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M O N O I D KERNELS AND P R O F I N I T E TOPOLOGIES ON
T H E F R E E ABELIAN G R O U P

BENJAMIN STEINBERG

To each pseudovariety of Abelian groups residually containing the integers, there is
naturally associated a profinite topology on any finite rank free Abelian group. We
show in this paper that if the pseudovariety in question has a decidable membership
problem, then one can effectively compute membership in the closure of a subgroup
and, more generally, in the closure of a rational subset of such a free Abelian group.
Several applications to monoid kernels and finite monoid theory are discussed.

1. INTRODUCTION

In the early 1990's, the Rhodes' type II conjecture was positively answered by Ash [2]
and independently by Ribes and Zalesskii [10]. The type II submonoid, or G-kernel, of
a finite monoid is the set of all elements which relate to 1 under any relational morphism
with a finite group. Equivalently, an element is of type II if 1 is in the closure of a certain
rational language associated to that element in the profinite topology on a free group.
The approach of Ribes and Zalesskii was based on calculating the profinite closure of a
rational subset of a free group. They were also able to use this approach to calculate
the Gp-kernel of a finite monoid. In both cases, it turns out the the closure of a rational
subset of the free group in the appropriate profinite topology is again rational. See [7]
for a survey of the type II theorem and its motivation.

Delgado [4], taking the proof of Ribes and Zalesskii as a model, computed the Gcom-
kernel of a monoid by determining the closure of a rational subset of the free Abelian
group in the profinite topology. Again, the closure of a rational subset was rational.
In this paper, we give for any pseudovariety H of Abelian groups, having decidable
membership problem and which generates the variety of Abelian groups, an algorithm
for computing the pro-H closure of a rational subset of a finite rank free Abelian group.
Again the closure is rational. While this is a problem of independent interest, we show as
a consequence that the H-kernel, H-liftable fc-tuples, and H-pointlike pairs are decidable
for any pseudovariety of Abelian groups H with decidable membership problem. In
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392 B. Steinberg [2]

addition, we obtain several join results for pseudovarieties of monoids. The key step is
to first compute the closure of a subgroup. The algorithm is based on linear algebra and
the fundamental theorem of finitely generated Abelian groups. The ideas of this proof
arose from Delgado's [4] and the author's [14] where a large number of cases is handled
and, in fact, most of the arguments are similar to those used there.

2. PROFINITE TOPOLOGIES

A pseudovariety of monoids is a class V of finite monoids closed under the operations
of taking finite products, submonoids, and homomorphic images. Examples include the
pseudovarieties of finite commutative monoids, finite groups, and finite Abelian groups.
In this paper, we shall mostly be concerned with pseudovarieties of Abelian groups. We
shall use the symbol H exclusively for pseudovarieties of groups. Let G be any group.
We now define the pro-H topology on G. One takes as a basis of neighbourhoods of 1 all
normal subgroups N with G/N 6 H and makes G a topological group in the standard
way. We say that G is residually in H if {1} is closed or, equivalently, the topology is
Hausdorff. For example, a group is residually finite if and only if it is residually in G,
where G denotes the pseudovariety of all finite groups. This topology has the following
alternative description. Let g € G. Then we define

r(g) = min{[G : N] | G/N € H, g £ N}

with the convention that if no such N exists, then r(g) — oo. Then the H-pseudonorm
is defined by

M H = 2-r ( 9 )

and satisfies Igiffeln ^ max{l<?ilH > l#2|H}- One then defines an ultrametric ecart by

and one can easily check that the pro-H topology is defined by this ecart. Furthermore,
the topology is metric (and the pseudonorm a true norm) if and only if G is residually in
H. For example, if G = Z, and H is the pseudovariety of p-groups, this topology is just
the usual p-adic topology and the above norm is equivalent to the usual p-adic norm. In
the cases of interest, the topology will indeed be metric. We use c l H (^ ) to denote the
closure of a subset X C G in this topology. The following elementary results are due to
Hall [6].

PROPOSITION 2 . 1 . Let H be a pseudovariety of groups, G a group, and H a
subgroup.

1. H is open if and onlyifG/HG € H, where HG = f| g~xHg or, equivalently,
g€G

if H is closed of finite index.

https://doi.org/10.1017/S0004972700036571 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036571


[3] Monoid kernels and profinite topologies 393

2. clH(H)= PI K.
open KDH

If G = FG(vl), the free group on A, then C1H({1}) is the verbal subgroup (invariant
under all endomorphisms) defining the variety generated by H. We use FGH(^4) to denote
the relatively free group FG(>1) /C1H({1}) in this variety. For example, if H = Gcom

the pseudovariety of Abelian groups, then C1H({1}) is the commutator subgroup and
FGGcon,(^) = ®A&, the free Abelian group generated by A. More generally, if G is any
group, C1H({1}) is a normal subgroup and Gn = G / C 1 H ( { 1 } ) is the maximal, residually
H image of G- One can of course take GH, the profinite completion of G in this topology,
and in this case, G-a is the image of G under the natural map. However, we shall have
no need to consider profinite completions in this paper.

PROPOSITION 2 . 2 . LetH be a pseudovariety and G a group. Then the natural
projection ip : G —>• G H is continuous, open, and closed, where both groups are given the
pro-H topology.

PROOF: That the map is open and continuous follows easily from the standard
isomorphism theorems. To see that the map is closed, let X C G be closed. Let y 6
dn(Xip) and j g G b e such that ip(g) = y. Let N be an open normal subgroup of G.
Then N is closed as well, so C1H({1}) Q N. Also, K = <p(N) is an open normal subgroup
of GH- SO ip(Ng) n <p(X) — Ky D (f(X) / 0. Since N contains ker^>, we have that
Ng D X ^ 0. So g e c l H (^ ) = X and thus, y = <p(g) e ip(X) as desired. D

3. SUPERNATURAL NUMBERS AND PSEUDOVARIETIES OF ABELIAN GROUPS

By the fundamental theorem of finitely generated Abelian groups, a pseudovariety of
Abelian groups is completely determined by its cyclic members. A supernatural number is
a formal product Yl PUp where 0 ^ np ^ oo. There are evident notions for supernatural

p prime

numbers of divides, lcm (least common multiple), and gcd (greatest common divisor). We
use N for the set of supernatural numbers, which is actually a complete lattice, ordered
by the relation divides. We want to establish a lattice isomorphism between N and the
lattice of pseudovarieties of Abelian groups. In this paper, we shall use N to denote
the positive integers. Being a subset of N, N is also a lattice under the relation divides
(although no longer a complete lattice). We shall call a subset I C N a filter 'dm e X,
and n \ m implies that n € X, and n,m € X implies lcm(n, m) € X. The set of filters is
a complete lattice ordered by inclusion.

PROPOSITION 3 . 1 . Tiere is a lattice isomorphism between N and the set of
Biters of N.

PROOF: TO each supernatural number n, one can associate the filter N* of all natural
numbers which divide it. Conversely, to any filter X, one can associate lcm(AT). It is
easy to see that these associations are inverse lattice homomorphisms. U
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We call a supernatural number TT recursive if A^ is a recursive set of natural numbers.
Note that if n € N, then TV,, is finite and hence recursive.

PROPOSITION 3 . 2 . There is a lattice isomorphism between the set of Biters
of N and the lattice of pseudovarieties of Abelian groups. Furthermore, a filter N is
recursive if and only if the corresponding pseudovariety of Abelian groups has decidable
membership problem.

P R O O F : Let H be a pseudovariety of Abelian groups. Then we let TVH = {n |
Z /nZ € H } . We show that this is a filter. Indeed, if m € -/VH and n \ m, then
Z/mZ e H and m/n generates a cyclic subgroup of Z/mZ of order n, so n € NH. If
n,m e Nn, then (n/gcd(n,m)) 6 A^H and so (n/gcd(n,m))m — lcm(n,m) is in NH by
the Chinese remainder theorem. Conversely, if N is a filter, we can associate to it the
pseudovariety HN — (Z/nZ | n G N). It is easy to show that these maps are inverse
lattice homomorphisms using standard facts about products, subgroups, and quotients of
cyclic groups. Suppose N is a recursive filter. Then if G is a finite Abelian group, we can
effectively, from its multiplication table, decompose it into a product of cyclic groups.
Since N is recursive, we can check which of these are in HN. Conversely, if H has
decidable membership, one can check if n € A^H by just checking whether Z/nZ s H. D

We have thus established a lattice isomorphism between N and the lattice of pseudo-
varieties of Abelian groups. If n € N, we use H^ to represent the pseudovariety of all finite
Abelian groups whose torsion coefficients divide TT. Conversely, to any pseudovariety H
of Abelian groups we can associate TTH = lcm({n | Z/nZ € H}).

COROLLARY 3 . 3 . Tie associations n H-> H,r and H H-> TTH are inverse lattice
isomorphisms. Furthermore, n is recursive if and only if HT has decidable membership
problem.

Normally, one uses supernatural numbers to represent orders of procyclic groups [5].
One can show that if Z is given the pro-H topology, then TTH is the order of the pro-H
completion ZH-

PROPOSITION 3 . 4 . Let TT £ N and let A be a set of cardinality n. If TT e N,
then FGH<t(>l) = ®A(Z/TTZ). Otherwise, FGHl(^4) = FGGcom(^) = ®AZ.

PROOF: The first statement is obvious since if TT € N, then any group in the variety
generated by H satisfies xy — yx and x" = 1 and hence, is a Z/wZ-module. The second
statement follows upon noting that TT has arbitrarily large divisors. So if (o i , . . . ,an) €
©nZ, then by choosing a divisor m of TT with m > a, all i, we see that (o i , . . . ,an) $
m(©nZ), but ©nZ/m(©nZ) e H , . D

Thus we see that if n S N, then Hn is locally finite (that is, has a free object
generated by any finite set), that the pro-H topology on that free object is discrete, and
that membership in H is trivially decidable. Hence, all questions which we shall address
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in this paper are either uninteresting or trivial for such pseudovarieties. So for the rest

of this paper, we shall assume TT is an "infinite" supernatural number.

4. C L O S U R E S O F S U B G R O U P S

Let A be a finite set of cardinality n, TT an infinite supernatural number, and H = Hw.

We now describe the closure of a subgroup of F = ®A^ in the pro-H topology. The proof

scheme generalises techniques of the author 's [14]. If G is a finitely generated Abelian

group, we use Gt o r for its torsion subgroup. We shall use frequently that given a finite

presentation of G, one can effectively find Gtor- See [9] for a proof of the fundamental

theorem of finitely generated Abelian groups which shows that everything can be done

effectively. In this paper, we shall write Abelian groups additively.

LEMMA 4 . 1 . Suppose that H C F is closed. Then {F/H)tor e H .

P R O O F : Since H = f] K, F/H C ]J F/K. Let g = (gK) be an element
open KOH open KDH

or. Then

ord(<7) = lcm({ord((?*•) | open / f D H}) < oo

and divides TT, since each F/K E H . D

Now, we work towards the converse of this result.

LEMMA 4 . 2 . Suppose H C F is a subgroup with {F/H\0I 6 H and x 6 F\H.

Then there is an open subgroup KDH such that x £ K.

PROOF: By the fundamental theorem of finitely generated Abelian groups, there are

a basis {ei,e^,. . . en} for F and positive integers o i , . . . ,a* such that {ci\e\,... , a/te^} is

a basis for H. Since (F/H) t o r € H, the â  | TT. If x = &iei + 1- bnen with bt > 0 some

i > k, choose m > bi such that m \ TT. This can be done since n is infinite. Then

K = {axex,... ,akek,ek+i,... ,ei-i,mei,ei+i,... ,en)

is as desired. Otherwise, if there is no such index i, then

K = (aiei,... , a k e k , e k + i , . . . ,en)

works. D

COROLLARY 4 . 3 . Suppose H C. F and n is an inGnite supernatural number.

Then H is closed if and only if (F/H)t0T € H . In particular, if -n is recursive, it is

decidable whether a subgroup is closed (given a Gnite generating set as input).

P R O O F : We have already seen that the condition is necessary for being closed. But

the above lemma shows that it is sufficient, since any element of F \ H can be separated

from H by an open subgroup. The last statement follows since one can effectively compute

https://doi.org/10.1017/S0004972700036571 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036571


396 B. Steinberg [6]

the torsion coefficients of F/H via row and column operations applied to the matrix whose
columns are the generators of H. D

We now compute the closure of a subgroup H of F in the pro-H topology. The
procedure is as follows: let e\,... ,en and a i , . . . ,ak be as in the proof of Lemma 4.2.
Then the closure of H is the subgroup obtained by replacing each Oj with 6j = gcd(aj, w).
Of course, we must show that this works.

PROPOSITION 4 . 4 . Let F = ®AZ with basis {ei,... ,en} and let

H = (aid,..., akek). For each i, let bt = gcd(aj, TT). T i en c l H ( # ) = ( M i , . . . , bkek).

P R O O F : By the above corollary, K = (b\e\,... ,bkek) is closed and clearly, H C K.
To show the converse, by continuity of addition, it suffices to show that bi&i € c l H (# )
for each i. Let ip : F -> G Gilbe & homomorphism. We show that (p(biei) € ^((ajej)).
The result will then follow. If ip(ei) = 0, we are done. Otherwise (<p{ei)) = TL/mTL where
rn | ir. Let a* = m ^ with gcd(mi,7r) — 1. Then mj is relatively prime to m, so there
exists di such that dirrii = 1 mod m. So

and thus (p(biej) € <p((ajej)) as desired. D

THEOREM 4 . 5 . Let A be a Gnite set, F = @AL, TT a recursive, infinite supernat-

ural number, H = H^, and X C F a finite subset. Then one can effectively compute a
basis for and membership in c l H ( (^ ) ) -

PROOF: Let H = (X). By the proof of the fundamental theorem of finitely gen-
erated Abelian groups, we can effectively find a basis { e ^ . . . ,en} for F and positive
integers a\,... ,ak such that {a ie i , . . . , akek} is a basis for H. Furthermore, we can ef-
fectively change between this basis and the standard basis. Since TX is recursive and we
can effectively factor the ai, we can effectively compute each of the b{ = gcd(aj,7r). So
by the above proposition, {biex,... ,bnen} is a basis for C\H(H). We can then effectively
write this basis in terms of the original basis if we so desire. To check whether an ele-
ment x € F is in CIH (H), we write it as x = C\e\ + • • • + c^e,, and determine if b{ | c\ for
1 ^ i ^ k and c< = 0 for i > k. D

Next we show that if H is a proper subpseudovariety of Gcom corresponding to an
infinite supernatural number, then in general for H-closed subgroups H and K of F,
H + K is not closed. Indeed, let n be an integer such that Z/nZ ^ H. Let F = Z © Z,
H = ((1,0)>, and K = ((l,n)>. Then since F/H = F/K = Z, by Corollary 4.3, H and
K are closed. But

So F/(H + K) - ij/nL $ H. Hence H + K is not closed, again by Corollary 4.3. Thus
the approach of [4] cannot immediately be generalised the way [11] generalises [10].
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COROLLARY 4 . 6 . Let A be a finite set, X a finite collection of reduced words

over A, IT a recursive, infinite supernatural number, and H = H^. T ien there is an

algorithm to compute membership in c l H ( ( ^ ) ) C FG(A).

P R O O F : Let H = (X) and <p : FG(.4) ->• FGGcom(-4) be the canonical projection.

We claim w € C 1 H ( # ) if and only if <p{w) € c\n(ip(H)). To see this, first note that

Proposition 2.2 implies that cln(<p(H)) = <p{clH{H)). So we just need to show that if

tp(w) e cln((p(H)), then w € C 1 H ( # ) . Let N be an open normal subgroup of FG(A).

Then (p(N) is a normal open subgroup of FGG C O D 1 ( -4) and so ip(Nw) n <p(H) ^ 0. Since

N contains ker tp, it follow that Nw n H ^ 0 and so, w € CIH (H) • D

See [8, 15] for some consequences of this result, although subsequent results will

subsume these applications.

5. C L O S U R E S O F R A T I O N A L S U B S E T S

Let M be a monoid. A subset L C M i s said to be recognisable if there exists a

homomorphism tp : M —t N with N finite and L = <p~l(B) with B C N. The collection of

recognisable subsets is denoted Rec(M). If A is a set, we use A* for the free monoid on A.

If M is any monoid, and X C M, we use X* for the submonoid generated by X. A subset

of M is called rational if it is in the smallest collection of subsets of M containing the

finite subsets and closed under finite unions, finite products, and the operation X i—> X'.

The collection of rational subsets of M is denoted Ra t (M) . A rational expression for a

rational set is an expression like ((ab U c)d*)' which shows how to build the set up from

the "rational operations". Kleene's theorem says that Rat(^4*) = Rec(^4*) for A finite and

more generally, implies that Rec(M) C Ra t (M) if M is finitely generated. It is easy to

show that if tp : M —> N is a homomorphism, then the image of a rational set is rational

while the inverse image of a recognisable set is recognisable [3]. Let it be a recursive,

infinite supernatural number and H the associated pseudovariety of Abelian groups. We

now give an algorithm to compute the closure of a rational subset of F = ©^Z for A

a finite set. First we note that if such an algorithm exists, then TT must be recursive.

Indeed, the membership problem for H is the same as asking for A finite and iV a finite

index subgroup of F — ©^Z, with a given finite generating set, whether N is closed. But

it is easy to see that if g + N - g' + N, then g € clH(iV) if and only if g' € c lH( iV). So

to verify whether N is closed, it suffices to check whether any element of a finite set of

coset representatives of N in F is in CIH (-N), but not in N. But if Y is a generating set

of N, then N = (Y U —Y)* and hence is rational, so we can check this.

A subset of a monoid M is said to be semilinear if it is a finite union of sets of the

form

ab[b'2---b'n(n>0, &!,... A e M ) .

The following proposition is straightforward and can be found in [4].
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PROPOSITI ON 5 . 1 . Let M be a finitely generated commutative monoid. Then
L € Rat(M) if and only if it is semilinear.

Given a finite presentation of a commutative monoid M, one can effectively place a
rational subset in the above form by induction on the star height. Also note that since
M is commutative, b\ + • • • + b*n — {bi,... ,bn}*. So we have the following corollary.

COROLLARY 5 . 2 . Let M be a finitely presented commutative monoid. Then
any rational subset L of M can be effectively placed in the form (J (ai + St*) with at € M,

i

Bi C M a finite subset, and the union finite.

PROPOSITION 5 . 3 . Let L = \J(a{ + £; ) be a rational subset of F. Then

P R O O F : Since the pro-H topology is metric, taking the closure commutes with tak-
ing finite unions. So it suffices to show thatclH(a+S*) = a+cln((.B)). Since translation
by a is a continuous homomorphism, it suffices to show that clH(S*) = clH((£))• The
inclusion from left to right is clear. By continuity of multiplication, it is easy to see that
C1H(-B") is a submonoid. So it suffices to show — B C C1H(5*)- But if b € B, then

(n! - 1)6 - j . -b

so -beclH(B*). D

COROLLARY 5 . 4 . Let IT be a recursive, infinite supernatural number, H the
associated pseudovariety ofAbelian groups, and F a Bnitely generated free Abelian group.
The one can compute membership in the closure of a rational subset ofF given a rational
expression as input.

Note that since any subgroup of a finite rank free Abelian group is finitely generated,
and hence a rational subset, we see that the closure of a rational subset is rational.
Observe that in the case of Gcom, our results show that every subgroup is closed and
hence,

This result was originally obtained by Delgado [4].

6. MONOID KERNELS AND APPLICATIONS TO MONOID THEORY

We now give several applications to the theory of monoids. Let M and N be mon-
oids. A relational morphism \x : M—e-> iV is a relation ( i C M x A f which is a submonoid
projecting onto M. The most important example is the case where M and N are gener-
ated by a set A and fi = {(a,a) \ a & A}*. If /x : M —©+ G is a relational morphism with
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G a group, then n~l{l) is a submonoid of M. Fix a pseudovariety H of groups. Then
for M finite, we let

KH(M) = f) ^(1) .
/i:M-e-> GeH

This set is called the H-kernel of M and is a submonoid containing the idempotents of M.
If V is a pseudovariety of monoids, then the Mal'cev product V @ H is the pseudovariety
of all finite monoids M with a relational morphism /z : M-e-» G € H with ^" ' ( l ) € V.
A simple exercise [7] shows that M e V @ H if and only if KH (M) 6 V. Hence, the
computability of Kn implies the decidability of membership for any pseudovariety of the
form V @ H with V having decidable membership. In the case where V is local in the
sense of Tilson [16], one can show that V @ H = V * H where the right hand side is the
semidirect product of pseudovarieties [7].

We now show that if H is a decidable pseudovariety of Abelian groups, then Kn is
computable. If M is an ^-generated monoid, we use [w\u to denote the image of a word
w e A* in M.

PROPOSITION 6 . 1 . Let M be a finite monoid generated by a finite set A, TT
an infinite supernatural number, H the associated pseudovariety of Abelian groups, and
F = ®A1. For me M, let

Lm - {[w]F | w € A" and [w]M = m}.

Then m £ KH(M) if and only if 0 € clH(l<m)-

PROOF: Suppose m € Kn(M). Let TV be an open normal subgroup of F. Consider
the relational morphism \i: M—&->• F/N defined by

/x={([a] M ,a + 7V) | a € A}'.

Then since m € KH(M), there exists w € A* such that [W]M = wi and \w]F € N. So
NC\Lmjz%. It follows that 0 € clH (Lm).

For the converse, let fi: M-e4 G e H b e a relational morphism. Choose a € H{[O]M )
for each a € A. Let p : F —> G be the morphism associated to the map a t-¥ a. Let
iV = ker <p. Then TV is an open normal subgroup and so Lm n N ^ 0. Thus, there exists
w € A* such that [W]M — m and [w]p € N. But by definition of <p, <P([W]F) € n{m). So
me n~l(0). It follows that m e KH(M). D

THEOREM 6 . 2 . Let H be a pseudovariety of Abelian groups with decidable mem-
bership. Then Kn is computable.

PROOF: If H is locally finite, the result is trivial. So suppose H corresponds to
a recursive, infinite supernatural number. Let M be a finite A-generated monoid. For
m e M, the set of words w € A* with [w]M = m is a rational subset and one can
effectively compute a rational expression for it by Kleene's algorithm. Hence, Lm is a
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rational subset of F and one can effectively obtain a rational expression for it. So by
Corollary 5.4, one can decide whether 0 G cln(l'm)- Hence by the above proposition, Kn
is computable. D

COROLLARY 6 . 3 . Let V be a pseudovariety of monoids and H a pseudovariety
of Abelian groups, each with decidable membership problem. Then V @ H has decidable
membership problem.

A related algorithmic problem is the following. Let M be a finite monoid and H
a pseudovariety of groups. Then (mi , . . . ,mk) € Mk is called an H-liftable k-tuple if
for every relational morphism /i : M—&* G G H, there exists <?i,... ,gk G G such that
gi... gk — 1 and gt G n(rrii) for all i. For instance, an H-liftable 1-tuple is just a member
of Ku[M). One can show in a similar manner to above that if H is a pseudovariety of
Abelian groups corresponding to an infinite supernatural number, then (mi , . . . ,mk) is
an H-liftable fc-tuple if and only if 0 G clH(£mi + • • • + Lmk). Since Lmi + • • • + Lmk is
a rational subset, we obtain the following.

PROPOSITION 6 . 4 . Let H be a decidable pseudovariety of Abelian groups.
Then one can compute H-liftable k-tuples.

If M is a finite monoid, X C M, and V a pseudovariety of monoids, then X is
said to be V-pointlike if for every relational morphism fi : M-e4 V G V, one has that
X C n~l{v) for some v G V. For example, KH(M) is an H-pointlike set. One can show
that M G V if and only if its only V-pointlike subsets are singletons. Hence, if V has
decidable pointlike pairs, then V has decidable membership. The following is proved in
the same manner as Proposition 6.1; see for instance [4].

PROPOSITION 6 . 5 . Let M be a finite monoid generated by a finite set A and H
be a non-locally finite pseudovariety of Abelian groups. Then {m, n} C M is H-pointlike

if and only if 0 € clH(£m - Ln).

COROLLARY 6 . 6 . Let H be a pseudovariety of Abelian groups with decidable
membership problem. Then H-pointlike pairs are decidable.

A locally finite pseudovariety V is said to be order computable if there is a com-
putable bound on the size of the free object on any finite set (in this case the pseudovariety
is necessarily decidable). Recall if V and W are pseudovarieties, then their join V VW is
the smallest pseudovariety containing them. The following two results are consequences
of the author's [12, 13].

THEOREM 6 . 7 . If V is an order computable, locally finite pseudovariety and H
is a pseudovariety of Abelian groups with decidable membership problem, then V V H
has decidable pointlike pairs and hence is decidable.

For undefined terms in the following theorem, see [1, 13].
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THEOREM 6 . 8 . Let V be a pseudovariety ofJ-trivial monoids with a decidable

word problem for its monoid of implicit operations and H a pseudovariety of Abelian

groups with decidable membership problem. Then V V H has decidable pointlike pairs

and hence is decidable. In particular, J V H is decidable, where 3 is the pseudovariety of

all finite J-trivial monoids.

Finally, it is shown in [14] that if H is a pseudovariety of groups with decidable

pointlike pairs, then J * H is decidable.

THEOREM 6 . 9 . Let H be a pseudovariety of Abelian groups with decidable mem-
bership problem. Then J * H has decidable membership problem.

It is shown in [15], that J @ H / J * H for pseudovarieties of Abelian groups, so

this result is meaningful.
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