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Abstract
This article proposes a continuous time mortality model based on calendar years. Mortality rates belong to a mean-
reverting random field indexed by time and age. In order to explain the improvement of life expectancies, the
reversion level of mortality rates is the product of a deterministic function of age and of a decreasing jump-diffusion
process driving the evolution of longevity. We provide a general closed-form expression for survival probabilities
and develop it when the mean reversion level of mortality rates is proportional to a Gompertz–Makeham law. We
develop an econometric estimation method and validate the model on the Belgian population.

1. Introduction
Actuarial valuation involves to consider the uncertainty arising from the evolution of longevity. The
statistical and insurance literature has produced a variety of statistical mortality forecasting models,
such as the Lee and Carter (LC, 1992) model and its variants (e.g., Wilmoth, 1993; Booth et al., 2002,
and Cairns et al., 2006a; Renshaw and Haberman, 2003). To summarize, the log-force of mortality is a
linear combination of one or several age-specific functions and longevity random processes. Among the
existing extensions of the LC model, Renshaw and Haberman (2006) propose to include a cohort effect
for explaining the UK mortality. Whereas Li et al. (2009) introduce in the LC model an age-specific
random variable that accounts for heterogeneity of individuals. We refer the interested reader to the
work of Cairns et al. (2011) for a comparison of six mortality models extending the LC framework.

Statistical approaches and in particular the LC model became a standard in the insurance industry
due to their robustness and reliability. Based on a discrete time framework, statistical models generate
yearly simulated sample paths of mortality rates. Their main drawback is that survival probabilities do
not have a closed-form expression. Premium or solvency capital requirement (SCR) calculations rely
then on computationally intensive Monte-Carlo simulations.

Affine diffusion processes offer an interesting alternative to statistical approaches for modeling the
mortality of a cohort. Directly inspired from the literature about the term structure of interest rates, an
affine model is a trade-off between complexity and computational tractability of pricing and estima-
tion. In this respect, Milevsky and Promislow (2001) were among the firsts to consider mean-reverting
stochastic affine processes for modeling mortality. Luciano and Vigna (2005) develop a jump-diffusion
affine model for modeling rates and show that constant mean-reverting process are not adapted for
describing the mortality. Biffis (2005) exploits the analytical tractability of affine processes to eval-
uate life insurance contracts in a jump-diffusion setup. Cairns et al. (2006b) examine how to model
mortality risks and price mortality-related instruments using adaptations of the arbitrage-free pricing
frameworks for interest rate derivatives. Schrager (2006) develop a multivariate affine model and fit it
to Dutch mortality rates. Luciano and Vigna (2008) calibrate various time homogeneous affine models
to different generations in the UK population and investigate their empirical appropriateness. Hainaut
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and Devolder (2008) propose a cohort model for mortality rates based on a mean-reverting Lévy pro-
cess. Jevtic et al. (2013) study and calibrate a cohort-based model which captures the characteristics of
a mortality surface with a continuous-time factor approach. Chen et al. (2018) adopt a bivariate affine
Gaussian factors model for calculating SCRs of mixed gender portfolios of annuities. Zeddouk and
Devolder (2020) model the force of mortality with mean-reverting affine processes in which the level
of reversion is time-dependent. Xu et al. (2020) develop a multi-cohort mortality model for age-cohort
mortality rates with common factors across cohorts as well as cohort-specific factors. Zhu and Bauer
(2022) propose a Gaussian framework for describing the stochastic evolution of mortality projections
rather than realized mortality rates.

This article proposes a calendar year model in the sense that we associate with each age x, a mortality
process indexed by the calendar time. This contributes to the literature in several directions. Previously
cited papers rely on a single mortality process per cohort of individuals. Such an approach presents a
high level of analytical tractability. Nevertheless, their calibration requires either to observe the mortality
of cohorts till their extinction or to fit them to prospective tables built with a different statistical method.
Another difficulty arises for the joint-modeling of multiple cohorts. The calendar year model remedies
to these issues. In the same manner as a statistical model, parameters are indeed estimated with data
collected on a smaller time window than a cohort model. By construction, the calendar year model
also allows for correlation between cohorts and survival probabilities admit a closed-form expression.
Finally, the calendar year model remains analytically tractable. Our model may be seen as a continuous
extension of the model of Wu and Wang (2018) who propose a Gaussian process regression for mortality
modeling.

The structure of the paper is as follows. Section 2 presents the structure of the calendar year model.
Mortality rates are stochastic processes reverting to a mean level that is the product of an age-specific
function and of process driving the evolution of longevity. The third section focuses on the calculation
of survival probabilities. We discuss the conditions of existence of an equivalent pricing measure and
develop survival probabilities when mortality rates revert to a Gompertz–Makeham function scaled
by the longevity process. In Section 4, we exploit the Gaussian feature of our model to estimate its
parameters. The model is estimated in Section 5 for the Belgian male and female population over the
period 1950–2010. Its predictive capacity is benchmarked to LC and Renshaw–Haberman forecasts from
2011 to 2020. In Section 6, we provide parameter estimates for Belgium, UK, Italy, male and female
populations fitted to data from 1950 up to 2020. Cross-sectional and prospective life expectations are
compared. In the last section, we test the capacity of our model to evaluate a term life annuity and the
related longevity risk.

2. A calendar year model
Let us denote by τt,x, the random remaining lifetime of a x years old individual at time t. We assume that
the death occurs when then integral of mortality rates reaches the realization of an exponential random
variable ε, of parameter 1. Mortality processes are denoted by

(
μt,x

)
t≥0,x≥0

where t ≥ 0 is the calendar
time and x ∈ [0,ω] is the age. They are defined on a probability space �, endowed with their filtration
(Gt)t≥0 and a probability measure P. Contrary to existing affine frameworks, we consider a continuum of
mortality processes for each age x instead of a single mortality process per cohort. The set of mortality
rates is then a random field indexed by time and age, as illustrated in Figure 1.

In this model, the probability that the individual survives up to time s, conditionally to the knowledge
of
(
μt+u,x+u

)
u∈[0,s−t]

, is then equal to

P
(
τt,x ≥ s − t | Gs

) = P

(∫ s−t

0

μt+u,x+udu ≥ ε
)

(2.1)

= exp

(
−
∫ s−t

0

μt+u,x+udu

)
.
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Figure 1. Mortality rates belong to a random field indexed by time and age. The survival probability
P
(
τt,x ≥ s | Gs

)
depends then on a continuum of random variables

(
μt+u,x+u

)
u∈[0,s−t]

.

Figure 2. Comparison of calendar year and cohort approaches. Shaded areas represent the time
window of data needed for statistical inference.

The integral in this last expression is an integral of an infinity of processes indexed by x + u for
u ∈ [0, s − t] as illustrated in Figure 1.

Our model is a calendar year approach in the sense that we associate with each age x, a mortality
process indexed by the calendar time. In an affine framework such as the one of Luciano and Vigna
(2005), mortality rates are defined by cohort and the survival probability depends on a single mortality
process indexed by the cohort age. Figure 2 compares the calendar year and the cohort approaches.
Cohort models usually present a high level of analytical tractability and offer closed-form expression
for survival probabilities. Nevertheless, their calibration requires to observe the mortality of cohorts till
their extinction. For this exercise, we have then to consider mortality rates dating from the first half of
the 19th century. This introduces a bias in the estimation due to the considerable progress made in the
healthcare sector during the last 50 years. An alternative to estimate affine cohort models consists in
fitting them to prospective tables computed with a statistical method. Nevertheless, this approach lacks
of consistency and accumulates biases from the cohort model and from the statistical method used for
the construction of prospective tables. Another issue is the joint-modeling of multiple cohorts. A life
insurer is exposed to mortality/longevity risks of customers belonging to different cohorts. Introducing
correlations between cohorts is a challenging task which reduces the analytical tractability of cohort
models. From a statistical inference point of view, a calendar year approach is more reliable as it is
based on multiple time series of mortality rates. These time series are stationary, and the calendar year
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model can be estimated with data on a smaller time window than a cohort model. In the remainder of
this article, we show that it is still possible to infer analytical expression for survival probabilities subject
to some assumptions on the evolution of mortality. By construction, the correlation between cohorts is
included in the calendar year approach.

In our framework, the death occurs when then integral of mortality processes reaches the realization
of an exponential random variable of parameter 1. An alternative approach consists in assuming that
the death occurs at the first jump of a point process. But the alternative definition (2.1) allows us to
consider mortality processes

(
μt,x

)
t≥0

defined on R instead of R+. This feature makes then possible to
adopt a Gaussian model for

(
μt,x

)
t≥0

leading to closed-form expression of survival probabilities. Notice
that Gaussian frameworks are also used for approximating the dynamic of mortality rates in various
affine cohort models, as in Luciano and Vigna (2005) or Zeddouk and Devolder (2020).

In order to preserve the analytical tractability of further developments, we assume that mortality
processes are Gaussian with a mean-reverting dynamic defined by:

dμt,x = κ
(
θt μ(x) −μt,x

)
dt +�(x)�dWμ

t , (2.2)

where κ ∈R
+ and

(
Wμ

t

)
t≥0

∈R
d is a Brownian motion of dimension d, common to all

(
μt,x

)
x∈[0,ω]

. (θt)t≥0

is a stochastic process driving the evolution of longevity. �(x) = (�1(x), ...,�d(x)) is a volatility vector
where, �k(x) : [0,ω] →R

+ is a continuous function of age for k = 1, ..., d. The mean reversion level of
μt,x is the product of the longevity process (θt)t≥0 and of a continuous functionμ(x) : [0,ω] →R

+, defin-
ing the baseline mortality. This function can be the Gompertz–Makeham law or any other parametric
function. The longevity process is a mean-reverting jump-diffusion defined by:

dθt = α(β(t) − θt) dt + νdWθ

t + dLt , (2.3)

where α ∈R
+ and

(
Wθ

t

)
t≥0

is a Brownian motion independent of
(
Wμ

t

)
t≥0

. The function β(t) : R+ →R
+

is strictly positive and decreasing. In later developments, we assume that β(t) is equal to

β(t) = θ0e−γ t + θ̄
(
1 − e−γ t

)
,

where θ0, θ̄ , and γ ∈R
+. For this choice of β(t), θt converges on average to θ̄ that is lower than θ0. In

order to replicate jumps in mortality caused by pandemics such as the one of COVID-19, we assume
that the longevity risk process is exposed to positive jumps. The jump size, denoted by J, is distributed
according to an exponential distribution of parameter ρ. The moment generating function of jumps is
denoted by:

ψ(ω) =E
(
eωJ
)= ρ

ρ −ω
,ω< ρ.

Shocks hitting the longevity process, occur according to a Poisson process, denoted by (Nt)t≥0, with
an intensity λ and such that

Lt =
Nt∑

k=1

Jk .

The filtration of (θt)t≥0 is denoted by Ht. The union of mortality and longevity filtrations is Ft =
Gt ∨Ht. Notice that we could think to introduce correlation between longevity and mortality processes.
Nevertheless, given the additive structure of μt,x and as (θt)t≥0 is not directly observed, this correla-
tion cannot be estimated. Contrary to an affine framework in which there is one single mortality rate
process per cohort, the calculation of survival probabilities involves an infinity of mortality processes.
Nevertheless, the next section shows that it is still possible to infer closed-form expression for these
probabilities.
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Figure 3. Analytical framework versus simulations in simulations.

3. Survival probabilities
Over the last 20 years, statistical frameworks based on the LC model (1992) became a standard in the
insurance industry. This success is explained by several features such as their statistical robustness and
their ability to explain the evolution of longevity. Their main disadvantage is that survival probabilities
do not admit analytical solution and need to be computed by Monte-Carlo simulations.

In the context of Solvency II, estimating the SCR and the risk margin (RM) for covering adverse
evolution of longevity is therefore computationally intensive. For instance, to forecast future SCR’s
covering the longevity risk of a portfolio of annuities, we have to consider simulations in simulations
(eventually approached by the Longstaff–Schwartz method) to calculate survival probabilities. Figure 3
illustrates this point. Let us imagine that we generate nsim primary scenarios of mortality and evaluate
survival probabilities, noted

(
sp(k)

t,x

)
k=1,...,nsim

in each simulation. In the absence of analytical formula, we
have to simulate for each primary scenario several secondary mortality paths up to time s to estimate
sp(k)

t,x. This is done by computing by the following average:

sp
(k)
t,x = E

(
e− ∫ s−t

0 μt+u,x+udu |Ft

)
≈ 1

nsec. sim.

nsec. sim.∑
j=1

(
exp

(
−

s−t−1∑
u=0

μ(k,j)
t+u,x+u

))
,

where nsec. sim. is the number of secondary simulations and μ(k,j)
t+u,x+u is the simulated mortality force in the

jth secondary scenario of the kth primary scenario (i.e., μ(k,j)
t,x =μ(k)

t,x ). We will see that the calendar year
model studied in this article admits analytical expressions for survival probabilities and then remedies
to this drawback. By construction, conditionally to the sample paths of

(
μt+u,x+u

)
u∈[s,t]

, the survival prob-
ability is provided by Equation (2.1). The unconditional survival probability of a x-year-old individual
at time t up to time s noted spt,x is therefore equal to an expectation:

spt,x = P
(
τt,x ≥ s

)
= E

(
exp

(
−
∫ s−t

0

μt+u,x+udu

)
|Ft

)
.

In order to calculate this expectation, we first develop the analytical expression ofμt+u,x+u conditioned
by Ft, as stated in the next proposition.
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Proposition 3.1. For u ∈ [0,ω− x], the mortality process μt+u,x+u may be developed as follows:

μt+u,x+u = e−κuμt,x+u + κθtμ(x + u)

κ − α

(
e−αu − e−κu

)+�(x + u)�
∫ u

0

e−κ(u−z)dW̃
μ

z (3.1)

+καμ(x + u)

κ − α

∫ u

0

β(t + z)
(
e−α(u−z) − e−κ(u−z)

)
dz + κνμ(x + u)

κ − α

×
∫ u

0

(
e−α(u−z) − e−κ(u−z)

)
dW̃θ

z + κ μ(x + u)

κ − α

∫ u

0

(
e−α(u−z) − e−κ(u−z)

)
dL̃z .

where W̃
μ

z = Wμ

t+z, W̃θ
z = Wθ

t+z are Brownian motions and L̃z = Lt+z is a compound Poisson process.

A key quantity for calculating the survival probability is the integral of μt+u,x+u. The next proposition
states that is may be rewritten as the sum of a deterministic drift, several Brownian integrals, and a jump
component. This result will next be used to infer survival probabilities.

Proposition 3.2. For any ξ ≥ 0, the integral
∫ ξ

0
μt+u,x+udu may be developed as follows:∫ ξ

0

μt+u,x+udu =
∫ ξ

0

e−κuμt,x+udu + κθt

κ − α

∫ ξ

0

μ(x + u)
(
e−αu − e−κu

)
du + κα

(
θ0 − θ̄

)
e−γ t

κ − α

×
∫ ξ

0

μ(x + u)

(
e−γ u − e−αu

α − γ
− e−γ u − e−κu

κ − γ

)
du +

∫ ξ

0

∫ ξ

z

�(x + u)�e−κ(u−z)du dW̃
μ

z

+ καθ̄

κ − α

∫ ξ

0

μ(x + u)

(
1

α

(
1 − e−αu

)− 1

κ

(
1 − e−κu

))
du + κν

κ − α

∫ ξ

0

∫ ξ

z

μ(x + u)

× (
e−α(u−z) − e−κ(u−z)

)
du dW̃θ

z + κ

κ − α

∫ ξ

0

∫ ξ

z

μ(x + u)
(
e−α(u−z) − e−κ(u−z)

)
du dL̃z . (3.2)

We dispose of all the elements to propose a closed-form expression of the survival probability.

Proposition 3.3. The survival probability of a x-year-old individual at time t up to time s, noted spt,x, is
equal to

spt,x = exp

(
− s−tmt,x + 1

2
s−tvt,x + A(0, s − t)

)
(3.3)

where ξmt,x is drift of the integral
∫ ξ

0
μt+u,x+udu, that is

ξmt,x =
∫ ξ

0

e−κuμt,x+udu + κθt

κ − α

∫ ξ

0

μ(x + u)
(
e−αu − e−κu

)
du (3.4)

+κα
(
θ0 − θ̄

)
e−γ t

κ − α

∫ ξ

0

μ(x + u)

(
e−γ u − e−αu

α− γ
− e−γ u − e−κu

κ − γ

)
du

+ καθ̄

κ − α

∫ ξ

0

μ(x + u)

(
1

α

(
1 − e−αu

)− 1

κ

(
1 − e−κu

))
du .

and ξvt,x is the variance of the Brownian part of
∫ ξ

0
μt+u,x+udu :

ξvt,x =
(

κν

κ − α

)2 ∫ ξ

0

(∫ ξ

z

μ(x + u)
(
e−α(u−z) − e−κ(u−z)

)
du

)2

dz (3.5)

+
∫ ξ

0

(∫ ξ

z

�(x + u)e−κ(u−z)du

)� (∫ ξ

z

�(x + u)e−κ(u−z)du

)
dz .
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Whereas the function A(ξ , s − t) solves the following ordinary differential equation (ODE):

∂ξA(ξ , s − t) = −λ
(
ψ

(
− κ

κ − α

∫ s−t

ξ

μ(x + v)
(
e−α(v−ξ ) − e−κ(v−ξ )

)
dv

)
− 1

)
, (3.6)

with the terminal condition A(s − t, s − t) = 0.

For general expressions of μ(x) and�(x), the integrals in Equations (3.4), (3.5), and (3.6) are numer-
ically computable. The ODE (3.6) is also solved numerically by finite difference approximation. For
some model specifications, they can be fully developed. For instance, this is the case when μ(x) follows
a Gompertz–Makeham distribution:

μ(x) = a + bcx , (3.7)

where a ∈R
+ is the constant death rate caused by accidents and bcx with b, c ∈R

+ is proportional to
age. We will see in numerical illustrations that this assumption provides a good fit to mortality tables
with a parsimonious model.

Corollary 3.4. If the function μ(x) defining the level of mean reversion of mortality rates is the
Gompertz–Makeham law (3.7), the drift ξmt,x of

∫ ξ
0
μt+u,x+udu, is

ξmt,x =
∫ ξ

0

e−κuμt,x+udu + κθt

κ − α

( a

α

(
1 − e−αξ)− a

κ

(
1 − e−κξ)) (3.8)

+ κθt

κ − α

(
bcx

(
e(ln c−α)ξ − 1

)
ln c − α

− bcx
(
e(ln c−κ)ξ − 1

)
ln c − κ

)

+
κα
(
θ0 − θ̄

)
e−γ t

(
1

α−γ − 1
κ−γ

)
κ − α

(
a

γ

(
1 − e−εγ )− a

α

(
1 − e−αξ))

+
κα
(
θ0 − θ̄

)
e−γ t

(
1

α−γ − 1
κ−γ

)
κ − α

(
bcx

(
e(ln c−γ )ξ − 1

)
ln c − γ

− bcx
(
e(ln c−α)ξ − 1

)
ln c − α

)

+ καθ̄

κ − α

(
1

α
− 1

κ

)(
aξ + bcx

(
eξ ln c − 1

)
ln c

)

+ καθ̄

κ − α

(
a

κ2

(
1 − e−κξ)+ bcx

(
e(ln c−κ)ξ − 1

)
κ ln c − κ2

)

− καθ̄

κ − α

(
a

α2

(
1 − e−αξ)+ bcx

(
e(ln c−α)ξ − 1

)
α ln c − α2

)
.

Let us introduce the function h(ξ |β1, β2) for ξ ∈R
+ and β1, β2 ∈R:

h(ξ |β1, β2) = ξ + 1

β1 + β2

(
1 − e−(β1+β2)ξ

)
− 1

β2

(
1 − e−β2ξ

)− 1

β1

(
1 − e−β1ξ

)
.
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The variance of
∫ ξ

0
μt+u,x+udu simplifies as follows:

ξvt,x =
(

κν

κ − α

)2 [ a2

α2
h(ξ |α, α)+ a2

κ2
h(ξ |κ , κ)− 2

a2

ακ
h(ξ |α, κ) (3.9)

+
(

bcx

ln c − α

)2

h(ξ |α− ln c, α − ln c)+
(

bcx

ln c − κ

)2

h(ξ |κ − ln c, κ − ln c)

−2
abcx

α(ln c − α)
h(ξ |α, α− ln c)+ 2

abcx

α(ln c − κ)
h(ξ |α, κ − ln c)

+2
abcx

κ(ln c − α)
h(ξ |κ , α − ln c)− 2

abcx

κ(ln c − κ)
h(ξ |κ , κ − ln c)

−2
(bcx)

2

(ln c − α) (ln c − κ)
h(ξ |α− ln c, κ − ln c)

]

+
∫ ξ

0

(∫ ξ

z

�(x + u)e−κ(u−z)du

)� (∫ ξ

z

�(x + u)e−κ(u−z)du

)
dz .

The function A(ξ , s − t) related to the jump parts of θt is solution of

0 = ∂ξA(ξ , s − t) + λ (3.10)

×

⎛⎜⎜⎝ψ
⎛⎜⎜⎝− κ

κ − α

[
a

α

(
1 − e−α(s−t−ξ )

)+ bcx+αξ

ln (c) − α

(
e(s−t)(ln (c)−α) − eξ(ln (c)−α))

− a

κ

(
1 − e−κ(s−t−ξ )

)− bcx+κξ

ln (c) − κ

(
e(s−t)(ln (c)−κ) − eξ(ln (c)−κ))]

⎞⎟⎟⎠−1

⎞⎟⎟⎠ .

In Corollary 3.4, the ODE (3.10) and the last term of Equation (3.9) can be numerically computed
without particular difficulty. Notice that in the absence of jumps and for a simple function �(x), the
variance admits a full analytical solution. For instance, if we consider a two factors model (d = 2) with

�(x)� = (σ0 , σ1eσ2x) ,

where σ0, σ1, σ2 ∈R
+, the double integral in the variance (3.9) becomes∫ ξ

0

(∫ ξ

z

�(x + u)e−κ(u−z)du

)� (∫ ξ

z

�(x + u)e−κ(u−z)du

)
dz

= σ 2
0

κ2

(
ξ − 2

κ

(
1 − e−κξ)+ 1

2κ

(
1 − e−2κξ

))+
(

σ1

σ2 − κ

)2

e2σ2x

×
(

e2σ2ξ

2κ

(
1 − e−2κξ

)− 2eσ2ξ

κ + σ2

(
eσ2ξ − e−κξ)+ 1

2σ2

(
e2σ2ξ − 1

))
.

In this particular case, the spt,x are fully analytical and parameters may be estimated by minimizing
the mean square errors between observed and modeled survival probabilities. We do not explore this
way for calibrating the model. Instead, we opt in the next section for a more complex expression of�(x)
and a higher number of Brownian factors. The calibration will be done by log-likelihood maximization.
But before, we conclude this section by a short discussion about the calculation of survival probabilities
for pricing. Insurers evaluate policies under an equivalent probability measure to P, called the pricing or
risk-neutral measure and denoted here by Q. Roughly speaking, this measure allows to include a safety
loading in insurance premiums, to face adverse evolution of mortality. Our model is defined under the
P-measure, and we need therefore to specify the condition that Q must fulfill to keep similar dynamics of
mortality rates. Given two equivalent measures Q and P, there exists aFt− measurable random variable,

https://doi.org/10.1017/asb.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.2


ASTIN Bulletin 359

dQ
dP

called the Radon–Nikodym derivative which is strictly positive and such that E
(

dQ
dP

|F0

)= 1. The
Radon–Nikodym density process is defined as follows:

ηt =E

(
dQ

dP
|Ft

)
.

The next proposition reminds us the general structure of this Radon–Nikodym density process and
the dynamic of processes under the equivalent measure Q.

Proposition 3.5. Let φμ

t = (
φ
μ

1,t, ..., φμd,t

)
, φθt and φN

t be Ft-adapted square-integrable processes. We also
define

ϒ (x, y)= ln

(
y

f Q
J (x)

fJ(x)

)
where fJ(x) and f Q

J (x) are, respectively, the probability density functions of jumps under the P and Q
measures, such that their ratio is well defined. An equivalent measure Q to P is defined by the following
Radon–Nikodym derivative:

ηt = ημt η
θ

t η
L
t , (3.11)

where

ημt = exp

(
−
∫ t

0

(
φμ

u

)�
dWμ

u − 1

2

∫ t

0

(
φμ

u

)�
φμ

u du

)
,

ηθt = exp

(
−
∫ t

0

φθu dWθ

u − 1

2

∫ t

0

(
φθu
)2

du

)
,

ηL
t = exp

(∫ t

0

ϒ
(
Ju, φN

u

)
dNu −

∫ t

0

λ(φN
u − 1)du

)
.

Under the Q measure, Wμ,Q
t and Wθ ,Q

t defined as:

Wμ,Q
t = Wμ

t +
∫ t

0

φμ

u du

Wθ ,Q
t = Wθ

t +
∫ t

0

φθu du

are Brownian motion. Whereas (Lt)t≥0 is point process with an intensity λQ
t = λφN

t and jumps distributed
as f Q

J (x).

We see from the previous proposition that the dynamics of mortality and longevity processes under
the pricing measure are

dμt,x = κ
(
θt μ(x) −μt,x

)
dt −�(x)�φμ

t dt +�(x)�dWμ,Q
t ,

dθt = α(β(t) − θt) dt − νφθt dt + νdWθ ,Q
t + dLt ,

and Lt is a point process with an intensity λQ
t and marks distributed as f Q

J (x). The structure of the model
can then widely differ under Q from the one under P. This observation motivates us to focus on changes
of measure preserving the features of processes under the pricing measure. From previous results, we
immediately obtain the following corollary:

Corollary 3.6. Let us defineμQ(x) : R+ →R
+ and βQ(t) : R+ →R

+ the baseline mortality function and
the mean reversion level of θt under Q. If processes φμ

t and φθt satisfies the equalities:

κθtμ
Q(x) = �(x)�φμ

t ,

αβQ(t) = νφθt .

and φN
t is constant, then mortality rates have dynamics under Q similar to those under P.
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Figure 4. �(xj) for xj = 40, 60, 80 with σ0 = 1, σ1 = 0.01, and σ2 = 0.09.

If conditions of the previous corollary are fulfilled, we can apply formulas of Proposition 3.3 and
Corollary 3.4 to calculate survival probabilities under the pricing measure. In the next section, we explain
how to calibrate the model under P.

4. Filtering of θ t and parameters estimation
If we remember Equation (2.2), mortality rates oscillate around a level of reversion proportional to the
longevity process, (θt)t≥0. For this process being hidden in practice, we need to guess its most likely
value based on observed mortality rates. Under the assumption of absence of jumps in the dynamics of
(θt)t≥0, we exploit the properties of the multivariate normal distribution to filter the longevity process.
Jumps are next estimated by a simple but robust “peak over threshold” method applied to the filtered
longevity process. Let us now detail each step of the estimation procedure.

The data set contains sampled mortality rates at n + 1 equispaced times {0, 1, ..., n} for p ages(
xj

)
j=1,...p

. The interval between two successive sampling times is equal to 1 year. We assume that we
have as much Brownian motions as observed ages, that is, d = p. We consider a step-wise volatility
vector. For

(
xj

)
j=1,...p

, �(.) is assumed equal to

�(xj) =
(
σ0e

σ1xj × e−(j−k)2/(σ2xj)
2
)

k=1,...,p
j = 1, ..., p (4.1)

where σ0, σ1, and σ2 ∈R
+. With such a specification, the variance of mortality rates increases exponen-

tially with age, whereas the covariance between μt,xj and μt,xk is proportional to a normal kernel valued
at |j − k|. For this choice of�(xj), the covariance of variations of mortality rates for close (resp. distant)
ages is high (resp. low). Figure 4 illustrates the structure of correlation between mortality rates, gener-
ated with a vector �(.) such as defined by Equation (4.1). In this framework, mortality rates are locally
correlated to their close neighborhood which size is determined by the parameter σ2. The covariance
function �(.) is similar to the squared exponential (SE) kernel used by Wu and Wang (2018) who pro-
pose a Gaussian process regression for mortality rates. SE kernels are also commonly used in spatial
statistics, and we refer the reader to Adler (1981) for details.

For non-integer ages, �(x) is set to closest �(xj)-value :

�(x) =
{
�(xj) | j = arg min

k∈{1,...,p}
|x − xk|

}
.

https://doi.org/10.1017/asb.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.2


ASTIN Bulletin 361

In numerical illustrations, we assume that the baseline mortality is a Gompertz–Makeham function.
Nevertheless, we draw the attention of the reader that the estimation procedure is not constrained by
the choice of the volatility and baseline mortality functions. Any other specification may be considered
under the condition that d = p. The next proposition is a key result to filter the longevity process.

Proposition 4.1. Let us denote the vector of mortality rates by μt =
(
μt,x

)
x=x1,...,xp

. In the absence of shock
on the longevity process (Lt = 0, for all t ≥ 0),

(
μt+1, θt+1 | μt, θt

)
is a multivariate normal distribution:((

θt+1

μt+1

)∣∣∣∣∣
(
θt

μt

))
∼ N

((
mθ (t, μt, θt)

mμ(t, μt, θt)

)
,

(
σ 2
θ
σ�

μ,θ

σμ,θ σ
2
μ

))
, (4.2)

where mθ (t, μt, θt) and mμ(t, μt, θt) = (
mμ(t,μt,xj , θt)

)
j=1,...,p

are respectively a scalar and a p-vector
equal to

mθ (t, μt, θt) = e−αθt + θ̄
(
1 − e−α)+ α(θ0 − θ̄ )

α − γ
e−γ t

(
e−γ − e−α) , (4.3)

mμ(t,μt,xj , θt) = e−κμt,xj +
κθtμ(xj) (e−α − e−κ)

κ − α
(4.4)

+μ(xj)
καθ̄

κ − α

(
1

α

(
1 − e−α)− 1

κ

(
1 − e−κ))

+μ(xj)
κα
(
θ0 − θ̄

)
e−γ t

κ − α

(
e−γ − e−α

α− γ
− e−γ − e−κ

κ − γ

)
.

The variance of θt+1 | μt, θt is equal to σ 2
θ

= ν2

2α

(
1 − e−2α

)
. The covariance vector σμ,θ = (

σμ,θ (xj)
)

j=1,...,p
of dimension p − 1 is given by 4.

σμ,θ (xj) = ν2 κμ(xj)

κ − α

(
1

2α

(
1 − e−2α

)− 1

α + κ

(
1 − e−(α+κ))) . (4.5)

The (p − 1) × (p − 1) covariance matrix σ 2
μ = (

σ 2
μ(xj, xk)

)
j,k=1,...,p

contains the following elements:

σ 2
μ
(xj, xk) = �(xj)��(xk)

2κ

(
1 − e−2κ

)+μ(xj)μ(xk)

(
κν

κ − α

)2

(4.6)

×
(

1

2α

(
1 − e−2α

)+ 1

2κ

(
1 − e−2κ

)− 2

α + κ

(
1 − e−(α+κ))) .

If μt+1 and θt+1 would be both observable, we could estimate the model by maximizing the log-
likelihood of the distribution (4.2). In practice, θt+1 is not directly visible and we need to filter it. We
exploit the properties of the multivariate normal distribution to find an estimate, noted θ̂t+1 of θt+1. In
the absence of jump, we know that that the conditional expectation of θt+1 is related to parameters of the
multivariate normal (4.2) as follows:

E
(
θt+1|μt+1, μt, θt

) = mθ (t, μt, θt) + σ�
μ,θ

(
σ 2

μ

)−1 (
μt+1 − mμ(t, μt, θt)

)
,

and its conditional variance is equal to

V
(
θt+1|μt+1

) = σ 2
θ

− σ�
μ,θ

(
σ 2

μ

)−1
σμ,θ .
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Therefore, a natural recursive estimator of θt+1, based on the observation of mortality rates and
previous filtered values of the longevity process is provided by:

θ̂t+1 = E
(
θt+1|μt+1, μt, θ̂t

)
(4.7)

= mθ (t, μt, θ̂t) + σ�
μ,θ

(
σ 2

μ

)−1 (
μt+1 − mμ(t, μt, θ̂t)

)
.

For a given set of parameters, we filter recursively (θt)t≥0 with Equation (4.7). The matrix σ 2
μ is

inverted by singular value decomposition (SVD). We first compute the d × d matrix U,�, and V where
� is diagonal and such that σ 2

μ = U�V�. The inverse is
(
σ 2

μ

)−1 = U�−1V�. After the filtration of θ̂t, the
log-likelihood of the sample of observations, denoted by ln L, is approached by the following sum:

ln L =
n−1∑
t=0

ln
(
fμ
(
μt+1|mμ(t, μt, θ̂t) , σ 2

μ

))
(4.8)

where fμ
(

. | mμ, σ 2
μ

)
is the probability density function of a multivariate normal with mean mμ and

covariance matrix σ 2
μ. Algorithm 1 summarizes the procedure to compute the log-likelihood. For a model

without jump, the parameter estimates are next found by maximizing the log-likelihood (4.8) in which
(θt)t≥0 is replaced by its filtered values

(
θ̂t

)
t≥0

.

Algorithm 1 Procedure to compute the log-likelihood of a sample of observations,
model with no jump.
Initialization :

Set θ̂0 to θ0 and ln L = 0
Main procedure :

For t = 0 to n − 1
1. Filter the longevity process

θ̂t+1 = mθ (t, μt, θ̂t) + σ�
μ,θ

(
σ 2

μ

)−1 (
μt+1 − mμ(t, μt, θ̂t)

)
.

4. Update the log-likelihood

ln L = ln L + ln
(
fμ
(
μt+1|mμ(t, μt, θ̂t) , σ 2

μ

))
End loop on epochs

Proposition 4.1 and Algorithm 1 allow us to fit a model without jump. The estimation by log-
likelihood maximization of the model with jump risk is a challenging task because the multivariate
distribution of (μt, θt) and the conditional distribution θt+1|μt+1, μt, θt are unknown in this case. To
remedy this issue, we employ a peak-over-threshold approach, similar to Hainaut (2022, Chapter 4,
Section 3). This approach is robust and easy to implement. The first stage consists in fitting a Gaussian
model without jumps by log-likelihood maximization and in filtering {θ̂0, θ̂1, ..., θ̂n}. We next consider
the discrete record of n variations {�θ̂1, ...,�θ̂n} where�θ̂k = θ̂k − θ̂k−1 for k = 1, ..., n. A mortality jump
is believed to occur when one of these variations is above a threshold noted g(α). In practice, g(α) is the
α-percentile of the empirical distribution of

(
�θ̂k

)
k=1,...,n

. The time of the kth jump is therefore:

tk = min{tj ∈ {1, ..., n} |�θ̂j ≥ g(α) , j ≥ k} .

and the sample path of (Nt)t≥0 is approached by the following time series:

N(tj) = max{k ∈N | tk ≤ tj} .

The level of confidence α is chosen such that years during which a jump is detected, correspond to
a year during which an abnormal over-mortality is identified (e.g., such as in 2020 due to the COVID
19 pandemics). In numerical illustrations, we set α to 94%. The jump size parameter, ρ, is estimated by
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Table 1. Parameter estimates for the 20–100 years old female and male populations,
1950–2010.

Female Male Female Male
κ 1.320e-01 1.574e-01 α 2.827e+01 1.739e+01
a 2.299e-04 5.890e-04 ν 8.092 3.749
b 1.758e-05 7.133e-05 θ0 1.000 1.000
c 1.113 1.098 θ̄ 5.320e-04 1.602e-03
σ0 2.020e-05 2.865e-05 γ 1.157e-02 8.544e-03
σ1 6.601e-02 6.831e-02 λ 6.667e-02 6.667e-02
σ2 1.016e-02 8.904e-03 ρ 1.650 2.523
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Figure 5. Belgian female and male populations, 1950–2010, 20 to 100 years old. Left plot: estimated
μ(x) function. Right plot: filtered

(
θ̂t

)
t≥0

.

log-likelihood maximization under the assumption that the entire variation �θ̂k is caused by the jump.
This choice is motivated by the difficulty to decompose the yearly variation into Brownian and jump
components.

5. Estimation and validation on the Belgian population
We fit the model to the Belgian female and male populations. The data set1 contains mortality rates
from 1950 to 2010 for the range of ages 20–10 years. The number of Brownian motion is then equal to
d = p = 81. The baseline mortality,μ(x), is the Gompertz–Makeham function. Notice that we can choose
any other baseline function without affecting the performance of the estimation procedure. Indeed, the
Algorithm 1 depends solely on μ(x) and not of its integral. Parameter estimates found by log-likelihood
maximization are reported in Table 1. To avoid identification issues, the parameter θ0 is set to 1. The
instantaneous volatility ν of θt is high, but the speed of mean reversion, α, is also high and drives quickly
back θt to β(t). The mean reversion level β(t) of θ (t) slowly decays from θ0 to a lower value, θ̄ .

Figures 5 presents calibration results. The left plots shows the estimated baseline mortality functions,
μ(x). Male baseline rates are slightly higher than female ones. The right plots present filtered values of

1Source: Human Mortality Database, https://www.mortality.org/.
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Figure 6. Belgian female population, jumps detection by peaks over threshold. The red line is
�θ̂t = θ̂t+1 − θ̂t, and the threshold is the 95% percentile of �θ̂t.
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Figure 7. Belgian male population, jumps detection by peaks over threshold. The red line is
�θ̂t = θ̂t+1 − θ̂t, and the threshold is the 95% percentile of �θ̂t.

longevity process, θ̂t for t ∈ {1950, ..., 2010}. Female and male longevity processes decline on average
over time, but the decrease is slightly more pronounced for women than for men. This is explained by
the fact that the female life expectancy has risen quicker than the one of the male population. Figures 6
and 7 show the variation of female and male longevity processes,�θ̂k and the percentile above which a
jump is supposed to occur. For the female and male populations and a confidence level of α =94%, we
identify four shocks.

In order to evaluate the predictive power of our model, we generate 1000 mortality scenarios over the
period 2011 up to 2020 for ages from 0 up to 105 years. Processesμt,x and θt are simulated by discretizing
Equations (2.2) and (2.3) with a time step equal to 1/300. Figures 8 and 9 display statistics about male
and female mortality forecasts in 2015 and 2019. For men, the gap between average simulated and
observed mortality rates is small. This gap is slightly wider for women, but observed rates are located
in the 5–95% confidence interval of simulated rates. This confirms the ability of our model to generate
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Figure 8. Female population, forecast mortality rates with parameter estimates fitted to the sample
1950–2010, ages from to 20 to 105.
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Figure 9. Male population, forecast mortality rates with parameter estimates fitted to the sample
1950–2010, ages from to 20 to 105.

realistic mortality scenarios. We also notice that 5% and 95% percentiles of mortality rates are positive.
This observation justifies the Gaussian assumption for the dynamics of μt,x and θt.

We benchmark our framework to the LC and the Renshaw–Haberman (RH) models, under the
assumption that the number of deaths follows a Poisson distribution. For this purpose, we use the R
package STMoMo to fit the two first models to Belgian mortality rates from 1950 to 2010 and ages
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Table 2. Mean Absolute Errors (MAE) between average simulated and observed mortality rates
from 2011 to 2020 and for ages from 20 to 105 years.

MAE, female MAE, male

LC RH Model LC RH Model
2011 3.643e-03 3.090e-03 1.458e-03 7.001e-03 4.970e-03 2.823e-03
2012 6.736e-03 7.079e-03 3.303e-03 5.206e-03 5.446e-03 4.197e-03
2013 5.924e-03 6.774e-03 3.281e-03 5.220e-03 4.960e-03 4.519e-03
2014 4.674e-03 4.550e-03 2.589e-03 8.554e-03 4.435e-03 4.648e-03
2015 8.477e-03 9.897e-03 5.642e-03 6.106e-03 4.197e-03 4.296e-03
2016 5.582e-03 6.898e-03 3.945e-03 7.353e-03 4.075e-03 4.404e-03
2017 5.968e-03 8.205e-03 4.671e-03 6.658e-03 6.089e-03 5.528e-03
2018 7.079e-03 9.647e-03 5.613e-03 7.554e-03 3.837e-03 5.155e-03
2019 5.126e-03 7.651e-03 4.494e-03 8.874e-03 4.987e-03 5.512e-03
2020 1.533e-02 1.942e-02 1.113e-02 9.655e-03 1.544e-02 1.023e-02

between 20 and 105 years. Let us recall that in the LC and RH models, the mortality rates are ruled by
the following equations:

lnμx(t) = αx + βxκt

lnμx(t) = αx + ρt−x + β1
x κt

where κt explains the global evolution of mortality and ρt−x represents the cohort effect. Both models
are estimated with a Poisson law for the number of deaths. Next, we forecast 1000 mortality scenarios
over the period 2011–2020 with standard auto-regressive models AR(1) for κt and ρt−x. Table 2 reports
the mean absolute errors (MAE) between observed and average simulated mortality rates. According to
this criterion, our model outperforms the LC and RH approaches from 2011 up to 2019 for the female
population. Knowing that the year 2020 is particular due to the over-mortality caused by the COVID-19,
this is a remarkable performance. For men, our model outperforms the LC framework up to 2019 and
has smaller or similar MAE to the RH model. It is worth to mention that such a good performance of the
calendar year model is obtained with only 14 parameters, whereas the LC and RH models count more
than 100 coefficients to estimate.

Finally, we compare our model to a Gaussian cohort framework in which the mortality rate at time
t, of a x + t years old individual is

μx+t = ax + λx+t ,

dλx+t = κxλx+tdt + σxdWx
t ,

where ax, κx, and σx ∈R
+. The survival probability in this model, tpx =E

(
e− ∫ t

0 μx+sds
)

is equal to

tpx = exp

(
−
(

ax − σ 2
x

2κ2
x

)
t − 1

κx

(
eκxt − 1

) (
λx + σ 2

x

κ2
x

− σ 2
x

4κ2
x

(
eκxt + 1

)))
.

We fit this model to cohorts of ages 30–90 years in 2010. We use the same window of time as for the
LC, RH, and calendar year model: Belgian mortality rates from 1950 to 2010. The 60 sets of parameters
(ax, κx, σx, λx) are estimated by least square minimization between observed and modeled survival of
probabilities. The model for the youngest cohort is estimated with 20 observations, but we wanted to
use data prior to the second world war as sanitary conditions were significantly different from those of
the post-war period. We have also sufficient to have a good fit and forecasts at short term. We next use
the 60 models to compute mortality rates over the period 2011 (ages 31–91 years) to 2020 (ages 40–100
years). The corresponding MAE’s are reported and compared to these obtained with the calendar year
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Table 3. Mean Absolute Errors (MAE) between average simulated and observed
mortality rates from 2011 to 2020 and for 30 to 90 years old cohorts in 2010.

MAE, female MAE, male

Cohort Calendar Cohort Calendar
2011 1.949e-03 7.916e-04 1.643e-03 1.764e-03
2012 3.749e-03 1.302e-03 2.508e-03 1.963e-03
2013 4.630e-03 1.659e-03 3.476e-03 2.915e-03
2014 4.244e-03 2.114e-03 3.293e-03 4.724e-03
2015 8.044e-03 3.131e-03 5.443e-03 4.514e-03
2016 7.873e-03 2.831e-03 5.553e-03 5.363e-03
2017 1.059e-02 3.781e-03 8.298e-03 6.160e-03
2018 1.357e-02 5.125e-03 8.944e-03 6.350e-03
2019 1.482e-02 4.892e-03 1.003e-02 6.971e-03
2020 2.865e-02 1.314e-02 2.326e-02 1.281e-02

model in Table 3. For the female population, the calendar year model leads to a lower MAE from 2011
to 2020. For the male population, cohort and calendar model have a similar predictive power from 2011
to 2013. At longer term, the MAE computed with the calendar year are the longer. Globally, the calendar
year model outperforms the cohort approach. It is also more parsimonious when we need to forecast the
mortality of multiple cohorts (in our illustration, 14 instead of 60×4 parameters).

6. Estimation over 1950–2020 and life expectancy
Table 4 presents parameter estimates for Belgium, UK, and Italy. The model is fitted to mortality rates
of female and male populations from 1950 up to 2020 (2019 for Italy because the 2020 data is not
available yet on HMD) and for ages between 20 and 105 years. As previously, the longevity process is
filtered using a subsample of q = 15 equispaced mortality rates. We observe many similarities between
parameters for UK and Belgium. Some parameters for Italy move away from their Belgian and UK
equivalents, but this is explained by the longer life expectancy in this country.

Tables 5, 6, and 7 report the prospective life expectancy in 2020 (2019 for Italy) at 0, 20, 40, 60, and
80 years old. The columns “Diffusion” and “Jump-Diffusion,” respectively, report expectancies com-
puted within a pure Brownian framework and with the jump-diffusion model. Whatever the considered
population, these life expectancies are very close (less than 1/10 of year). This emphasizes the small
impact of punctual mortality shocks on the evolution of life expectancy. For the year 2019 in Belgium,
the (cross-sectional) female and male life expectancies were, respectively, equal to 84.0 years and 79.6
years. In comparison, the prospective life expectancies at birth calculated increase of 7.39 years for
women and of 4.48 years for men. The life expectancy at birth in the UK in 2018 to 2020 was 79.0
years for males and 82.9 years for females. Our model forecast a higher prospective life expectancy of
4.79 years for men and of 4.27 years for women. In Italy, the male and female life expectancies were
equal to 81.40 and 85.70 years in 2019. In comparison, female and male prospective life expectancies,
respectively, rise by 9.06 and by 6.52 years.

Tables 5, 6, and 7 also report the prospective life expectancies computed with the LC model (column
LC). The expectation at birth predicted by calendar year and LC models are relatively close to each
other. A gap appears for life expectancies at older ages. We explain this gap by the trend of the model
to overestimate mortality rates between 60 and 85 years of age. This overestimation is clearly visible in
Figures 8 and 9 and is partly due to shape of the Makeham–Gompertz law.

https://doi.org/10.1017/asb.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.2


368 Donatien Hainaut

Table 4. Parameter estimates for Belgium, UK, and Italy.

BE UK Italy

Female Male Female Male Female Male
κ 9.651e-02 1.277e-01 8.224e-02 3.182e-02 6.242e-02 7.036e-02
a 1.948e-04 5.691e-04 2.857e-04 4.736e-04 5.744e-06 2.295e-04
b 1.234e-05 6.361e-05 2.936e-05 5.520e-05 1.701e-05 1.709e-04
c 1.118 1.100 1.109 1.108 1.114 1.096
σ0 1.905e-05 2.757e-05 7.837e-06 1.008e-05 6.769e-06 1.268e-05
σ1 6.590e-02 6.790e-02 6.990e-02 7.238e-02 7.402e-02 7.100e-02
σ2 9.844e-03 8.654e-03 1.295e-02 1.290e-02 1.421e-02 1.249e-02
α 1.730e+01 2.127e+01 1.007e+01 1.560e+01 3.430e+01 1.544e+01
ν 7.233 5.428 4.940 9.443 1.826e+01 3.004
θ0 1.000 1.000 1.000 1.000 1.000 1.000
θ̄ 2.402e-04 3.541e-04 1.096e-03 1.808e-02 3.897e-02 1.384e-02
γ 1.174e-02 1.018e-02 1.088e-02 1.335e-02 1.661e-02 1.961e-02
λ 5.714e-02 5.714e-02 7.143e-02 7.143e-02 7.246e-02 7.246e-02
ρ 1.164 2.086 1.819 1.172 1.178 2.525

Table 5. Prospective life expectancies, ex, in 2020 at 0, 20, 40, 60, and 80 years old.

Female, Belgium Male, Belgium

ex, 2020 ex, 2020

Age Diffusion Jump-diffusion LC Diffusion Jump-diffusion LC
0 91.39 91.39 90.13 84.08 84.08 85.54
20 69.04 69.04 70.51 62.17 62.17 65.88
40 46.79 46.78 50.80 40.9 40.89 46.57
60 26.00 25.98 31.82 21.63 21.62 27.83
80 9.15 9.14 13.63 7.36 7.36 11.00

7. Pricing and risk management
In this last section, we test the capacity of our model to evaluate a term life annuity and the related
longevity risk. We consider annuities with three maturities 10, 15, and 20 years. They are valued with
parameter estimates of Table 4 for a 60-year-old Belgian woman and man. The valuation is then done
under the real measure P. The interest rate r is set to 0%. Prices are reported in the columns “0” of
Tables 8 and 9. The female longevity being higher that the male one, annuity prices are slightly more
expensive for women than for men.

As emphasized in Section 3, we do not need to perform simulations in simulations for determining
the distribution of future values as survival probabilities admit a closed-form expression. To illustrate
this, we simulate a sample of 1000 mortality rates over a period of 5 years. Annuities are re-evaluated
in each scenario at the end of each year. Figure 10 shows the histogram of 20 years annuity values after
5 years. Both for male and female, we observe a small left asymmetry.

The average values, the 1% and 99% percentile of annuity values, are reported in columns “1” up to
“5” of Tables 8 and 9. The exposure to the longevity risk is measured by the 99% relative Value at Risk
(VaR), computed as the spread between average and percentile values divided by the average price. This
exposure is higher for men than for women, whatever the duration of the annuity. This is explainable by
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Table 6. Prospective life expectancies, ex, in 2020 at 0, 20, 40, 60, and 80 years old.

Female, UK Male, UK

ex, 2020 ex, 2020

Age Diffusion Jump-diffusion LC Diffusion Jump-diffusion LC
0 87.17 87.16 89.03 83.79 83.79 85.51
20 64.99 64.97 69.44 61.73 61.73 65.98
40 43.31 43.29 49.72 40.33 40.33 46.76
60 23.84 23.81 30.64 21.48 21.47 28.04
80 8.57 8.55 13.00 7.43 7.43 11.08

Table 7. Prospective life expectancies, ex, in 2019 at 0, 20, 40, 60, and 80 years old.

Female, Italy Male, Italy

ex, 2019 ex, 2019

Age Diffusion Jump-diffusion LC Diffusion Jump-diffusion LC
0 94.76 94.75 93.54 87.92 87.91 88.93
20 71.83 71.82 73.76 64.09 64.07 69.09
40 49.1 49.08 53.88 41.61 41.58 49.48
60 27.93 27.91 34.36 22.19 22.16 30.12
80 10.16 10.15 15.42 7.79 7.78 12.30

Table 8. Annuity values and percentiles over the first 5 years, male, Belgium.

Annuity 10 years 0 1 2 3 4 5
1% percentile 8.42 7.56 6.68 5.78 4.85
Price 9.31 8.50 7.65 6.76 5.84 4.90
99% percentile 8.58 7.74 6.84 5.91 4.95
99% relative VaR 0.95% 1.23% 1.28% 1.14% 1.03%

Annuity 15 years 0 1 2 3 4 5

1% percentile 12.49 11.78 11.04 10.25 9.44
Price 13.28 12.66 11.97 11.22 10.42 9.58
99% percentile 12.84 12.18 11.42 10.60 9.73
99% relative VaR 1.41% 1.77% 1.76% 1.67% 1.54%

Annuity 20 years 0 1 2 3 4 5

1% percentile 15.92 15.42 14.89 14.29 13.66
Price 16.56 16.22 15.77 15.23 14.61 13.92
99% percentile 16.52 16.13 15.58 14.97 14.22
99% relative VaR 1.88% 2.32% 2.35% 2.44% 2.16%
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Table 9. Annuity values and percentiles over the first 5 years, female, Belgium.

Annuity 10 years 0 1 2 3 4 5
1% percentile 8.64 7.73 6.80 5.86 4.90
Price 9.583 8.69 7.79 6.85 5.90 4.94
99% percentile 8.75 7.85 6.91 5.94 4.97
99% relative VaR 0.61% 0.81% 0.79% 0.69% 0.63%

Annuity 15 years 0 1 2 3 4 5

1% percentile 13.05 12.24 11.40 10.532 9.65
Price 13.91 13.16 12.36 11.51 10.64 9.73
99% percentile 13.27 12.48 11.63 10.75 9.82
99% relative VaR 0.81% 1.03% 1.04% 1.04% 0.93%

Annuity 20 years 0 1 2 3 4 5

1% percentile 17.00 16.36 15.66 14.92 14.13
Price 17.73 17.18 16.55 15.86 15.10 14.31
99% percentile 17.35 16.76 16.07 15.30 14.48
99% relative VaR 1.00% 1.24% 1.32% 1.32% 1.19%
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Figure 10. Simulated values in 5 years of an annuity with an initial maturity of 20 years. 1000
simulations.

the difference between male and female life expectancies. Women live on average longer than men and
therefore cash flows paid by a term life annuity are less volatile. This drives up prices of female annuity
and decreases the uncertainty related to premature deaths. The VaR for male and female, respectively,
climbs up to 2.44% and 1.32% for a 20-year annuity.

To conclude this section, we analyze the probability of generating negative mortality rates. Tables 10
and 11 report the probability of generating negative mortality rates by ages and time horizons, for the
Belgian female and male populations. We observe that this probability is the higher for younger ages
(ages at which the average mortality is quasi null) but becomes null or neglible after 35 years old. This
confirms the reliability of our model for modeling longevity for the usual annuitants range of ages.

https://doi.org/10.1017/asb.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.2


ASTIN Bulletin 371

Table 10. Probability of generating negative mortality rates by
ages and time horizons. Belgian female population.

Time horizon (years)

Age 1 2 3 4 5
5 0 0.007 0.050 0.091 0.112
20 0 0.050 0.096 0.139 0.163
35 0 0.003 0.016 0.039 0.056
50 0 0 0.001 0.002 0.006
65 0 0 0 0 0
80 0 0 0 0 0
95 0 0 0 0 0

Table 11. Probability of generating negative mortality rates by
ages and time horizons. Belgian male population.

Time horizon (years)

Age 1 2 3 4 5
5 0 0.165 0.17 0.168 0.126
20 0 0 0.008 0.013 0.01
35 0 0 0.001 0.006 0.007
50 0 0 0 0 0
65 0 0 0 0 0
80 0 0 0 0 0
95 0 0 0 0 0

8. Conclusions
This article proposes a calendar year model in which mortality rates revert to a long-term level that is the
product of an age-specific function and of a mean-reverting process driving the evolution of longevity.
This presents several interesting features. Firstly, the estimation is based on past mortality rates observed
on an adjustable time window, in a similar manner to a statistical discrete approach such as the LC model.
Secondly, the model manages correlation between different cohorts. Thirdly, survival probabilities admit
a closed-form expression reducing the computational time. The degree of analytical tractability depends
on assumptions done on age- and volatility-specific functions.

The empirical illustrations emphasize that our model is capable to explain the evolution of
Belgian death rates, and that its predictive power competes with LC, Renshaw–Haberman, and cohort
approaches. In Section 6, the estimation of the model to Belgian, UK, and Italian populations allows us to
compare cross-sectional with prospective life expectancies. These last ones are higher of 4 up to 5 years,
depending on the country. We also see that jumps have a limited impact on prospective life expectancies.
Finally, our model allows us to calculate the forward longevity VaR of 10-, 15-, and 20-year annuities.
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Appendix

Proof of Proposition 3.2. We can check by direct differentiation that the solution to Equation (2.2) is
given by the next expression:

μs,x = e−κ(s−t)μt,x + κμ(x)
∫ s

t

θu e−κ(s−u)du +�(x)�
∫ s

t

e−κ(s−u)dWμ

u . (A1)

In a similar manner, the longevity process (θt)t≥0 is equal to the sum:

θu = e−α(u−t)θt + α

∫ u

t

β(v) e−α(u−v)dv + ν

∫ u

t

e−α(u−v)dWθ

v +
∫ u

t

e−α(u−v)dLv . (A2)
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Using this last equation, the integral of e−κ(s−u)θu that is involved in Equation (A1) of μs,x is developed
as follows:∫ s

t

θu e−κ(s−u)du = θt

∫ s

t

e−α(u−t)−κ(s−u) du + α

∫ s

t

∫ u

t

β(v) e−α(u−v)−κ(s−u) dv du

+ν
∫ s

t

∫ u

t

e−α(u−v)−κ(s−u)dWθ

v du +
∫ s

t

∫ u

t

e−α(u−v)−κ(s−u)dLv du .

Changing the order of integration allows us to rewrite this integral as:∫ s

t

θu e−κ(s−u)du = θt

(
e−α(s−t) − e−κ(s−t)

)
κ − α

+
∫ s

t

αβ(v)
(
e−α(s−v) − e−κ(s−v)

)
κ − α

dv

+
∫ s

t

ν
(
e−α(s−v) − e−κ(s−v)

)
κ − α

dWθ

v +
∫ s

t

(
e−α(s−v) − e−κ(s−v)

)
κ − α

dLv (A3)

Combining this last expression with Equation (A1) leads to

μs,x = e−κ(s−t)μt,x +�(x)�
∫ s

t

e−κ(s−u)dWμ

u (A4)

+κθtμ(x)
(
e−α(s−t) − e−κ(s−t)

)
κ − α

+
∫ s

t

καβ(v)μ(x)
(
e−α(s−v) − e−κ(s−v)

)
κ − α

dv

+
∫ s

t

κνμ(x)
(
e−α(s−v) − e−κ(s−v)

)
κ − α

dWθ

v +
∫ s

t

κ μ(x)
(
e−α(s−v) − e−κ(s−v)

)
κ − α

dLv

Finally, we perform the change of variable v = t + z and obtain Equation (3.1). �
Proof of Proposition 3.3. The survival probability is the expectation of exp

(
− ∫ s−t

0
μt+u,x+udu

)
,

conditionally to Ft. From Equation (3.2), we know that
∫ s−t

0
μt+u,x+udu is the sum of a normal

N( s−tmt,x, s−tvt,x) and of an inhomogeneous Poisson random variable. The survival probability is then the
product of the expectation of a log-normal and of the moment generating function of an inhomogeneous
Poisson distribution:

spt,x = exp

(
− s−tmt,x + 1

2
s−tvt,x

)
×E

(
e− κ

κ−α
∫ s−t

0
∫ s−t

z μ(x+u)(e−α(u−z)−e−κ(u−z))du dL̃z |Ft

)
. (A5)

If we remember that L̃z = Lt+z, the change of variables v = t + z and w = t + u allows us to rewrite
the double integral in this expectation as:∫ s−t

0

∫ s−t

z

μ(x + u)
(
e−α(u−z) − e−κ(u−z)

)
du dL̃z

=
∫ s

t

∫ s

v

μ(x + w − t)
(
e−α(w−v) − e−κ(w−v)

)
dw dLv .

Let us define the process (Xu)t≤u≤s as a double integral:

Xu =
∫ u

t

∫ s

v

μ(x + w − t)
(
e−α(w−v) − e−κ(w−v)

)
dw dLv ,

which has the following infinitesimal dynamic at time u ≥ t:

dXu =
(∫ s

u

μ(x + w − t)
(
e−α(w−u) − e−κ(w−u)

)
dw

)
dLu .

Let us find the moment generating function (mgf) of this process. We momentarily denote it by
g(u, Xu, Lu) =E

(
eωXs |Fu

)
for u ≥ t. As dXu has no deterministic drift and no Brownian part, the function
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g(.) solves the following Itô’s equation:

0 = ∂ug + λ×
(
Eg(u, Xu + J

∫ s

u

μ(x + w − t)
(
e−α(w−u) − e−κ(w−u)

)
dw, Lu + J) − g

)
.

with the terminal condition g(s, Xs, Ls) = eωXs . We do the ansatz that the mgf is an exponential affine
function of state variables:

g(u, Xu, Lu) = exp (A(u, s) + B(u, s)Xu + C(u, s)Lu)

and we infer that B(u, s) =ω, C(u, s) = 0. We find that A(u, s) solves for u ≥ t the following differential
equation:

0 = ∂uA(u, s) + λ

(
ψ

(
ω

∫ s

u

μ(x + w − t)
(
e−α(w−u) − e−κ(w−u)

)
dw

)
− 1

)
where ψ(z) =E

(
ezJ
)

is the mgf of jumps. If we perform the changes of variable v = w − t and ξ = u − t,
then ∂uA(u, s) = ∂ξA(ξ , s − t) and A(ξ , s − t) solves Equation (3.6). By definition and given that Xt = 0,
the expectation in Equation (A5) is rewritten as:

E

(
e− κ

κ−α
∫ s−t

0
∫ s−t

z μ(x+u)(e−α(u−z)−e−κ(u−z))du dL̃z |Ft

)
=E

(
e− κ

κ−α Xs |Ft

)
= eA(0,s−t)

where A(ξ , s − t) solves Equation (3.6) with the terminal condition A(s − t, s − t) = 0. �
Proof of Corollary 3.4. The proof does not present any technical difficulties. We just develop integrals

of Equation (3.4) in which we replace μ(x) by the Gompertz–Makeham function (3.7). We can show
that for any ε ∈R

+ ∫ ξ

0

μ(x + u)e−εudu = a
∫ ξ

0

e−εudu + bcx

∫ ξ

0

e(ln c−ε)udu

= a

ε

(
1 − e−εξ)+ bcx

ln c − ε

(
e(ln c−ε)ξ − 1

)
.

Given that ∫ ξ

0

μ(x + u)du = aξ + bcx

∫ ξ

0

eu ln cdu

= aξ + bcx

ln c

(
eξ ln c − 1

)
we retrieve Equation (3.8). Combining the following relation in a similar manner, we can show that∫ s−t

ξ

μ(x + v)
(
e−α(v−ξ ) − e−κ(v−ξ )

)
dv

= a

α

(
1 − e−α(s−t−ξ )

)+ bcx+αξ

ln (c) − α

(
e(s−t)(ln (c)−α) − eξ(ln (c)−α))

− a

κ

(
1 − e−κ(s−t−ξ )

)− bcx+κξ

ln (c) − κ

(
e(s−t)(ln (c)−κ) − eξ(ln (c)−κ))
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and infer Equation (3.10). If we insert the expression of μ(x) into the variance (3.5), we obtain

ξvt,x =
(

κν

κ − α

)2 ∫ ξ

0

(
a

α

(
1 − e−α(ξ−z)

)+ bcx
(
e(ln c−α)(ξ−z) − 1

)
ln c − α

(A6)

− a

κ

(
1 − e−κ(ξ−z)

)− bcx
(
e(ln c−κ)(ξ−z) − 1

)
ln c − κ

)2

dz

+
∫ ξ

0

(∫ ξ

z

�(x + u)e−κ(u−z)du

)� (∫ ξ

z

�(x + u)e−κ(u−z)du

)
dz .

Rewriting the first integral in the right-hand term as a function of

h(ξ |β1, β2)=
∫ ξ

0

(
1 − e−β1(ξ−z)

) (
1 − e−β2(ξ−z)

)
dz ,

leads to Equation (3.9). �
Proof of Proposition 3.5. We just sketch the proof as it is standard in the literature. We first use the

Itô’s lemma to infer that dημt = −ημt−
(
φμ

t

)�
dWμ

t and dηθt = −φθu dWθ
u . Let (Mt)t≥0 be a jump martingale

defined by:

Mt =
∫ t

0

eϒ(Ju ,φN
u ) − 1 dNu −

∫ t

0

λE
(

eϒ(Ju ,φN
u ) − 1

)
du

=
∫ t

0

eϒ(Ju ,φN
u ) − 1 dNu −

∫ t

0

λ
(
φN

u − 1
)

du ,

given that E
(

eϒ(Ju ,φN
u ) − 1

)
= φN

u − 1. We can check that ηL
t is solution of dηL

t = ηL
t− dMt that emphasizes

that ηL
t− is also martingale.

We can then rewritten ηt as a sum

ηt = 1 −
∫ t

0

ηs−
(
φμ

u

)�
dWμ

u +
∫ t

0

ηs−φ
θ

u dWθ

u +
∫ t

0

ηs−dMu (A7)

revealing that ηt is well a martingale such that η0 = 1. The dynamics of is inferred from the Girsanov
theorem (see Protter, 2004, p. 134). �

Proof of Proposition 4.1. From Equation (A4), we immediately infer that in the absence of jumps,
μt+1,x is the following function of μt,x:

μt+1,x = e−κμt,x + κθtμ(x) (e−α − e−κ)

κ − α
+
∫ t+1

t

καβ(v)μ(x)
(
e−α(t+1−v) − e−κ(t+1−v)

)
κ − α

dv

+
∫ t+1

t

κνμ(x)
(
e−α(t+1−v) − e−κ(t+1−v)

)
κ − α

dWθ

v +�(x)�
∫ t+1

t

e−κ(t+1−u)dWμ

u .

The components of the vector mμ(t, μt, θt) are then equal to

mμ(t,μt,xj , θt) = e−κμt,xj +
κθtμ(xj) (e−α − e−κ)

κ − α

+καμ(x)

κ − α

∫ t+1

t

β(v)
(
e−α(t+1−v) − e−κ(t+1−v)

)
dv .
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As β(v) = θ̄ + (θ0 − θ̄ )e−γ v, a direct calculation allows us to develop the integral:∫ t+1

t

β(v)
(
e−α(t+1−v) − e−κ(t+1−v)

)
dv

= (
θ0 − θ̄

)
e−γ t

(
e−γ − e−α

α− γ
− e−γ − e−κ

κ − γ

)

+θ̄
(

1

α

(
1 − e−α)− 1

κ

(
1 − e−κ)) .

and to obtain Equation (4.4). From Equation (A2) and as Lt = 0, we deduce that

θt+1 = e−αθt + α

∫ t+1

t

β(v) e−α(t+1−v)dv + ν

∫ t+1

t

e−α(t+1−v)dWθ

v

and the expectation of θt+1, conditionally to the information available up to t is equal to.

mθ (t, μt, θt) = e−αθt + α

∫ t+1

t

β(v) e−α(t+1−v)dv .

As the integral
∫ t+1

t
β(v) e−α(t+1−v)dv is equal to∫ t+1

t

β(v) e−α(t+1−v)dv = θ̄

α

(
1 − e−α)+ (θ0 − θ̄ )

α − γ
e−γ t

(
e−γ − e−α) ,

then we obtain Equation (4.3). The variance of theta is

σ 2
θ

= ν2

∫ t+1

t

e−2α(t+1−v)dv = ν2

2α

(
1 − e−2α

)
.

The covariance is a vector σμ,θ = (
σμ,θ (x)

)
x=xl ...xu

that is given by:

σμ,θ (x) = ν2 κμ(x)

κ − α

∫ t+1

t

(
e−2α(t+1−v) − e−(α+κ)(t+1−v)

)
dv

= ν2 κμ(x)

κ − α

(
1

2α

(
1 − e−2α

)− 1

α + κ

(
1 − e−(α+κ))) .

The covariance matrix of mortality rates contains the following elements:

σ 2
μ
(xj, xk) =μ(xj)μ(xk)

(
κν

κ − α

)2 ∫ t+1

t

(
e−α(t+1−v) − e−κ(t+1−v)

)2
dv

+�(xj)
��(xk)

∫ t+1

t

e−2κ(t+1−v)dv

=μ(xj)μ(xk)

(
κν

κ − α

)2 ( 1

2α

(
1 − e−2α

)+ 1

2κ

(
1 − e−2κ

)− 2

α + κ

(
1 − e−(α+κ)))

+ �(xj)��(xk)

2κ

(
1 − e−2κ

)
�
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