with reduction ϕ̃ such that α′ ◦ ϕ̃ = α. Denote by Xe(R0) the set of isomorphism classes of
deformations of Fe over R0.

For the rest of this section, we further assume that our choice of the representative ellip-
tic curve e is such that Fe is isomorphic over Fp2 to the specialization of a universal formal
Zp-module of height two; see [HMR21, Lemma 2.5]. Then, a consequence of the work of Gross
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and Hopkins is that there exists a bijection

M0 → Xe(R0) (4.1)

that is functorial in R0; see [HG94, § 12] and [HMR21, § 2.5] for details. Moreover, we have the
action

Autk0(Fe) × Xe(R0) → Xe(R0)
(β, (F , α)) 	→ β · (F , α) := (F , β ◦ α).

Let K be a finite extension of Qp2 inside Cp, with ring of integers OK and residue field k. Consider
the reduction map OK → k obtained as the restriction of π to OK. Denote by Y(e,OK) the
space of isomorphism classes of pairs (E,α) formed by an elliptic curve E given by a Weierstrass
equation with coefficients in OK and having smooth reduction, and an isomorphism α : Ẽ → e
defined over k. Here, two pairs (E,α) and (E′, α′) are isomorphic if there exists an isomorphism
ψ : E → E′ defined over k such that α′ ◦ ψ̃ = α. Consider the natural map

Y(e,OK) → Xe(OK) (4.2)

mapping a class in Y(e,OK) represented by a pair (E,α), to the class in Xe(OK) represented
by the deformation (FE , α̂). Here, α̂ : F̃E → Fe is the isomorphism induced by α. This map is
known to be a bijection; see [LST64, § 6] or [MC10, Theorem 4.1]. We obtain a map

Πe,K : Xe(OK) → Ysups(Qp) ∩ De, (4.3)

by composing the inverse of (4.2) with the natural map from Y(e,OK) to Ysups(Qp) ∩ De.
Consider

K := {finite extensions of Qp2 inside Cp}
as a directed set with respect to the inclusion. For each K in K , consider the parametriza-
tion (4.1) with R0 = OK. Taking a direct limit over K and then a completion, we obtain
a set D̂e that is parametrized by the maximal ideal of Op. The action of Ge on the sys-
tem {Xe(OK) : K ∈ K } extends to a continuous map Ge × D̂e → D̂e that is analytic in the
second variable; see [HMR21, § 2.6] for details.

In the following theorem, δe := # Aut(e)/2. Note that δe = 1 if j(e) �= 0, 1728 and that in all
the cases we have 1 ≤ δe ≤ 12; see, e.g., [Sil09, Appendix A, Proposition 1.2(c)].

Theorem 4.2 [HMR21, Theorem 2.7]. Fix e in Ysups(Fp). Then, the system {Πe,K : K ∈ K }
given by (4.3) defines a ramified covering map

Πe : D̂e → De,

such that for every x in D̂e and every E in De we have

min{|x− x′|p : x′ ∈ Π−1
e (E)}δe ≤ |j(Πe(x)) − j(E)|p

≤ min{|x− x′|p : x′ ∈ Π−1
e (E)}.

4.2 Proof of Proposition 4.1
The proof of Proposition 4.1 is at the end of this section.

Let e be in Ysups(Fp). The set

L(e) := {φ ∈ Z + 2 End(e) : tr(φ) = 0},
is a Z-lattice of dimension three inside End(e). Define for each integer m ≥ 1,

Vm(e) := {φ ∈ L(e) : nr(φ) = m}.
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For each fundamental p-adic discriminant d and every discriminant D in d, the image of the
set V|D|(e) by the natural map End(e) → End

Fp
(Fe), denoted by φ 	→ φ̂, is contained in

Le,d := {ϕ ∈ Zp + 2Re : tr(ϕ) = 0,−nr(ϕ) ∈ d};
see [HMR21, Lemma 2.1]. Let Ue,d : Le,d → Ge be the function defined by

Ue,d(ϕ) :=

⎧⎪⎪⎨
⎪⎪⎩
ϕ2 + ϕ

2
if
ϕ2 + ϕ

2
belongs to Ge;

1 +
ϕ2 + ϕ

2
otherwise,

and for each ϕ in Le,d define

Fixe(ϕ) := {x ∈ D̂e : Ue,d(ϕ) · x = x}.
Given a fundamental p-adic discriminant d, denote by Qp2(

√
d) the compositum of Qp2

and Qp(
√

d).

Proposition 4.3 [HMR21, Lemmas 4.5(iv) and 4.15, and Proposition 5.6(i)]. Fix e in Ysups(Fp)
and a fundamental p-adic discriminant d.

(i) For ϕ and ϕ′ in Le,d the sets Fixe(ϕ′) and Fixe(ϕ) coincide if ϕ′ belongs to Qp(ϕ) and they
are disjoint if ϕ′ is not in Qp(ϕ).

(ii) We have Π−1
e (Λd ∩ De) ⊆ Xe(OQp2 (

√
d)), and for every Δ in d we have

Π−1
e (Λd ∩ De) = Fixe({ϕ ∈ Le,d : nr(ϕ) = −Δ}).

For a fundamental p-adic discriminant d, put εd := 1
2 if Qp(

√
d) is ramified over Qp and εd := 1

if Qp(
√

d) is unramified over Qp.

Lemma 4.4. For every prime number p, every e in Ysups(Fp) and every fundamental p-adic
discriminant d, the following property holds. For all ϕ and qϕ in Le,d and all x in Fixe(ϕ) and qx
in Fixe(qϕ), we have

|x− qx|p ≥ p−εd distBe(ϕqϕ, qϕϕ).

Proof. Let �0 and � be uniformizers of OQp(
√

d) and OQp(ϕ), respectively, and note that

ordp(�0) = εd = 1
2 ordBe(�). (4.4)

If x = qx, then qϕ is in Qp(ϕ) by Proposition 4.3(i) and, therefore, ϕqϕ = qϕϕ. Thus, the desired
property holds in this case. Assume x �= qx. By Proposition 4.3(ii), x and qx are both in Π−1

e (Λd ∩
De) and, therefore, in Xe(OQp2 (

√
d)). In particular, there is an integer N ≥ 1 such that |x− qx|p =

|�0|Np . Let (F , α) and ( qF , qα) represent x and qx, respectively, and denote by FN and qFN the
base change of F and qF under the projection map OQp2 (

√
d) → R0 := OQp2 (

√
d)/�

N
0 OQp2 (

√
d).

Since (4.1) is a bijection, there is an isomorphism ψ : FN → qFN defined over R0 such that qα =
α ◦ ψ̃. This implies that the maps

EndR0(FN ) → Re and EndR0( qFN ) → Re,

given by
φ 	→ α ◦ φ̃ ◦ α−1 and φ 	→ qα ◦ φ̃ ◦ qα−1,

respectively, have the same image. Thus, by [Gro86, Proposition 3.3] we have

OQp(ϕ) +�N−1Re = OQp( qϕ) +�N−1Re.
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It follows that ϕqϕ− qϕϕ is in �N−1Re. Together with (4.4), this implies

distBe(ϕqϕ, qϕϕ) ≤ |�0|N−1
p = pεd |x− qx|p. �

In the following theorem we use the canonical branch t of Tp, recalled in § 3.2.

Theorem 4.5 [HMR21, Theorem 4.6]. Let d be a fundamental discriminant such that
Λd ⊆ Ysups(Cp). Then for every integer r ≥ 1 and every integer f ≥ 1 that is not divisible by p,
we have

Λd(fpr)2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t−1(Λdf2) ∩ v−1
p

(
1
2p

)
if r = 1 and p ramifies in Q(

√
d);

t1−r(Λd(fp)2) if r ≥ 2 and p ramifies in Q(
√
d);

t−r(Λdf2) if r ≥ 1 and p is inert in Q(
√
d).

The following lemma is [HMR20, Lemma 4.9]; see also [CM06, Lemma 4.8] and [Gro86,
Proposition 5.3].

Lemma 4.6. Denote Katz’s valuation by vp, as in § 3.2. Let D be a discriminant such that ΛD ⊆
Ysups(Cp) and let m ≥ 0 be the largest integer such that pm divides the conductor of D. Then
for every E in supp(ΛD) we have

min
{
vp(E),

p

p+ 1

}
=

⎧⎪⎨
⎪⎩

1
2
· p−m if p ramifies in Q(

√
D);

p

p+ 1
· p−m if p is inert in Q(

√
D).

Proof of Proposition 4.1. Let E0 be the CM point such that j(E0) = j0. Since CM points out-
side Ysups(Cp) are isolated [HMR20, Corollary B], we can assume that E0 is in Ysups(Cp). Let e
be the element of Ysups(Fp) such that E0 is in De.

Let d be the fundamental p-adic discriminant and m ≥ 0 the integer such that E0 is in Λdp2m .
Let j be a singular modulus different from j0 and let E be the CM point satisfying j(E) = j.
Without loss of generality, assume that Dj �= Dj0 and that E is in De. In view of Lemma 4.6,
we can also assume that there is a fundamental p-adic discriminant d′ such that Dj is in p2md′;
see also [HMR21, Lemma 2.1]. Since Λdp2m and Λd′p2m are both compact by Theorem 3.7(i) and
they are disjoint if d′ �= d, we can also assume that d′ = d. On the other hand, by Theorem 4.5
and the fact that the canonical branch t of Tp is analytic, it is sufficient to prove the lemma in
the case where m = 0, so E0 and E are both in Λd ∩ De.

Using δe ≤ 12 and Theorem 4.2, we can find x0 in Π−1
e (E0) and x in Π−1

e (E) such that

|j − j0|p ≥ |x− x0|12
p . (4.5)

On the other hand, by Proposition 4.3(ii) there is φ0 in End(e) such that φ̂0 satisfies the equation
X2 −Dj0 = 0, is in Le,d and is such that x0 is in Fixe(φ̂0). Similarly, we can find φ in End(e) such
that φ̂ satisfies the equation X2 −Dj = 0, is in Le,d and is such that x is in Fixe(φ̂). Note that
Proposition 4.3(i) and our assumption Dj �= Dj0 , imply that φ0φ− φφ0 is nonzero. Combined
with the fact that deg is a positive-definite quadratic form on End(e) and [Sil09, Chapter V,
Lemma 1.2], this implies

ordBe(φ̂0φ̂− φ̂φ̂0) = ordp(nr(φ̂0φ̂− φ̂φ̂0)) = ordp(deg(φ0φ− φφ0))

≤ logp(deg(φ0φ− φφ0)) ≤ logp(4 deg(φ0) deg(φ))

= logp(4 deg(φ0)|Dj|).
Together Lemma 4.4, (4.5) and the inequality |Dj| ≥ 2, this implies the desired estimate. �
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4.3 Proof of Theorem C
In the case where v = ∞, Theorem C is a direct consequence of the following proposition, and
in the case where v is a prime number, Theorem C is a direct consequence of Proposition 4.1,
the following proposition and Lemma 4.8 below.

Proposition 4.7. Let f be a nonconstant modular function defined over Q, let Φ(X,Y ) be a
modular polynomial of f in Q[X,Y ] and let v be in MQ. Furthermore, let α in Q be a non-
cuspidal value of f if v = ∞, or such that every root of Φ(X,α) is badly approximable in Cv

by the singular moduli of the j-invariant if v is a prime number. Then, α is badly approximable
in Cv by the singular moduli of f .

In the case where v = ∞, the hypothesis that α is a non-cuspidal value of f is neces-
sary by Proposition 2.7(i). In the case where v is a prime number and α is an omitted value
of f , the hypothesis on α is automatically satisfied because the polynomial Φ(X,α) is constant
(Proposition 2.4(i)).

Proof of Proposition 4.7. Note that Φ(X,Y ) is irreducible in Cv[X,Y ] and that Φ(X,α) is
nonzero by Proposition 2.4. Denote by Z the (possibly empty) finite set of zeros of Φ(X,α)
in Cv. Furthermore, let C3, θ and η be given by Lemma 2.8.

Suppose v = ∞. By [Hab15, Lemmas 5 and 8 and formula (11)] there are constants A > 0
and B such that for every z0 in Z and every singular modulus j of the j-invariant different
from z0, we have

− log |j − z0|v ≤ A log |Dj| +B. (4.6)

On the other hand, Proposition 2.4(ii), Lemma 2.8 and our hypothesis that α is a non-cuspidal
value of f imply that Z is nonempty and that for every quadratic imaginary number τ in H such
that f(τ) is sufficiently close to α, we have

min{|j(τ) − z0|v : z0 ∈ Z} ≤ C3|f(τ) − α|θv. (4.7)

Together with (4.6) and Proposition 2.3(iii), this implies that α is badly approximable in C by
the singular moduli of f .

It remains to consider the case where v is a prime number p. Recall that C3 and η are given
by Lemma 2.8 and put r := C

−1/η
3 . In the case where α is an omitted value of f , the desired

assertion is given by Proposition 2.7(ii). Suppose that α is a value of f , so Φ(X,α) is nonconstant
by Proposition 2.4(i). In particular, Z is nonempty. Proposition 2.3(iii) with f replaced by j and
our hypotheses imply that there are constants A > 0 and B such that for every z0 in Z and
every singular modulus j of the j-invariant different from z0 we have (4.6). On the other hand,
reducing r if necessary Lemma 2.8 implies that for every quadratic imaginary number τ in H

such that f(τ) is in Dp(α, r) the singular modulus j(τ) satisfies either (4.7) or

|j(τ)|p > C−1
3 |f(τ) − α|−η

p > 1.

This last chain of inequalities is impossible since j(τ) is an algebraic integer. We thus have (4.7).
Together with (4.6) and Proposition 2.3(iii), this implies that α is badly approximable in Cp by
the singular moduli of f . �
Lemma 4.8. Let h be a Hauptmodul defined over Q and let Φ(X,Y ) be a modular polynomial
of h in Q[X,Y ]. Then, for every singular modulus h0 of h, every root of Φ(X, h0) is a singular
modulus of the j-invariant.

The proof of this lemma is given after the following one.
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Lemma 4.9. Let γ be an element of SL(2,R) that is contained in a subgroup of SL(2,R) com-
mensurable to SL(2,Z). Then, there are integers a, b, c and d such that ad− bc > 0 and such that
for every τ in H we have γ(τ) = (aτ + b)/(cτ + d). In particular, the image by γ of a quadratic
imaginary number in H is also quadratic imaginary.

Proof. Let Γ be a subgroup of SL(2,R) commensurable to SL(2,Z) containing γ. Then, the set
of cusps of Γ is equal to that of SL(2,Z), which is equal to P1(Q) (see [Shi71, Proposition 1.30]).
It follows that γ(P1(Q)) = P1(Q) and, in particular, that γ(∞) is in P1(Q). In the case where
γ(∞) �= ∞, let γ̂ be an element of SL(2,R) such that for every τ in H we have

γ̂(τ) =
1

γ(τ) − γ(∞)
.

Otherwise, put γ̂ := γ. In all of the cases, we have γ̂(Q) = Q and, therefore, there is λ in Q such
that λ > 0 and such that for every τ in H we have γ̂(τ) = λτ + γ̂(0). Since γ̂(0) is in Q, this
implies the desired assertion for γ̂ and, therefore, for γ. �

Proof Lemma 4.8. Let τ0 be a quadratic imaginary number in H such that h(τ0) = h0. Note
that Φ(X,Y ) is irreducible over C, so by Proposition 2.1 for each root j of Φ(X, h0) there is τ
in H such that

j = j(τ) and h0 = h(τ).

Since h is a Hauptmodul, there is γ in the stabilizer of h in SL(2,R) such that γ(τ0) = τ . By
Lemma 4.9, τ is also a quadratic imaginary number and, therefore, j is a singular modulus of
the j-invariant. �

5. Proof of Theorems A and D

In this section we prove the following theorem and we deduce from it Theorems A and D.

Theorem A
′
. Let f be a nonconstant modular function defined over Q and Φ(X,Y ) a modular

polynomial of f in Q[X,Y ]. Moreover, let α in Q be a non-cuspidal value of f and let S be a
finite set of prime numbers p such that every root of Φ(X,α) is badly approximable in Cp by
the singular moduli of the j-invariant. Then, there are at most finitely many singular moduli f

of f such that f − α is an S-unit.

Theorem D is a direct consequence of Theorem A′ with S = ∅ and α = 0 applied to f and
to 1/f . Another direct consequence of Theorem A′ is the following version of Theorem D for
S-units, under the hypothesis that there is an affirmative solution to Conjecture 1.3.

Corollary 5.1. Let S be a finite set of prime numbers p such that every algebraic number
is badly approximable in Cp by the singular moduli of the j-invariant. Moreover, let f be a
nonconstant modular function defined over Q that is not a weak modular unit. Then, there are
at most a finite number of singular moduli of f that are S-units.

The proof of Theorem A′ is given in § 5.1. In § 5.2 we prove Theorem A and the following
corollary of Theorem A′. To state it, recall that a subgroup of SL(2,R) is a congruence group, if
for some N in Z>0 it contains{(

a b
c d

)
∈ SL(2,Z) : a, d ≡ 1 mod N and b, c ≡ 0 mod N

}
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as a finite index subgroup. The following corollary shows that an affirmative solution to
Conjecture 1.3 would yield a version of Theorem A for a general congruence or genus zero
group and a general algebraic value.

Corollary 5.2. Let f be a nonconstant modular function defined over Q for a congruence or
a genus-zero group and let α in Q be a value of f . Suppose that for every prime number p, every
algebraic number is badly approximable in Cp by the singular moduli of the j-invariant. Then,
there are at most a finite number of singular moduli f of f such that f − α is an S-unit.

Corollary 5.2 applied to f and to 1/f with α = 0, shows that an affirmative solution to
Conjecture 1.3 would yield a version Theorem D that holds under the weaker hypothesis that f
is not a modular unit, but that is restricted to congruence or to genus-zero groups.

5.1 Proof of Theorem A′

Recall that MQ, and for each v in MQ, the norm field (Cv, | · |v), are defined in § 1.2. Given a
finite extension K of Q inside Q, denote by MK the set of all norms on K that for some v in MQ

coincide with | · |v on Q. For such w and v, write w | v, let (Cw, | · |w) be a completion of an
algebraic closure of (K,w) and denote by Kw the closure of K inside Cw. Note that (Cw, | · |w)
and (Cv, | · |v) are isomorphic as normed fields and that (Kw, | · |w) is a completion of (K,w).
Moreover, identify the algebraic closure of K inside Cw with Q, put

νw :=
[Kw : Qv]
[K : Q]

and ‖ · ‖w := | · |νw
w ,

and for all α in Cv and r > 0 put

Dw(α, r) := {z ∈ Cv : |z − α|w < r}.
Note that νw ≤ 1; see, e.g., [BG06, Corollary 1.3.2].

Let

log+ : [0,∞[→ R and log− : [0,∞[→ R ∪ {−∞}
be the functions defined by

log+(x) := log max{1, x} and log−(x) := log min{1, x}.
Denote by hW : Q → R the Weil or naive height, which for each finite extension K of Q inside Q

and every α in K is given by

hW(α) =
∑

w∈MK

log+ ‖α‖w.

In this formula, the right-hand side is independent of the finite extension K of Q inside Q

containing α. Note that by the triangle inequality, for all α0 and α in Q we have

hW(α− α0) ≥ hW(α) − hW(α0) − log 2. (5.1)

The proof of Theorem A′ is given after a couple of lemmas.

Lemma 5.3. Let α in Q be given and let K be a finite extension of Q inside Q that does not
necessarily contain α. Then, we have

hW(α) = − 1
# OK(α)

∑
w∈MK

∑
α′∈OK(α)

log− ‖α′‖w.
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Proof. Let K̂ be a finite extension of K inside Q containing OK(α), let

P (z) = zd + ad−1z
d−1 + · · · + a0

be the minimal polynomial of α in K[x] and for every w in MK put

‖P‖w := max{‖aj‖w : j ∈ {0, . . . , d− 1}}.
For every archimedean w in MK (respectively, ŵ in M

K̂
) put S1

w := {z ∈ Cw : |z|w = 1}
(respectively, S1

ŵ := {z ∈ Cŵ : |z|ŵ = 1}) and denote by λw (respectively, λŵ) the Haar measure
of this group. Then, we have∑

α′∈OK(α)

log+ ‖α′‖w =
∫

log ‖P (z)‖w dλw(z)

=
∑

ŵ∈M
K̂

ŵ|w

∫
log ‖P (z)‖ŵ dλŵ(z)

=
∑

ŵ∈M
K̂

ŵ|w

∑
α′∈OK(α)

log+ ‖α′‖ŵ; (5.2)

see, e.g., [BG06, Corollary 1.3.2 and Proposition 1.6.5]. Similarly, for every non-archimedean w
in MK we have ∑

α′∈OK(α)

log+ ‖α′‖w = log ‖P‖w

=
∑

ŵ∈M
K̂

ŵ|w

log ‖P‖ŵ

=
∑

ŵ∈M
K̂

ŵ|w

∑
α′∈OK(α)

log+ ‖α′‖ŵ;

see, e.g., [BG06, Corollary 1.3.2 and Lemma 1.6.3]. Combined with (5.2) and with the Galois
invariance of the Weil height (see, e.g., [BG06, Proposition 1.5.17]), this implies

# OK(α) hW(α) =
∑

ŵ∈M
K̂

∑
α′∈OK(α)

log+ ‖α′‖ŵ

=
∑

w∈MK

∑
α′∈OK(α)

log+ ‖α′‖w. (5.3)

On the other hand, by the product formula applied to the element
∏

α′∈OK(α) α
′ of K we have∏

w∈MK

∏
α′∈OK(α)

‖α′‖w = 1;

see, e.g., [BG06, Proposition 1.4.4]. Together with (5.3), this implies the desired identity. �
The following lemma is an extension of [Hab15, Lemma 3] to the more general setting

considered here.

Lemma 5.4. Let K be a finite extension of Q inside Q and let f be a nonconstant modular
function defined over K. Then, for every singular modulus f0 of f there are constants A0 > 0
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and B0 such that for every singular modulus f of f we have

hW(f − f0) ≥ A0 log(# OK(f)) +B0.

Proof. Let Φ(X,Y ) be a modular polynomial of f in Q[X,Y ] and denote by δX and δY the
degree of Φ(X,Y ) in X and Y , respectively. For each k in {0, . . . , δX} let Pk(Y ) in K[Y ] be the
coefficient of Xk in Φ(X,Y ), and let Mk > 0 be such that for every α in Q we have

hW(Pk(α)) ≤ deg(Pk) hW(α) +Mk;

see, e.g., [Sil09, Chapter VIII, Theorem 5.6]. Thus, if we put

Δ :=
δX∑
k=0

deg(Pk) and M :=
δX∑
k=0

Mk,

then for every quadratic imaginary number τ in H that is not a pole of f we have

hW(j(τ)) − δX log 2 ≤
δX∑
k=0

hW(Pk(f(τ))) ≤ Δ hW(f(τ)) +M ;

see, e.g., [Sil09, Chapter VIII, Theorem 5.9]. Combined with (5.1), Proposition 2.3(iii) and
[Hab15, Lemma 3], which is based on Colmez’s lower bound [Col98, Théorème 1 ], we obtain
the desired estimate. �

Proof of Theorem A′. Let K be a finite extension of Q containing α and the coefficients of Φ
and denote by S0 the set of all w in MK such that for some v in S ∪ {∞} we have w | v. Let A0

be the constant given by Lemma 5.4. By Propositions 2.3(ii) and 4.7, for every v in MQ there
are constants Av > 0 and Bv such that for every singular modulus f of f we have

− log |f − α|v ≤ Av log(# OK(f)) +Bv. (5.4)

For every w in MK such that w | v, put Aw := Av and Bw := Bv.
Suppose that there is a sequence of pairwise distinct singular moduli (fn)∞n=1 of f such that

for every n the difference fn − α is an S-unit. By Proposition 2.3(iv), we have

# OK(fn) → ∞ as n→ ∞. (5.5)

Together with Theorem B applied to each v in S ∪ {∞}, this implies that there is r in ]0, 1[ such
that for every w in S0 and every sufficiently large n ≥ 1, we have

#(OK(fn) ∩ Dw(α, r)) ≤ A0

2Aw(#S0 + 1)
# OK(fn).

Thus, for every sufficiently large n we have

#(OK(fn − α) ∩ Dw(0, r))
# OK(fn − α)

=
#(OK(fn) ∩ Dw(α, r))

# OK(fn)
≤ A0

2Aw(#S0 + 1)
.

Combined with Lemma 5.3, (5.4), the fact that for every w in MK we have νw ≤ 1 and our
assumption that fn − α is an S-unit, this implies that for some constant B independent of n
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we have

hW(fn − α) = − 1
# OK(fn − α)

∑
w∈S0

( ∑
β∈OK(fn−α)

|β|w<r

log ‖β‖w +
∑

β∈OK(fn−α)
r≤|β|w<1

log ‖β‖w

)

≤
∑

w∈S0

#(OK(fn − α) ∩ Dv(0, r))
# OK(fn − α)

(Aw log(# OK(fn)) +Bw) + (#S0 + 1) log
1
r

≤ A0

2
log(# OK(fn)) +B.

In view of (5.5), letting n→ ∞ we obtain a contradiction with Lemma 5.4 that completes the
proof of the theorem. �

5.2 Proof of Theorem A and Corollary 5.2
The proofs are given after a few lemmas.

Lemma 5.5. Let V be a projective curve defined over Q and let g0 be a rational function defined
on V over C such that every zero and every pole of g0 is in V (Q). If there exists z0 in V (Q) such
that g0(z0) = 1, then g0 is defined over Q.

Proof. If g0 is constant, then it is equal to 1 and the result follows. Assume g0 is nonconstant.
Let σ in Aut(C|Q) be given and denote by gσ

0 the image of g0 under the action of σ on rational
functions. The hypothesis that every zero and every pole of g0 is in V (Q) implies that g0 and gσ

0

have the same zeros and poles, and that the corresponding multiplicities are the same. This
implies that g0/gσ

0 is constant. Evaluating at z0 and using

gσ
0 (z0) = σ(g0(z0)) = σ(1) = 1 = g0(z0),

we conclude that g0 = gσ
0 . Since σ is arbitrary, we get that g0 is defined over Q. �

Lemma 5.6. Let f be a nonconstant modular function defined over Q for a genus-zero subgroup
of SL(2,R), such that 0 is a value of f . Then, there is a holomorphic Hauptmodul h defined
over Q and a nonconstant rational function R(X) in Q(X), such that 0 is a (non-cuspidal) value
of h and we have

R(0) = 0 and R(h) = f.

Proof. Our hypotheses imply that the stabilizer Γ of f in SL(2,R) is of genus zero.
Put Γ̂ := Γ ∩ SL(2,Z) and note that Γ̂ has finite index in Γ and in SL(2,Z). Denote by
Π: X(Γ̂) → X(Γ) the map induced by the identity on H and by ĵ and f̂ the meromorphic
functions defined on X(Γ̂) that are induced by j and f , respectively. Note that the meromorphic
function f0 defined on X(Γ) that is induced by f satisfies f̂ = f0 ◦ Π.

First, we show that X(Γ̂) can be defined over Q in such a way that ĵ and f̂ correspond to
rational functions defined over Q. Let Φ(X,Y ) in Q[X,Y ] be a modular polynomial for f and
denote by Z(Φ) the zero set of Φ in C2. Denote by P the finite subset of X(Γ̂) formed by the
poles of ĵ and those of f̂ and let ϕ̂ be the function defined by

ϕ̂ : X(Γ̂) � P → Z(Φ)
z 	→ (ĵ(z), f̂(z)).

By the definition of Γ̂, for every γ in SL(2,Z) outside Γ̂ the meromorphic functions f̂ and f̂ ◦ γ
are different. Thus, the set Eγ of all points of X(Γ̂) at which these functions agree is finite. Let R
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be a set of representatives of the right cosets of Γ̂ in SL(2,Z) that are different from Γ̂ and put

E := P ∪
⋃

γ∈R
Eγ .

Then, R and E are both finite and the restriction of ϕ̂ to X(Γ̂) � E is injective. Thus, ϕ̂ induces
a birational isomorphism between X(Γ̂) and Z(Φ). By [Har77, Chapter I, Corollary 6.11], there
exist a smooth projective curve V defined over Q and birational isomorphisms

φ : X(Γ̂) ��� V (C) and ψ : V (C) ��� Z(Φ),

such that ψ is defined over Q and ψ ◦ φ defines the same birational isomorphism as ϕ̂. Note
that φ extends to an isomorphism X(Γ̂) → V (C); see, e.g., [Har77, Chapter I, Proposition 6.8].
Under this isomorphism, ĵ and f̂ correspond to the composition of ψ with the projections on
the first and second coordinate on Z(Φ), respectively, both of which are defined over Q. Thus, φ
and V (C) induce an algebraic structure on X(Γ̂) over Q for which ĵ and f̂ correspond to rational
functions defined over Q. In what follows, we fix this algebraic structure on X(Γ̂).

Next, we show that X(Γ) can be defined over Q in such a way that Π corresponds to a
rational function defined over Q. To do this, it is sufficient to show that there is a biholomorphic
map h0 : X(Γ) → P1(C) for which the composition h0 ◦ Π is defined over Q. Choose pairwise dis-
tinct numbers α0, α1 and α∞ in Q and choose z0, z1 and z∞ in f−1

0 (α0), f−1
0 (α1) and f−1

0 (α∞),
respectively. Since X(Γ) is of genus zero, there is a biholomorphic map h0 : X(Γ) → P1(C) map-
ping z0, z1 and z∞ to 0, 1 and ∞, respectively. Thus, z1 and every zero and every pole of h0 ◦ Π
is defined over Q and, therefore, h0 ◦ Π is defined over Q by Lemma 5.5. We conclude that X(Γ)
and Π are both defined over Q with respect to the algebraic structure induced by h0. In what
follows, we fix this algebraic structure on X(Γ). Note that f0 is also defined over Q, because f̂
is. Since the cuspidal values of f0 are defined over Q (Proposition 2.4), it follows that each cusp
of X(Γ) is also defined over Q.

To complete the proof of the lemma, note that our hypothesis that 0 is a value of f implies
that there is τ0 in H such that f(τ0) = 0. The point z0 of X(Γ) defined by τ0 is not a cusp of X(Γ)
and is defined over Q. It follows that there is a biholomorphic map X(Γ) → P1(C) defined over Q

mapping z0 to 0 and the cusp of X(Γ) defined by i∞ to ∞. The lift h to H of this function is a
holomorphic Hauptmodul for Γ that is defined over Q and satisfies h(τ0) = 0. From the results
proved in the previous paragraphs, it follows that there is R(X) in Q(X) such that R(h) = f .
Evaluating at τ0, we conclude that R(0) = 0. Finally, note that since h is a Hauptmodul and 0
is a value of h, we have that 0 is a non-cuspidal value of h. �

Lemma 5.7. Let h be a holomorphic Hauptmodul defined over Q, let R(X) in Q(X) be non-
constant and such that R(0) = 0 and put f := R(h). Suppose that for every finite set of prime
numbers S, there are at most a finite number of singular moduli of h that are S-units. Then, f
is a nonconstant modular function defined over Q and for every finite set of prime numbers S
there are at most a finite number of singular moduli of f that are S-units.

Proof. That f is a nonconstant modular function follows from the fact that h has the same
property and that R(X) is nonconstant. To show that f is defined over Q, note that h is
algebraically dependent with the j-invariant over Q because h is defined over Q. It follows that f
is also algebraically dependent with the j-invariant over Q and, therefore, that it is defined
over Q.

Let S be a finite set of prime numbers. By Corollary 2.5(i) there is a finite set of
prime numbers S0 such that every singular modulus of h is an S0-integer. Our hypotheses
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that R(X) is nonconstant and R(0) = 0 imply that there are � in Z>0, a in Q � {0} and monic
polynomials P (X) and Q(X) in Q[X], such that

P (0) �= 0, Q(0) �= 0 and R(X) = aX�P (X)
Q(X)

. (5.6)

Let S1 be a finite set of prime numbers containing S and S0 and such that each of the coefficients
of P (X) and of Q(X) is an S1-integer and each of the numbers a, P (0) and Q(0) is an S1-unit.

By hypothesis, the set U of all those singular moduli of h that are S1-units is finite. Let f be
a singular modulus of f outside the finite set R(U), let τ be a quadratic imaginary number such
that f(τ) = f and put h := h(τ). Then, f = R(h) and h is a singular modulus of h outside U .
It follows that h is an S1-integer that is not an S1-unit. That is, there is a prime number p
outside S1 and σ in Gal(Q|Q) such that |σ(h)|p < 1. Denote by P σ(X) and Qσ(X) the image
of P (X) and Q(X) by the induced action of σ on Q[X], respectively. In view of our choice of S1,
we have

|σ(a)|p = |P σ(σ(h))|p = |Qσ(σ(h))|p = 1.

Together with (5.6), this implies

|σ(f)|p =
∣∣∣∣σ(a)σ(h)�P

σ(σ(h))
Qσ(σ(h))

∣∣∣∣
p

= |σ(h)|�p < 1.

This proves that f is not an S1-unit and, therefore, that it is not an S-unit. �
Proof of Theorem A. Put f0 := f − f0 and note that 0 is a value of f0. Let h and R be given
by Lemma 5.6 with f replaced by f0. Combining Proposition 4.1, Lemma 4.8 and Theorem A′

with f replaced by h and with α = 0, we obtain that for every finite set of prime numbers S, there
are at most a finite number of singular moduli of h that are S-units. Together with Lemma 5.7,
this implies that f0 has the same property. It follows that for every finite set of prime numbers S,
there are at most a finite number of singular moduli f of f that f − f0 is an S-unit. �

The proof of Corollary 5.2 is given after the following lemma.

Lemma 5.8. Let f be a nonconstant modular function defined over Q for a congruence group Γ
contained in SL(2,Z). Then, for every cusp c of X(Γ) there exists m in Z>0 and a modular unit g
defined over Q for Γ such that the following property holds. No cusp of X(Γ) different from c is
a zero or a pole of the meromorphic function defined on X(Γ) induced by fmg.

Proof. Let j0 and f0 be the meromorphic functions defined on X(Γ) induced by the j-invariant
and by f , respectively. Moreover, let Z be the finite set of cusps of X(Γ) and for each z in Z
denote by nz the order of f0 at z. If for every z in Z � {c} we have nz = 0, then the desired
assertion holds with m = 1 and with g equal to the constant function equal to 1. Suppose this
is not the case, so the divisor D on X(Γ) defined by

D :=
( ∑

z∈Z�{c}
nz

)
c−

∑
z∈Z�{c}

nzz,

is nonzero. Note that the degree of D is zero. Applying the Manin–Drinfel’d theorem repeatedly
[Dri73, Theorem 1], we obtain that there exists m in Z>0 and a nonconstant meromorphic
function g0 defined on X(Γ) such that the divisor of zeros and poles of g0 equals mD. It follows
that the modular function g induced by g0 is a modular unit for Γ such that fm

0 g0 has no zeros or
poles in Z � {c}. To complete the proof of the lemma, it remains to show that there is a nonzero
complex number s such that sg is defined over Q. To do this, note that the Riemann surface X(Γ)
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has a structure of projective variety defined over Q for which j0 is given by a rational function
defined over Q; see, e.g., [Shi71, Chapter 6.7]. In particular, each element of Z is defined over Q

with respect to this algebraic structure. Choose a point z0 in X(Γ) � Z defined over Q, note
that g0(z0) is a nonzero complex number and put s := g0(z0)−1. By Lemma 5.5 with g0 replaced
by sg0, the function sg0 corresponds to a rational function on X(Γ) defined over Q. Since this
is also the case for j0, we have that j0 and sg0 are algebraically dependent over Q. This implies
that sg is defined over Q and completes the proof of the lemma. �

Proof of Corollary 5.2. In the case where α is a non-cuspidal value of f , the desired assertion
follows from Theorem A′. Suppose α is a cuspidal value of f and let Γ be the stabilizer of f
in SL(2,R).

Suppose first that Γ is a congruence group, put Γ̂ := Γ ∩ SL(2,Z) and let c be a cusp of X(Γ̂)
at which the meromorphic function f0 defined on X(Γ̂) induced by f takes the value α. Let m
and g be given by Lemma 5.8 with f replaced by f − α and with Γ replaced by Γ̂ and put
f̂ := (f − α)mg. Then, 0 is a non-cuspidal value of f̂ or of 1/f̂ and Theorem A′ with α replaced
by 0 implies that there are at most a finite number of singular moduli of f̂ that are S-units.
On the other hand, by Corollary 2.5 there is a finite set of prime numbers S0 such that every
singular modulus of g is an S0-unit. Putting S1 := S ∪ S0, we conclude that there are at most a
finite number of singular moduli f of f such that f − α is an S1-unit. Since S1 contains S, this
implies the desired assertion.

It remains to consider the case where Γ is of genus zero. Let h be the Hauptmodul given by
Lemma 5.6 with f replaced by f − α. Theorem A′ with f replaced by h and with α replaced
by 0, implies that for every finite set of prime numbers S there are at most a finite number of
singular moduli of h that are S-units. Together with Lemma 5.7, this implies that f − α has the
same property. �
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Appendix A. Fourier series expansion of modular functions

The goal of this section is to give conditions on a modular function to be defined over a given
subfield of C.

A meromorphic function f defined on H is periodic, if there is h in Z>0 such that for every τ
in H we have f(τ + h) = f(τ). The period of f is the least h satisfying this property. In this
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case, f admits a Fourier series expansion at i∞ of the form

f(τ) =
∞∑

n=−∞
an exp

(
2πin
h

τ

)
.

The function f is meromorphic (respectively, holomorphic) at i∞, if for every sufficiently large
integer n (respectively, every n in Z>0) we have a−n = 0.

Note that every modular function is periodic and therefore it admits a Fourier series
expansion at i∞. The goal of this appendix is to prove the following proposition.

Proposition A.1. Let f be a modular function whose Fourier series expansion at i∞ has
coefficients in a subfield K of C. Then f is defined over K.

The proof of this proposition is given after the following lemma.

Lemma A.2. Let K be a subfield of C and let A be a finite subset of C that is not contained
in K. Then, there is a field homomorphism K(A) → C that is the identity on K and that is
different from the inclusion.

Proof. Denote by K the algebraic closure of K inside C.
Suppose first that A is contained in K. By the primitive element theorem, there is α in K

such that K(A) = K(α). Our assumption that A is not contained in K implies that the minimal
polynomial of α over K is of degree at least two. Thus, this polynomial has a root α′ different
from α. It follows that there is a field homomorphism K(α) → C that is the identity on K and
that maps α to α′. It is thus different from the inclusion.

It remains to consider the case where A is not contained in K. In this case, there is a
nonempty subset A0 of A that is algebraically independent over K. Increasing A0 if necessary,
assume it is maximal with this property. Then, K(A) is a finite extension of K(A0). Since K(A0)
is isomorphic to the field of rational functions with coefficients in K in #A0 variables, there is a
field isomorphism σ : K(A0) → K(A0) that is the identity on K and such that for some a0 in A0

we have σ(a0) = 2a0. Since K(A) is a finite extension of K(A0) and C is algebraically closed, σ
extends to a field homomorphism K(A) → C. �
Proof of Proposition A.1. We use that 1/j is holomorphic at i∞; see, e.g., [Lan87, Chapter 4,
§ 1]. Replacing f by 1/f if necessary, assume that f is also holomorphic at i∞. Let Φ(X,Y ) be
a modular polynomial of f in C[X,Y ] (Proposition 2.1). Replacing Φ by a constant multiple if
necessary, assume that one of the coefficients of Φ is equal to 1. Denote by δ the degree of X
in Φ(X,Y ), and note that the polynomial

Ψ(X,Y ) := XδΦ(1/X, Y )

in C[X,Y ] is also irreducible.
For each pair of nonnegative integers (k, �), denote by Ak,� the coefficient ofXkY � in Ψ(X,Y ).

Moreover, denote by I the set of all (k, �) such that Ak,� �= 0. By our normalization of Φ, there
is (k0, �0) such that Ak0,�0 = 1. Suppose that Ψ(X,Y ) is not in K[X,Y ], so the set

A := {Ak,� : (k, �) ∈ I}
is not contained in K. By Lemma A.2, there is a field homomorphism σ : K(A) → C that is the
identity on K and that is different from the inclusion. It follows that for some (k′, �′) in A we
have σ(Ak′,�′) �= Ak′,�′ .

For each integer n ≥ 0, denote by ak,�
n the coefficient of exp((2πin/h)τ) in the Fourier series

expansion of (1/j)kf �. Since 1/j is holomorphic at i∞ and its Fourier series expansion has
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coefficients in Q (see, e.g., [Lan87, Chapter 4, § 1]), our hypothesis implies that ak,�
n is in K. On

the other hand, the fact that the function Ψ(1/j, f) vanishes identically implies that for every
integer n ≥ 0 we have ∑

(k,�)∈I

Ak,�a
k,�
n = 0 and

∑
(k,�)∈I

σ(Ak,�)ak,�
n = 0.

It follows that the polynomial

Ψ0(X,Y ) :=
∑

(k,�)∈I

(σ(Ak,�) −Ak,�)XkY �

in C[X,Y ], is such that the function Ψ0(1/j, f) vanishes identically. Note also that Ψ is nonzero,
because the coefficient of Xk′

Y �′ in Ψ0(X,Y ) is nonzero by our choice of σ. Moreover, the
coefficient of Xk0Y �0 in Ψ0(X,Y ) is zero, so Ψ0 is not a scalar multiple of Ψ.

Consider the polynomial

Φ0(X,Y ) := XδΨ0(1/X, Y )

in C[X,Y ]. The functions Φ(j, f) and Φ0(j, f) vanish identically. By Proposition 2.1(i), this
implies that the polynomial Φ0 vanishes on the zero set of Φ. Since Φ is irreducible over C,
we conclude that Φ divides Φ0. Since the degree of Φ0 in X and in Y is less than or equal to
the corresponding degree of Φ, we conclude Φ0 is a scalar multiple of Φ. However, this would
imply that Ψ0 is a scalar multiple of Ψ, which is false. This contradiction proves that Φ(X,Y )
is in K[X,Y ], and completes the proof of the proposition. �
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