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Abstract

Motivated by some earlier Diophantine works on triangular numbers by Ljunggren and Cassels, we
consider similar problems for general polygonal numbers.
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1. Introduction and the main results

Ljunggren [15] and Cassels [8] proved that the only triangular numbers that are the
squares of triangular numbers are 0, 1 and 36. In other words, using different methods
they resolved the Diophantine equation

x(x + 1)
2

=

(y(y + 1)
2

)2
(1.1)

for integers x and y (see Chapter 28 of the classical book by Mordell [17]). As

1 + 2 + · · · + x =
x(x + 1)

2
and 13 + 23 + · · · + y3 =

(y(y + 1)
2

)2
,

we can give another interpretation of (1.1) related to the common values of power
sums. For a generalisation of this problem we refer to [3, 6].

Triangular numbers are a well-known special case of polygonal numbers. Let

Polmx =
x ((m − 2)x + 4 − m)

2
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be the polygonal numbers with integral parameters x ≥ 1 and m ≥ 3. These figurate
numbers and their relatives including pyramidal numbers have an extensive literature,
see the monographs of Dickson [10] and Deza and Deza [9]. For some recent
Diophantine results on this topic we refer to [7, 13, 14, 18].

The purpose of our paper is to generalise the problem mentioned above. Let m, n
be fixed integers with m ≥ 3, n ≥ 3. Now consider the equation

Polmx = (Polny)k (1.2)

for the unknown integers x > 1, y > 1 and k ≥ 2.

T 1.1. Suppose that m , 4. Then (1.2) possesses only finitely many solutions
in x > 1, y > 1, and k ≥ 2. Further, max{x, y, k} < c1, where c1 is an effectively
computable constant depending on m and n.

For m = 4, we have Pol4x = x2, so our problem leads to a trivial equation. For (very)
small values of m we will resolve (1.2). More precisely, we prove the following
theorem.

T 1.2. For m = 3, 5, 6, 8 and 20, all the solutions of the equation

Polmx = zk

for positive integers x, z, k with x > 1, z > 1 and k ≥ 3 are

(m, x, z, k) = (8, 2, 2, 3), (20, 8, 2, 9), (20, 8, 8, 3).

Further, for k = 2 and 3 ≤ m, n ≤ 12, m , 4, the solutions (x, y) to (1.2) are

(m, n, x, y) = (3, 3, 8, 3), (3, 5, 49, 5), (3, 6, 8, 2), (3, 9, 288, 8),

(3, 10, 9800, 42), (6, 5, 25, 5), (7, 4, 6, 3), (7, 9, 6, 2), (8, 3, 9, 5),

(8, 6, 9, 3), (9, 3, 2, 2), (9, 3, 49, 13), (9, 6, 49, 7), (9, 12, 18, 3),

(11, 3, 81, 18), (12, 3, 25, 10), (12, 7, 25, 5), (12, 8, 4, 2).

It would be preferable to extend the previous theorem for larger values of m, as in
the case of pyramidal numbers; see for example [11] and part II of the same paper, in
preparation by the same authors. However, this seems well beyond the reach of our
techniques; see the remark after the proof of Theorem 1.2.

2. Auxiliary results

In this section, we give some results from the modern theory of Diophantine
equations.

L 2.1. Let f (X) be a polynomial with rational coefficients and suppose that it
has at least two distinct zeros in the field of complex numbers C. Then the equation
f (x) = yk for integers x, |y| > 1 and k ≥ 2 implies k <C1, where C1 is an effectively
computable constant depending on the parameters of f .

P. See [19]. �
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Our next lemma is a special case of a general theorem concerning superelliptic
equations proved by Brindza [5].

L 2.2. Let f (X) be a polynomial with rational coefficients and k be a fixed integer
with k ≥ 3. Assume that f (X) possesses at least two simple zeros (over C). Then,
the equation f (x) = yk for integers x and y implies max{|x|, |y|} <C2, where C2 is an
effectively computable constant depending on the parameters of f and k.

P. See [5]. �

Another corollary of Brindza’s result [5] is as follows.

L 2.3. Let f (X) be a polynomial with rational coefficients and suppose that it
has at least three simple zeros (over C). Then the hyperelliptic equation f (x) = y2

for integers x and y implies max{|x|, |y|} <C3, where C3 is an effectively computable
constant depending on the parameters of f .

To prove our second theorem we need the following lemma.

L 2.4. If m, t, α, β, y and n are nonnegative integers with n ≥ 3 and y ≥ 1, then
the only solutions to the equation

m(m + 2t) = 2α3βyn

are those with m ∈ {2t, 2t±1, 3 · 2t, 2t±3}.

P. The proof of this auxiliary result is based on the modular method, see [1]. For
similar results on the product of two consecutive integers, we refer to [2, 12]. �

3. Proofs

P  T 1.1. Let m, n be fixed rational integers with m ≥ 3, n ≥ 3 and
m , 4. For y > 1, the polygonal number Polny > 1, and for m , 4, Polmx is a quadratic
polynomial in x with rational coefficients and two distinct zeros. Thus, Lemma 2.1
gives an effective upper bound for the exponent k depending only on m. In the
following, we can fix k and first suppose that k ≥ 3. From Lemma 2.2 we have an
upper bound for max{x, Polny} depending only on m and this yields that max{x, y} is
bounded by an effectively computable constant depending on m and n. If k = 2, then

(2(m − 2)x + 4 − m)2 = 8(m − 2)
(y((n − 2)y + 4 − n)

2

)2
+ (4 − m)2,

and, by Lemma 2.3, it is enough to guarantee that the quartic polynomial (in Y)

8(m − 2)
(Y((n − 2)Y + 4 − n)

2

)2
+ (4 − m)2 (3.1)

has only simple zeros, or equivalently, its discriminant is a nonzero number for every
value of m ≥ 3, m , 4 and n ≥ 3. An easy calculation shows that the discriminant of
this polynomial is

256(n − 2)4(m − 2)3(m − 4)4D(m, n),
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where

D(m, n) = mn4 − 2n4 − 16mn3 + 8m2n2 − 32nm2 + 32m2 + 32mn2 + 32n3 − 64n2.

We can check that

D(m, n) = n3(m − 2)(n − 16) + 8nm2(n − 4) + 32n2(m − 2) + 32m2.

For n ≥ 16 and m ≥ 3, D(m, n) is positive. Further, if n < 16, then the equation
D(m, n) = 0 gives m = n = 4. Thus, we have proved that the discriminant of (3.1) is
nonzero for every m ≥ 3, m , 4, and n ≥ 3. �

P  T 1.2. From the equation

Polmx = zk

we have
((m − 2)x)((m − 2)x + 4 − m) = 2(m − 2)zk.

Now we can apply Lemma 2.4 to this equation when

2(m − 2) = 2α3β and |m − 4| = 2t,

that is, m = 3, 5, 6, 8 and 20 and t = 0, 0, 1, 2 and 4, respectively. Indeed, for m = 3, 5
we have t = 0. For m > 5, our system of equations is

m − 2 = 2α−13β and m − 4 = 24,

and it leads to the equation
2α−23β − 2t−1 = 1.

If t = 1, then α = 3, β = 0. For t > 1, we obtain α = 2 and thus we have to solve the
equation

3β − 2t−1 = 1. (3.2)

Applying a cannon to kill a fly, by Mihailescu’s result [16] on the solution of Catalan’s
conjecture, we get that all the solutions to (3.2) are (β, t) = (1, 2), (2, 4). Lemma 2.4
gives the following (essentially two) solutions

m = 8, x = z = 2, k = 3,

m = 20, x = 8, z = 2, k = 9,

and
m = 20, x = z = 8, k = 3.

For k = 2 and small values of m and n, we can find the integral points on the
corresponding quartic hyperelliptic curve using MAGMA [4], with the subroutine
IntegralQuarticPoints. �
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R. For general m, the equation Polmx = zk leads to several binomial Thue
equations of the type

Axk
1 − Bxk

2 = C

in the unknown integers k ≥ 3, x1, x2. As the original problem has a solution x = z = 1,
we cannot apply the local method to all of these Thue equations. The presence of
this trivial solution means that the application of the modular method is also a great
challenge.
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