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Abstract. We identify a set of generators for the automorphism group of the one-sided
</-shift. For the 3-shift, this set of generators has an application to the dynamics of
cubic polynomials.

1. Introduction
The one-sided d-shift, Xd, is denned to be the set

Xd=U{0,l,...,d-l},
i=O

with the topology given by the product of the discrete topologies on the coordinate
spaces. The shift map cr: Xd -* Xd defined by

(o-(x))i = xi+1

is a continuous d-to-l map. In this paper we study the group of homeomorphisms
4>:Xd-*Xd that commute with the shift cr. We denote this group by aut (X3, cr); it
is the group of automorphisms of the dynamical system (Xd, a).

The system (Xd,a) is isomorphic to the system (Jp,p), where p is a degree d
complex polynomial all of whose critical points escape to infinity and Jp is the Julia
set of p [B]. For (Xd, o-) and (Jp, p) to be isomorphic or conjugate as dynamical
systems means that there is a homeomorphism ^:Jp-*Xd with ip °p = a° i/>.

Blanchard et al. [BDK] have constructed automorphisms of (Jp, p) where p is a
cubic polynomial all of whose critical points escape to infinity. These automorphisms
are given by traversing loops in a parameter space for cubic polynomials. In
conversation with me, Linda Keen and Robert Devaney posed the question: Does
this construction give all of the automorphisms of (Jp,p)1 The answer is yes. We
prove this by identifying the automorphisms of (Jp, p) = {X3, a) arising from their
construction as those given by a simple combinatorial algorithm; and, using the
algorithm, prove that these automorphisms generate the automorphism group of
(X3, a), aut (X3,cr).

In § 2, we state a result of Boyle et al. [BFK] giving a certain set of generators
for aut (Xd, <x), called marker automorphisms.

In §§ 3 and 4 we show a way to factor a marker automorphism into a composition
of minimal marker automorphisms; these are the automorphisms arising from the
construction of Blanchard, Devaney and Keen (as shown in § 6).
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In § 5 we present a simplified algorithm for constructing minimal marker
automorphisms.

In § 6 we show that the minimal marker automorphisms of (X3, cr) are exactly
the automorphisms constructed by Blanchard, Devaney and Keen.

2. Marker automorphisms and state splitting
Let Gs, z aut (Xd, cr) be that subgroup of automorphisms g such that

g{x)i = x, if Xj^s and x, ?* f, xeXd.
Thus g 6 Gs, fixes all symbols except perhaps s and t. In [BFK], Boyle, Franks and
Kitchens show that {Gsl: 0< s, f < d -1} generate aut (Xd, a) and that Gs, is gener-
ated by marker automorphisms. To describe the construction of marker automorph-
isms we must first explain the state splitting algorithm.

State splitting
Let Go be the directed graph with one state, e, and d directed edges e0,... ,ed_A

from state e to itself. Edge e, is labeled with symbol i; we denote the labeling
function as LGo, or L if no confusion is possible. Thus L(e,) = i. The system (Xd, a)
is obviously conjugate to the symbolic system (2Go, °0, where for a directed graph
G, we define

SG = {e^e^ ...: edge ei/+l follows e,. in G}.

The conjugacy is given by extending the map L to 2Go by setting

We say that a labeled graph G presents Xd if Lc: SG -» Xd is a conjugacy from
(2O, o-) to (Xd, a).

Given any labeled directed graph G presenting Xd we may define a new graph
G' as follows. Denote by 2F{S) the set of edges in G whose initial state is state S.
For each state S, in G, choose a partition {S | u , . . . , S^'} of the set of edges ^(S,).
The states of G' are defined to be {S\J): Sf is a state of G and 1 <;<r,-}. For each
edge ee S-J) whose terminal state is Sk, G' has rk edges:

each labeled with a = La(e). The graph G' is said to be obtained from G by one
round of {forward) state splitting. We show in Corollary (2.2) that G' presents Xd.

Denote the set {xeXd: xo= b0,... ,xt_, = fek_i} by the string b = bofc,... 5 ^ .
The set b is called a k-block.

LEMMA 2.1. Let G be a graph obtained from Go by a finite number fc>0 of rounds
of state splitting. The states if of G partition Xd where we identify state S e ^ with the
set

S = {x € Xd: L(p) = x where p is a path in G starting at state S}.

The edges % of G also partition Xd, where we identify e = % with the set

e = {xe Xd: L(p) = x where p is a path in G with p0 = e}.

Moreover, the states of G are unions of k-blocks and the edges of G are unions of
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(k +1) -blocks. Each state of G has exactly d incoming edges, labeled distinctly from
the set {0, l , . . . , d - l } .

Proof. The proof is an induction on fc. When k = 0, G = Go. The edge e, of Go is
identified with the 1-block i of Xd. Thus the edges

partition the space Xd into 1-blocks. The single state of Go is identified with the
set Xd; in block notation, the single state of Go is the 0-block denoted by the empty
word e: no coordinates are specified.

Let if and % be the set of states and of edges of G. The state splitting rule says
exactly that if G' is obtained from G by a round of splitting then

and

where if' and %' are the states and edges of G' and

where

Thus if each Se 5̂  is a union of fc-blocks and each ee % is a union of (fc+l)-blocks,
then each S'e if', being a union of elements of %, is a union of (fc +1)-blocks and
each e' e "&' is a union of (fc + 2) -blocks. Now for each edge e'e?' ,we have o-(e') = S',
where S' is the terminal state of e' in graph G'. Thus, the incoming edges of state
S'mif' are OS', I S ' , . . . , ( d - l )S ' . •

COROLLARY 2.2. If graph G is as in Lemma (2.1), t/ie map L:1.a -* Xd is a conjugacy.
Thus G presents Xd.

Proof. If x G Xd, then the unique path p in G labeled by x is given by pop! . . . ,
where po^xox1... xk, P i3x ,x 2 . . . xk+l, etc. Thus L~':Xd->2G is given by the
(k+l)-block map L^'(x,ocj+1... xi+k) = e where e is that edge in graph G with

..xi+k. •

Marker automorphisms
Define, after Nasu [N], a simple automorphism of Xd to be an automorphism <p of
the form

(p = L° i//° L~\

where L: 1G -* Xd is the label conjugacy for some graph G obtained from Go by
state splitting and t// is an automorphism of SG given by switching two fixed edges
e^ and e,, in graph G, where e^ and e,, are parallel edges: they have a common
initial state P and a common final state M.

In terms of Xd, <p is a marker automorphism: it acts on x e Xd only where a
marker occurs in x as follows. If I^e^) = a and £(«,,) = b, then <p switches symbol

https://doi.org/10.1017/S0143385700005538 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005538


250 /. Ashley

a with symbol b wherever a or b is followed by a fc-block e g M (recall that states
of G are unions of fc-blocks in Xd). To emphasize the marker M we denote <p by <pM.

It follows from a more general result in [BFK] that

THEOREM 2.3. The simple automorphisms generate aut (Xd).

We concentrate on describing markers for automorphisms of Xd switching symbols
1 and 2 for definiteness. Marker automorphisms switching other symbols are
conjugate to these.

Definition 2.4. A k-block marker M is a union of fc-blocks that occurs as a union
of states, each with parallel incoming edges labeled 1 and 2, occurring in a graph
G obtained from Go by state splitting. We say that graph G presents marker M.

Observation 2.5. If a graph G simultaneously presents markers M j , . . . , Mr, then
the automorphisms q>Ml,..., <pMr pair-wise commute. If in addition the M, are
disjoint sets, then the product of <pMl,..., <pMr is given by the marker automorphism
with marker U . Ms.

Proof. The automorphism <pM. is given by L ° «/», ° L"1, where t/», is the automorphism
of 2 G given by switching certain pairs of edges of graph G. The ^ pair-wise commute
because each leaves any pair of edges switched by another set-wise fixed. If the M,
are disjoint, no two of the t/», switch the same pair of edges. Therefore, the set of
pairs of edges switched by the product of all t^, 1 < i < r, is the union over 1 < i < r
of the set of pairs switched by (/>,. •

In fact, a converse to (2.5) is true, but we do not use it.
We now show that any fc-block marker M is presented by a graph G that is

obtained from Go by k rounds of state splitting. First we must characterize those
partitions if of Xd obtained by state splitting the graph Go.

If a £ Xd and if is a partition of Xd, we denote by if\ a the induced partition of
the set a.

LEMMA 2.6. Let if be a partition ofXd coarser than the partition ofXd into all k-blocks.
Then if is given by state splitting Go iff

if > cr(if\ a) for all 1 -blocks a s Xd.

Moreover, if the condition is satisfied, if is obtained from Go by k rounds of splitting.

Proof. We prove (<=). The other direction is an easy consequence of Lemma 2.1.
If a is a fc-block, denote \a\ = k. Now

if> V <r(Sr\a)

so

V o-\if\b)> V A\ V o-(
|b| = l |b| = 7 \L|a|=l

= fcV V <r'([cr(Sr\a)]\b)

= V V <rl+\if\ab)

= V o-'+\if\c), / > 1 .
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If we denote

if,= V o-k~'{if\a) and
\a\ = k-l

we have

Let

where g0 = { 0 , 1 , . . . , d -1} . We claim that ifl+x and g,+1 are the states and edges
of a graph G/+1 obtained by one round of state splitting from a graph G,, 0 ^ / < f c - l .
It only remains to show

5f, £» ,_ ,= So vo--1y/_1 = »0vo-~1 V o-fc-'+1(^|fc).
|b|=fc-/+i

If e and e' are in the same atom of the right-hand-side, then e = ad and e' = ad',
where |a| = l, and where for all (k-/+l)-blocks b, bd and bd' are in the same
atom of if. In particular, for all (k — /)-blocks c, cad and cad' are in the same atom
of if. Hence e = ad and e' = ad' are in the same atom of S(. •

We denote the complement of a subset M of Xd by Mc.

LEMMA 2.7. Let M be a finite union ofk-blocks. The partition

Sf = V {o-|b|(Mn5),o-|6|(Mcnfc)}
{b: bis a

block, and
0==|b|sfc|

is the unique coarsest partition having M as a union of atoms among all partitions of
Xd obtained by rounds of state splitting from graph Go. Moreover, the partition if can
be obtained by k rounds of splitting from graph Go.

Proof. We first show that if is a partition obtained by state splitting Go- If a is a
1-block then

<r{if\a)= V {/ a | (Mn(w),(7 | t a | (Mcn()a)}
{h:0s|b|==(t}

= {<t>, X d } y V W b a l ( l b }

Now the elements of if are unions of fc-blocks, so if is obtained by k rounds of
state splitting from Go by Lemma 2.6. We now show & > if for any partition 9 of
Xd obtained by splitting Go having M as a union of atoms. For each P e f , either

cM or P^MC. Hence for each block b, either o-w(Pn fc)c o-|b|(Mn2>) or
ni)). Hence

o-|6|(0> 16) > {o-|b|(M n fr), o-|fc|(Mc n fe)}.
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Because Sf is obtained by splitting, we have by Lemma 2.6 and an induction on the
length of b that

Thus

0>> V Wbl(Mnb),crw(Mcnb)} = Sf. D
|6|aO

We can now show

THEOREM 2.8. Any k-block marker M is presented by a graph G obtained from Go by
k rounds of splitting.

Proof. Let G, by Lemma 2.7, be the graph obtained from Go by k rounds of splitting
whose states if give the unique coarsest partition of Xd among all graphs obtained
by splitting Go and having M as a union of states. We must show G presents M
as a marker. Let G' be any graph with states if' that presents M as a marker. The
states of G' are invariant under the automorphism <pM, and since if<if', the states
if of G are invariant as well, In particular, if S € if is such that S^M, then 1S and
2S are contained in the same state P e if. Thus there are parallel edges labeled 1
and 2 from state P to state S in G. Thus graph G presents the marker M. •

3. Minimal markers
In this section we show that any fc-block marker M can be partitioned into a union
of fc-block markers that are minimal with respect to inclusion among all fc-block
markers. These markers are defined by a particular kind of state splitting.

Notation. Denote the union of 1-blocks 1 u 2 by 0.

Definition 3.1. Let M be a marker presented by a graph G and let l / s M be any
subset of M. The U-complete round of state splitting of G is defined as follows:
each state P of G is partitioned into states

{a1Ql,...,akQk,0Ml,...,0M,},

where
(i) M, is a marker state with 0M, s P and M,- n 1/ # 0 ,

(ii) Qj is a state with 1-block a, £. {1,2} or 0Q, 2 P or Qj n 1/ = 0 .
The I/-complete round of splitting gives the finest possible partition of the states
of G subject to the constraint that the set U remain contained in a marker in G'.

Definition 3.2. Let M be a marker presented by a graph G and let U c M be any
subset of M. A round of splitting on G is U-preserving if for each state P of G, the
partition of P given by the splitting is coarser than the partition of P given by the
{/-complete splitting.

A {/-preserving splitting preserves U as a subset of a marker in G'.

Definition 3.3. Let a be a fc-block in Xd. Define the marker ma to be the state
containing a in the graph Gk obtained from graph Go from k rounds of a-complete
splitting.
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LEMMA 3.4. The set of k-blocks in Xd is partitioned by

{ma: a is a k-block in Xd}.

Proof. Suppose b is a fc-block with b<=,ma. We show mb = ma giving that if manmb^
0 , then ma = mb. Let G, be the graph resulting from j rounds of a-complete splitting
applied to Go. The fc-blocks a and b are contained in the same single state of Gh

O^j^s k, since this is true of Gk. Thus the k rounds of splitting leading to Gk are
also b-complete. Thus ma = mh. •

LEMMA 3.5. Let G be a graph presenting marker M and let U Q. M. IfGj is the graph
obtained from G by n rounds of U-complete splitting and G2 is any graph obtained
from G by n rounds of IJ-preserving state splitting, then the partition of Xd given by
the states ofG^ refines the partition of Xd given by the states of G2.

Proof. An easy induction on the number of rounds of splitting. •

We can now prove the main theorem of this section.

THEOREM 3.6. Any k-block marker M is partitioned by

{ma: a is a k-block contained in M}.

Proof. By Theorem 2.8, M is presented by a graph G obtained from Go by fc rounds
of state splitting. For any fc-block ac M, each of the fc rounds of splitting is
a-preserving (because it is M-preserving). By Lemma 3.5, the partition of Xd given
by the graph G' obtained from Go by fc rounds of a-complete splitting refines the
partition of Xd given by the states of G. Thus the state ma of G' is contained in
that state S of G with ac.S. Now a c M , s o S c M , s o m , c M. Now apply Lemma
3.4 to conclude that M is partitioned by {ma: a is a fc-block contained in M}. •

We may introduce a tree SF of markers denned as follows:
(i) the root of 2T is the 0-block marker e.

(ii) the children of a marker m of length fc are the markers

{ma: a is a (fc+l)-block contained in m)

in the partition of m into (fc+l)-block markers.

COROLLARY 3.7. Given a k-block a, there is unique marker minimal with respect to
inclusion among all k-block markers that contain a: namely, ma.

Proof. By Theorem 3.6 any fc-block marker M containing the fc-block a also contains
ma. •

4. Factoring a marker automorphism
We now show that aut (Xd, a) is generated by

{<pm: m is a minimal marker}.

We do this by showing that any marker automorphism <pM factors into minimal
marker automorphisms and then apply Theorem 2.3.

THEOREM 4.1. Let M be an n-block marker for the automorphism <pM ofXd switching
the symbols 1 and 2 in xe Xd when followed in x by any n-block in M.
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(1) The automorphism <pM can be factored into the automorphisms <pm^,..., <Pm,, where
{ m , , . . . , m,} is the partition of M into minimal markers of length n.

(2) The automorphism <pM can be iteratively factored as follows:

where m is a minimal marker of length fc>0 and {mU),..., m(r)} is the partition
of m into minimal markers of length fc + 1. Moreover, the factors

pair-wise commute.

Proof. Statement (1) follows from statement (2) and an induction on the length fc
of m: observe that M = M n e and that statement (2) enables us to work our way
down the tree ST of minimal markers to factor M n e as claimed.

We prove statement (2). Let m^ be one of the n-block minimal markers
{mlt...,m,} that partition Af. Let

be the sequence of minimal markers leading from the root of the tree ?f to the
n-block marker m,. For 1 < fc < n -1, let

be the partition of m(£-\ into minimal markers of length fc.
For 0 < fc < n, let Gk be the graph obtained from Go by fc rounds of m^-complete

splitting. Notice that m(
fc

o, m^2 ' , . . . , m ^ ' all occur as marker states in graph Gk.
Thus Gk+i is obtained from Gk by one round of mk

l)-complete splitting.
Let G'o be any graph obtained from Go by state splitting that presents marker Af.

For O ^ f c < « - 1 , inductively define G'k+1 as the graph obtained from G'k by one
round of M n m(

k ^complete splitting.
We have two sequences of graphs:

Go

G'

We will show by induction on fc that the partition 9"k of Xd given by the states of
G'k refines the partition yk of Xd given by the states of Gk. This is clear for fc = 0
because Sfo = {e} = {Xd}.

Now suppose yk-^yk. We have

and

by the proof of Lemma 2.1. Now gov o-~l^fks ^ov o-~*yk by the inductive
hypothesis. We need only show that if two atoms e a n d / o f %a v o-~l9"k are contained
in the same atom of U"k+\, then e and / are contained in the same atom of 5^fc+1.
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Assume e and/are such atoms of g0 v o-~x3"k. By the definition of mk
l) n M-complete

state splitting, we have that e = \m' and / = 2m', where:
(i) m' is an atom of &"k

(ii) 6m' is contained in an atom p' of if'k
(iii) m'nmk

unM*0.
Now since f?k < 9"k, there are atoms m,pe.Sfk with m'c.m and p' c p. Now 1 m n p 2
l m ' n / = l m V 0 . But 5^k< ^0v cr"1^, so l m c p . Similarly, 2mcp. Also, m n
m^1' 2 m' n mi" n M 5̂  0 . Thus, by the definition of m^1'-complete splitting, 6m is
an atom of Sfk+i. But euf=0m'cdm; in particular e and/are in the same atom
of yk+l. Thus Sfk+, =£ y'k+i, completing the induction.

We now show by induction that the graph G'k presents each of

M n m(
k\ M n mk

2\ ...,Mn m^

as a marker, for 0< fc s n. This is true for k = 0, since M = Mne = Mn mo". Now
suppose that the hypothesis is true for k. As GJc+1 is obtained from G'k by a round
of M n ffjfc11-complete splitting, the graph G'k+l also presents M n m ^ as a marker
(perhaps spread over more states). As Sfk+1 s 9"k+l and as m^! , 1 < i < rk+1, occur
as states of the graph Gk+X, the sets mi'|,, 1 < i < rk+1, occur as unions of states in
the graph G'k+l. Hence the set (M n m^1') n m^+i = M n m{

k
l)

+l occurs as a union of
states in the graph G'k+,, for 1 < i < rk+1. But all states of Git+1 contained in M n m̂ 1*
are marker states. Thus Mr\mk

l)
+l is presented as a marker in graph G'k+i, for

l s i < rt+1. This completes the induction.
That

and that the factors commute follows from Observation (2.5). This completes the
proof of statement (2).

Example 4.2. Minimal marker automorphisms do not always commute even if they
have the same length. For example,

<P2l0<P\60= 1PlOO<PllOO<iP2100

and <p2io^ <Pnoo<P2ioo- The automorphism <p2io<Pio6 has order 4. The automorphism
<Po\o<p2io has infinite order, as can be seen by observing the orbit of the point
(2220)" 1(2)°°. In particular, the size of the orbit is at least n/2. Thus a union of
minimal markers need not be a marker.

5. A minimal marker algorithm
We have already stated an algorithm that computes the minimal marker ma contain-
ing a given fc-block a: namely, perform k rounds of a-complete splitting on the
graph Go and observe the contents of the state containing the fc-block a in the
resulting graph.

The algorithm we present below keeps track of only a few states of the graph
after each round of a-complete splitting. In the algorithm, the elements of the set
M, are the states in the graph G, that partition the marker state m,-! containing the
fc-block a in graph G,_!, for i > 1. The elements of the set Pt are the states in the
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graph G, that partition the state />,_, containing Owl;., in graph G,_,, i > l . In
understanding the algorithm it might be helpful to keep in mind that all of the states
in graph G, are of the form b,b2 • • • b, with b}, e {0,0 ,1 ,2 , . . . , d - 1} .

We present the algorithm for the case d = 3. The only change needed when d > 3
is in the initialization step 0, where the set Px should be set to Px '•=
{6,0,3,4,. ..,d-l}.

ALGORITHM 5.1. Given a k-block a, construct the minimal marker ma containing a.

0. Initialize:

' • • = 1 ,

M0:={e},
m0 := e,

1. Loop:

If 0 occurs in mi-i then:

u := prefix of m{^x preceding the first occurrence of 0.

//" 0 does not occur in m,_i tfien:

u := m,_,

2. M, :={«*: xefl-j}-
3. Bi,- := (fta< marker in Mt such that mina?* 0 .
4. If i = \a\ then:

otherwise

Pi+i'= {0m,}u{lx: JC€ M, and x^ m,}u{2x: x€ M, and x ^ m,}.

5. i:= / + 1 awd go ro 1.

THEOREM 5.2. Algorithm 5.1 correctly computes the minimal marker ma containing
the n-block a.

Proof. Let Gt be the graph obtained from G,_, by one round of a-complete state
splitting, for 1 < i < n. We make two inductive hypotheses:
(i) The sets in Mf are those states in Gf that partition the unique state m,_i in Gj_!

with m i _ i n a ? s 0 ,
(ii) The sets in Pt are those states in G, that partition the unique state p,^ in G,-]

with 0nt(_iSp,_,.
These statements are clear for the case i = 1. We assume (i) and (ii) are true for
1 < i < k — 1, and show that they are true for j = k, where k > 2.

We show (ii). By the application of step 4 when i = k-2 (or by step 0 if k = 2)
we have pk-x = 0mk-2 in graph Gt_,. By hypothesis (i), state mk-2 in graph Gk_2 is
partitioned into the states in Mk_, in graph Gk_i. Thus, in graph Gk^, state pk_t
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has outgoing edges

{lx: xe Affc_,}u{2x: xe Affc_J.

Now mk_,€ Mfc_, is that unique state in graph Gfc_, with m t _ , 0 0 ^ 0 (by step 3
when i = fc — 1). Thus, a round of a-complete splitting applied to Gk-X partitions
state pk-x into the elements of

Pk = {6mk_,}u{lx: xe Mt_, and x^ mfc_i}u{2x: xe Mfc_, and x # mk^l}.

This proves (ii). •
In showing (i), it is helpful to establish the following

Claim. If p is a state of G, and itjUj-t... u, is a string over {0 ,1 , . . . , d -1} where
i +j < k, then the following are equivalent:
(a) For 1 < / s j , either u, £ {1,2} or u'p n a = 0 , where w' is the suffix of u of length

/ - I ,
(b) up occurs as a state of Gj+_,-.
Proof of claim. If (a), then W,M,_, . . . uxp occurs in graph Gi+h 1 < / < J , by the
definition of a-complete splitting and an induction on /.

If not (a), let / be the least integer such that w, £ {1,2} and u'p na^0. Since u'p
occurs as a state in graph Gi+i-i (by (a)=>(b)) and since Gj+,_, was obtained from
Go by rounds of a-complete splitting, u'p is a marker state. Thus Qu'p occurs as a
state of Gi+i. Thus any state in Gi+j which contains up also contains «,-... ul+10u'p.
Therefore (b) is false. This proves the claim.

We show (i). If u := e in step 1 when i = k, then mt_, = pk-i and Mk = Pk (by step
3). But we have already shown that Pk-i is partitioned by a round of a-complete
splitting into the states in Pk.

If u is not set equal to e in step 1, then u = UjUj^ ... w, for some j"> 1, and
mk_! = MjMj-i... Uip where p is, by step 2, some element of Pk-i-j. In fact p = e if
fc — 1 — j = 0 (by step 0), or /> = 6mk_2_, if fc - 1 -j > 0 (by step 4). In either case
p =pk-1-j, the unique state of Gk^i-j with Omfc.j^cpfc.i., (by inductive hypothesis
(ii))-

By inductive hypothesis (ii), the state pk-i-j in graph Gk-^j is partitioned into
states Pfc_, = {q(1>,..., q(r)} in graph Gfc_j. Since mk^ = ujuj-l... Ui/>k_i_,, we have
by the claim ((b)=»(a)) that for 1 > /<y,

either u,g{l,2} or M'ft_i_jno = 0 ,

where w' is the suffix of u of length / — I. Hence we also have

either u,g{l,2} or « ' a ( o na = 0 where g(Oe Pfc_,.

Thus, by the claim ((a)=»(b)), uqU) occurs as a state of Gk. Since {uqw,..., uq(r)}
is a partition of upk_x_j = mk_i, we have that state mfc_x in graph Gk^ is partitioned
into

{«x:xePk_,}

in graph Gk. This proves hypothesis (i) and the theorem. •
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Example 5.3. We apply the algorithm to a — 020.

i Mf m, P,
0 {e} e {s}
1 {0,0} 0 {0,0}
2 {00,00} 00 {00,10,20}
3 {000,010,020} 000 {000,100,200}.

6. An application to the dynamics of cubic polynomials
In this section we describe a construction of Blanchard et al. [BDK] that motivated
this paper. We apologize to those authors for the shortcomings of this description.

If R: C -» C is a rational map then the Fatou set FR is defined by

FR = {z € C: 3 a neighborhood U of z so that the iterates of R,
when restricted to U, form a normal family}.

The Julia set JR is defined to be the complement of FR.
If p is a degree d polynomial over C all of whose critical points escape to infinity

under iteration of p, then

Jp = {ze C: {p"(z)} is a bounded sequence}

and Jp is a Cantor set. As a dynamical system, {Jp,p) is conjugate to the one-sided
d-shift [B].

Blanchard, Devaney and Keen have constructed automorphisms of (Jp,p) for
cubic polynomials p [BKK]. In their construction, an automorphism of (Jp,p) is
obtained by traversing a loop starting and ending at the polynomial p in the space
0*3 of cubic polynomials both of whose critical points escape to infinity. We are not
qualified to delve into the parameterization or description of this space [BH].

For p € 0*3 one can define (we do not) the rate-of-escape function hp: C -»U+

[BH]. The function hp has the properties that
(i) Mp(z)) = 3Mz), *eC

(ii) Jp = {zeC:hp(z) = 0}
(iii) hp is continuous and hp is harmonic outside of Jp.

A polynomial p e 0>3 is chosen by Blanchard et al. [BDK] so that the two critical
points c(1) and c<2) of p are such that

hp(p(cw))<p<hp(p(c^))

and {z: hp{z) = p) is a Jordan curve enclosing Jp. In figure 1, we have labeled the
curve {z: hp{z) = p) as Te. Let

A={z: / l p (z)<p}.

The set p~\De) = {z: hp(z) < jp} has two connected components: A disk Do which
maps by p in a degree 1 manner onto De, and a disk D8 containing c(1) which maps
in a degree 2 manner onto De.

If p(c(1)) is connected to Ye by an arc y along which hp{z) is increasing to
hp(z) = p, then the preimage of this arc divides the interior of Dg into two regions:
t/, and U2. If we denote the interior of Do by Uo, we can coordinatize the Julia
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FIGURE 1

set Jp by <A: Jp -»X3 defined by

where p"(z) e UOn. The map </> is a conjugacy from {Jp,p) to (X3, a).
For each k > 0, we denote each connected component of the set {z: hp(z) = p/3k}

by Du, where u is the set tfi(Jp n Du) in X3. The set w c X3 is actually a union of
fc-blocks since pkDu = De. For example, in figure 2, Dog is the connected component
of {z: /ip(z)<(l/32)p} that contains <A~'(00).

According to Blanchard et al. [BDK], the polynomial peSP3 may be chosen so
that the critical value p(c(1)) is in the same connected component of {z: ftp(z)<
(l/3k~*)p} as iii'\a)zJp where a is any (fc-l)-block in X3, for any fc>0. We
address the essentially combinatorial question: What is the configuration of the
level curves hp(z) = {l/3k)p as a function of the location of the critical value />(cO))?
This question was pointed out to me by Linda Keen and is of interest because
Blanchard, Devaney and Keen have constructed a loop in the space of polynomials
Sf3, parameterized by 0< t < 1, such that:
(i) Po = P\=P

(ii) hPi{pt{c\x))) = p / 3 \ where c\x) is a critical point of p,
(iii) hPi(p,(c\2)))>P
(iv) p,{c(^) winds once around exactly one of the connected components, say Du,

of {z: hPt(z) <p/3k} and winds zero times around all other such components.
In fact, p, is given by p, = i/», ° <p, ° p ° i/̂ r1 where t/>, and ip, are quasi-conformal

homeomorphisms of C and (p, is the identity on Jp, for 0 s (< 1. Hence p,il*, = <p,p
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FIGURE 2

on Jp. Thus </>,: JP-*JP, is an isomorphism for 0 < f < 1. In particular, i/f,: JP->JP is
an automorphism which, it turns out [BDK], in terms of the coordinates given by
if/: JP->X3 is the marker automorphism switching symbols 1 and 2 when followed
by the marker </»(Jp n Du) = u.

In Theorem 6.1, we will show that the markers constructed by Blanchard, Devaney
and Keen, those of the form i/>(/p n Du), where Du is a single connected component
of {z: hp(z)<p/3k} nested within the component of {z: hp(z) < p / 3k~x) containing
p(cw), are exactly the minimal markers.

Now 0*3 is connected and by a separate argument there is a loop in t3'3 that
cyclically permutes the symbols 0, 1, and 2 in Jp. Therefore by Theorems 2.3 and
4.1, any automorphism of the 3-shift X3 may be realized by traversing a loop in $'3.

THEOREM 6.1. Ifpe8P3 is a polynomial with critical points c(1) and c<2), and p>0,
k > 0 are such that

(i) P<hp(p{cm)),
(ii) Te ={z: hp(z) = p} is a Jordan curve,

(iii) p(c(1)) is in the same connected component of {z: hp(z)<p/3k~1} as ip~'(a)cjp

where a is a (k-1)-block in X3 and </»: JP->X3 is the conjugacy defined above,
then for Q<j<k, the connected components of the set

are exactly

{Ds: S is a state in the graph Gj obtained from the graph Go by
j rounds of a-complete splitting}.
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In particular, the connected component of {z: hp(z)< p/3k~1} containing the point
p(cil)) is Dma, and the connected components of Dma n{z: hp(z)< p/3k} are
Dmi,..., Dmr where mx,..., mr are the minimal markers of length k that partition the
marker ma.

Remark. The proof of the theorem does not really depend on the degree d > 3 of
p. We state it for d = 3 only for definiteness and simplicity.

Proof. We induct on k. The case k= 1 is true by the definition of De, Do, and Dg
given above. Supposing the theorem is true for k, we prove it for k+l. Let a be a
fc-block such that p(c(1)) is in the same connected component of {z: hp(z)s p/3k}
as ijj~\a). Let S be any state in Gk. Now

But

f(S) = U {S1: state S' follows state S in Gk},

so the inductive hypothesis gives that the connected components of

p(Ds)n{z:h(z)<p/3k}

are

{Ds: state S' follows state S in Gk}.

The remainder of the proof divides into two cases.

Case 1. c(l)f£Ds. We have D j c D o u D o and c(2)iDo<uDo, so p\Ds is 1-to-l. So
the connected components of Dsn{z: /ip(z)<p/3'c+1} are

{p~l(Ds)nDs: state S' follows state S in Gk}.

But ip(Jpnp~\Ds)n Ds) = Sncr~lS', so this set is

{Ds^-'s'i state S' follows state S in Gk}.

Since p | Ds is 1-to-l, o-| S is 1-to-l also, so no parallel edges begin at state S in Gk.
Thus state S in Gk is completely split into its following edges:

{Sna^S': S' follows S in Gk}.

This completes Case 1.

Case 2. c(1) 6 Ds. Again D s s Do u D5, so c<2) yg D s . Thus p | Z>s is 2-to-l except at c(1).

By the inductive hypothesis i/* ' ( a ) c D m o because ma is the state in graph Gk

with a c ma. By assumption p(c(1)) € Dma. Hence Dma is a connected component of

As cO)e Ds, we have D s c D5, so ScO. Thus S = pk, the unique state in Gk with
0ma c pk. Now p~\DmJr\ Ds has a single connected component D mapping 2-to-l
onto Dma (except at c(1)) because p(cw)eDm<i and cweDs. Now

<1>OP nD) = il>(Jpnp-\Dma) n Ds) = ̂ " ^ ^ 5 = 0ma.

Thus D = Doma. Any other connected component Ds of

p(Ds)n{z:l.p(z)<p/3't}
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is such that p~l(Ds)nDs has two connected components, DU) and D(2), each
mapping 1-to-l onto Ds.. Asp |D ( 0 is 1-to-l onto Ds., cr\il/(JpnDU)) is 1-to-l onto
S'. Now D(i) c Do, so «A(/P n D<0) £ 6. Thus

{*(/„ n D(1)), * ( / , n D(2))} = {IS', 2S'},

so the connected components of

are

{Du: state M in graph Gk+i is partitioned from state S in graph G*}.

This completes Case 2. •
Example 6.2. Figure 2 gives the nesting of the components of {z: hp(z)<p/3k} for

/ip(
g g p

= 0, 1, 2, 3 when/>(c(1)) is the same connected component of {z: /ip(z)sp/32} as
tfi '(02). We list below the corresponding states of Gk for fc = 0, 1, 2, 3.

k States of Gk

0 {e}
1 {0,0}
2 {00,10,20,00,00}
3 {000,100, 200,100,110,120,200,210,220,000,010,020,000,000}

Compare to example (5.3).
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