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Abstract

For a domain G in the one-point compactification R
n =Rn ∪ {∞} of Rn, n � 2, we charac-

terise the completeness of the modulus metric μG in terms of a potential-theoretic thickness
condition of ∂G , Martio’s M-condition [35]. Next, we prove that ∂G is uniformly perfect if
and only if μG admits a minorant in terms of a Möbius invariant metric. Several applications
to quasiconformal maps are given.

2020 Mathematics Subject Classification: 30C35 (Primary); 30C55 (Secondary)

1. Introduction

Conformal invariance is one of the key notions in the geometric theory of conformal
and quasiconformal maps both in the plane R2 =C and in the Euclidean space Rn, n � 3 .
Most clearly this is visible in the study of metrics: the uniformisation theorem [6] and the
hyperbolic (Poincaré) metric of the unit disk in C provide a way to define the hyperbolic
metric in any plane domain G with card (C \ G) � 2. This method fails for n � 3 because
by Liouville’s theorem [19, 45] conformal maps in dimensions n � 3 are Möbius transfor-
mations. A widely studied natural question is whether some other methods would work and
whether there are counterparts of the hyperbolic metric in subdomains G of Rn and what
sort of invariance or quasi-invariance properties, if any, such metrics might have in higher
dimensions n � 3. From the vast literature we mention A. F. Beardon [4, 5], J. Ferrand

† The authors were supported in part by JSPS KAKENHI Grant Number JP17H02847 and NSF of the
Higher Education Institutions of Jiangsu Province, China, Grant Number 17KJB110015, and NSFC Grant
Number 12001391.

C© The Author(s), 2022. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

https://doi.org/10.1017/S030500412200024X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200024X
https://doi.org/10.1017/S030500412200024X


274 T. SUGAWA, M. VUORINEN, T. ZHANG

[12, 13, 14, 15, 31], F. W. Gehring [18, 20, 21], D.A. Herron [11, 24, 25, 26, 27],
M. Vuorinen [23, 53, 55]. The recent extensive research on metrics in geometric function
theory has many faces: two examples are the monograph [28] of M. Jarnicki and P. Pflug
which provides an encyclopedic treatise on invariant metrics of complex manifolds and the
monograph of A. Papadopoulos which lists twelve metrics recurrent in geometric function
theory [40, pp.42–48].

Our main aim is to study one of these metrics, the modulus metric of a domain G ⊂R
n =

Rn ∪ {∞}, n � 2 , denoted by μG(x, y), x, y ∈ G , see Sections 3 and 4 for definitions. In the
special case of the unit ball, the modulus metric μBn(x, y) has an explicit formula in terms
of the hyperbolic metric of the unit ball Bn; the case of μB2 (x, y) has already been studied
by H. Grötzsch [1, p.72]. The conformal invariant μG(x, y) has found numerous applications
[23, 55], but still many fundamental questions remain open. Very recently a problem due to
J. Ferrand [15], [23, pp.294–295] was solved as follows.

THEOREM A ([8, 44, 56]). A homeomorphism f : G → G′ , where G and G′ are domains
in Rn, n � 2, is an isometry between (G, μG) and (G′, μG′) if and only if f is conformal.

As pointed out above, μBn(x, y) is closely related to the hyperbolic metric of Bn. We next
study conditions on the domain G under which μG defines an intrinsic metric of G having
properties similar to the hyperbolic metric. It turns out that the geometry of this metric
significantly depends on the “potential theoretic thickness” of the boundary, measured in
terms of the conformal capacity. As is well known, the conformal capacity is very closely
connected with the moduli of curve families [19, theorem 5·2·3, p.164], [23, theorem 9·6,
p.152].

If the boundary ∂G is polar, i.e. if it has null conformal capacity cap (∂G) = 0, then
μG ≡ 0; otherwise μG is a conformally invariant metric. Even if cap (∂G) > 0, the modu-
lus metric μG might not reflect the intrinsic geometry of G very precisely. For instance, a
polar compact set N ⊂ G is invisible for the modulus metric in the sense that if cap N = 0,
then μG(x, y) = μG\N(x, y) for x, y ∈ G \ N. Therefore, it is meaningful to look for a condi-
tion on G so as to guarantee that μG is a complete metric. We remark that a similar problem
for the Kobayashi metric on domains in Cn is rather difficult (see, e.g., [17, 41]).

In connection with this completeness property, we recall another notion on metric spaces.
A metric space (X, m) is called proper [10] if the closed metric ball {x ∈ X : m(x, a) � r}
is compact whenever a ∈ X and r > 0. This is equivalent to say that the open metric ball
{x ∈ X : m(x, a) < r} is relatively compact for a ∈ X and r > 0. Note that a proper metric space
is locally compact and complete. However, the converse is not true in general. (Consider,
e.g., (X, m/(1 + m)) for a locally compact but non-compact complete metric space (X, m)
such as Rn with the Euclidean metric.)

Our first result characterizes domains G for which the metrics μG are complete.

THEOREM 1·1. Let G be a domain in R
n

with ∂G 
= ∅. Then the following conditions are
equivalent:

(i) (G, μG) is a proper metric space;

(ii) (G, μG) is a complete metric space;

(iii) G is an M-domain. That is to say, each boundary point x of G satisfies the
M-condition.
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The M-condition for x ∈ ∂G was introduced by O. Martio [35]
1

in his study of potential
theoretic regularity of the domain. If this condition holds for all x ∈ ∂G, the complement
R

n \ G of G is “thick enough” at every point of ∂G [35, 37]. See Section 3 for definitions of
those concepts and related properties.

Our second result refines further the case when μG is complete. We assume now that the
boundary of a domain is uniformly perfect in the sense of Ch. Pommerenke [42, 43] — in
this case the M-condition is valid, see Corollary 1·5. This notion was introduced by A. F.
Beardon and Ch. Pommerenke [7] for unbounded closed sets in C, but about the same time
an equivalent concept was studied by P. Tukia and J. Väisälä [51] under the name “homo-
geneously dense sets” in the setting of general metric spaces. By definition, a compact set E
in R

n
with card (E) � 2 is called uniformly perfect if there exists a constant c ∈ (0, 1) such

that E meets the closed annulus cr � |x − a|� r whenever a ∈ E \ {∞} and r ∈ (0, diam(E)),
where diam(E) denotes the Euclidean diameter of E and set diam(E) = +∞ when ∞ ∈ E.
In the planar case when G ⊂R2 =C, A. F. Beardon and Ch. Pommerenke [7] gave another
characterisation in terms of the hyperbolic and quasihyperbolic metrics hG(x, y) and kG(x, y) ,
resp. (see Section 2), and proved that ∂G is uniformly perfect if and only if there is a constant
b > 0 such that

hG(x, y) � bkG(x, y) for all x, y ∈ G .

Here we give an alternative characterisation of uniform perfectness of ∂G in terms of intrin-
sic metrics which is valid in higher dimensions as well and, moreover, is applicable to
subsets of the Möbius space. This characterisation requires that the modulus metric be
minorised by a Möbius invariant metric δG , defined in terms of the absolute ratio 2.10 for all
domains G ⊂R

n
with card(∂G) � 2 . This metric was first introduced in [55, pp.115–116]

and, later on, studied by P. Seittenranta in his PhD thesis [47] where he also suggested the
name “Möbius metric”.

THEOREM 1·2. Let G ⊂R
n

be a domain with card (∂G) � 2. Then ∂G is uniformly per-
fect if and only if there exists a constant b > 0 such that for all x, y ∈ G the inequality

μG(x, y) � b δG(x, y) (1·3)

holds, where μG is the modulus metric and δG is the Möbius metric.

For a proper subdomain G of Rn, the lower bound 1·3 can be expressed in terms of a
similarity invariant metric, the distance-ratio metric of G as follows. For x, y ∈ G define

jG(x, y) = log

(
1 + |x − y|

min{dG(x), dG(y)}
)

, (1·4)

which is a metric on G, where dG(x) denotes the Euclidean distance from x to the boundary
∂G [23, lemma 4·6, p.59]. When G ⊂Rn, the above condition (1·3) is equivalent to the
requirement that for some constant b′ > 0

μG(x, y) � b′jG(x, y)

for all x, y ∈ G . Since (G, δG) is a proper metric space (see Lemma 2·14 below), we have
the following result as a corollary of Theorems 1·1 and 1·2.

1 The M-condition M(x, R
n \ G) = ∞ was denoted by Mx = ∞ in Martio’s paper [35].
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COROLLARY 1·5. Let G ⊂R
n

be a domain with card (∂G) � 2. If ∂G is uniformly perfect,
then G is an M-domain.

The converse is not true in general. A counterexample will be given in Section 3.
The proof of Theorem 1·2 is based, in part, on a potential theoretic thickness character-

isation of uniform perfectness [29, 54]. Many authors have contributed to the research of
uniformly perfect sets and related thickness conditions, see [3, 9], [16, pp.343–345], [22,
30, 32, 33, 34] and the survey of T. Sugawa [48] on uniform perfectness.

Uniform domains play an important role in geometric function theory. See [20] and the
recent monograph [18] for details. For convenience of the reader, we will provide a brief
account on this notion in the next section.

THEOREM 1·6. Suppose that G ⊂R
n

is a uniform domain. Then there exist constants
d1, d2 depending only on n and the uniformity parameters such that

μG(x, y) � d1 δG(x, y) + d2 x, y ∈ G. (1·7)

Conversely, suppose that a domain G in R
2

with continuum as its boundary satisfies (1·7).
Then G is uniform.

Note that the boundary of a domain G in R
2 =C is a continuum; that is, a non-degenerate

connected compact set, if and only if G is a simply connected hyperbolic domain. It is known
that such a domain G is uniform precisely when G is a quasidisk, that is to say, G is the image
of the unit disk B2 under a quasiconformal homeomorphism of C onto itself [18]. Therefore,
as a corollary, we have the following characterisation of quasidisks.

COROLLARY 1·8. Let G be a simply connected domain in the Riemann sphere C with
card (C \ G) � 2. Then G is a quasidisk if and only if there are positive constants d1 and
d2 such that the inequality

μG(z, w) � d1 δG(z, w) + d2

holds for all z, w ∈ G.

In this corollary, we may replace the modulus metric μG by Ferrand’s modulus metric λ−1
G

(see Lemma 4·5 below). We remark that for G ⊂C the above condition is also equivalent to
the condition

μG(z, w) � d′
1 jG(z, w) + d′

2 for z, w ∈ G .

As we will see later, the constant d2 in Corollary 1·8 cannot be dropped. We expect that the
converse would be true for all dimensions n � 2 under a weaker assumption on the bound-
ary such as uniform perfectness of the boundary. These observations lead to the following
problem.

1·9. Open problem

Let n � 2. Find a geometric condition (∗) on the boundaries of domains G in R
n

with the
following property: If a domain G in R

n
satisfies the condition (∗) and the inequality (1·7)

for some constants d1 > 0 and d2 > 0, then G is uniform.
Finally, we consider the hyperbolic metric hG and the Ferrand metric σG, see (2·7), in

planar domains G. It is well known [7] that if ∂G is uniformly perfect, then the distances in
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the hG metric are comparable to those in the quasihyperbolic metric kG . Furthermore, this
comparison property fails to hold if the domain G has isolated boundary points. Indeed, the
following asymptotic formulae hold.

LEMMA 1·10. Let G be a hyperbolic domain in C and suppose that G has an isolated
boundary point a with a 
= ∞. Then, for a fixed z0 ∈ G, as z → a

σG(z, z0) = log
1

|z − a| + O(1) and δG(z, z0) = log
1

|z − a| + O(1), (1·11)

while

hG(z, z0) = log log
1

|z − a| + O(1). (1·12)

It is a challenging task, studied in [49, 50], to give concrete bounds for the hG dis-
tances in domains G whose boundary consists only of isolated points. Since log (1 + x)
is a subadditive function on 0 � x < +∞, we can easily see that log (1 + m(x, y)) is a dis-
tance function on X whenever m(x, y) is a distance function on X [2, 7·42(1)]. In view of
the above behaviour of the hyperbolic distance around isolated boundary points, we are led
to the introduction of the logarithmic Möbius metric �G(x, y) and the logarithmic Ferrand
metric �G(x, y) for a domain G ⊂R

n
with card (R

n \ G) � 2 as follows:

�G(x, y) = log(1 + δG(x, y)) , x, y ∈ G , (1·13)

�G(x, y) = log(1 + σG(x, y)) , x, y ∈ G . (1·14)

Because δG and σG are Möbius invariant, �G and �G are Möbius invariant metrics, too. We
also have �G(x, y) ��G(x, y) (see Lemma 2·12 below). When the complement of G in C is
a finite set, the hyperbolic distance hG is majorised by �G. However, hG is never minorised
by it for any domain with a puncture; namely, with an isolated boundary point. In fact, we
prove a slightly stronger result.

THEOREM 1·15. Let A be a finite set in C with card (A) � 3 and let G =C \ A. Then there
exists a positive constant c = c(A) such that for all z, w ∈ G,

hG(z, w) � c �G(z, w) = c log(1 + δG(z, w)) .

On the other hand, for an arbitrary hyperbolic domain G in C with a puncture, there is no
non-decreasing function � : [0, +∞) → [0, +∞) with �(t) > 0 for t > 0 such that for all
z, w ∈ G,

�(δG(z, w)) � hG(z, w).

All the results here will be proved in the subsequent sections. More precisely, this paper is
organised as follows. Section 2 is devoted to definitions and basic properties of the metrics
involved, with the exception of the modulus metric, which will be defined in Section 4.
In Section 3, we recall the notion of the (conformal) modulus of a curve family and its
fundamental properties. We also introduce the notion of M-domains defined in terms of the
continuum criterion of Martio [35]. The modulus metric is defined and related results are
established in Section 4. We give some applications of the above results to quasiconformal
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or quasiregular mappings in Section 5. Theorem 1·15 is proved in the last section. Two open
problems are pointed out, namely 3·12 and 4·15.

2. Preliminary notation and results

We follow standard notation. See e.g. [4, 52] for more details. We write

Bn(x, r) = {z ∈Rn : |z − x| < r},
B

n
(x, r) = {z ∈Rn : |z − x|� r},

Sn−1(x, r) = {z ∈Rn : |z − x| = r},
for balls and spheres, respectively, and

Bn = Bn(0, 1), Hn = {(x1, . . . , xn) ∈Rn : xn > 0}.
First we recall the definition of the chordal (spherical) distance q(x, y) on R

n
:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
q(x, y) = |x − y|√

1 + |x|2√1 + |y|2 , x, y 
= ∞ ,

q(x, ∞) = q(∞, x) = 1√
1 + |x|2 , x 
= ∞ .

(2·1)

For distinct points a, b, c, d ∈R
n
, the absolute (cross) ratio is defined by

|a, b, c, d| = q(a, c)q(b, d)

q(a, b)q(c, d)
.

When none of the points is ∞, we see that

|a, b, c, d| = |a − c||b − d|
|a − b||c − d| .

2·2. Hyperbolic metric

The hyperbolic metrics 2|dx|/(1 − |x|2) on Bn and |dx|/xn on Hn induce the hyperbolic

distances hBn(x, y) and hHn(x, y) respectively. When n = 2, any domain G of R
2 =C with

card (∂G) � 3 is known to have a holomorphic universal covering projection p of the unit
disk B2 onto G. Thus the hyperbolic distance hG of G can be defined by

hG(z1, z2) = min
ζ1∈p−1(z1),ζ2∈p−1(z2)

hB2(ζ1, ζ2) = inf
γ∈�

∫
γ

ρG(z)|dz|,

where � is the set of all rectifiable curves joining z1 and z2 in G and ρG(z) denotes the
hyperbolic density determined by the relation 2/(1 − |ζ |2) = ρ(p(ζ ))|p′(ζ )|, ζ ∈B2 (see
[6, 30] for details).

2·3. Quasihyperbolic metric

For higher dimensions, however, we cannot define hyperbolic metric for general domains.
Quasihyperbolic metrics were introduced by F.W. Gehring and B. Palka [21] as a substitute
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for it. For a domain G �Rn, the quasihyperbolic metric kG is defined by

kG(x, y) = inf
γ∈�

∫
γ

|dt|
dG(t)

, x, y ∈ G,

where � is the family of all rectifiable curves in G joining x and y. Note here that the
inequality

jG(x, y) � kG(x, y)

holds for an arbitrary G �Rn and all x, y ∈ G [21, lemma 2·1].

2·4. Uniform domains

A proper subdomain G of Rn is called uniform if there exist positive constants a and b with
the following property [20, 37]: for every pair of points x1, x2 ∈ G, there is a rectifiable curve
γ joining x1 and x2 in G in such a way that (γ ) � a|x1 − x2| and that min{(γ1), (γ2)}�
b dG(x) for each x ∈ γ , where γj is the part of γ between xj and x for each j = 1, 2, (γ )
denotes the length of the curve γ and dG(x) is the Euclidean distance to the boundary of G
from x. The class of uniform domains can also be defined in terms of a comparison inequality
between two metrics [20, 55]

2
a subdomain G of Rn with non-empty boundary is uniform if

and only if there exists a constant c � 1 such that

kG(x, y) � c jG(x, y) (2·5)

for all x, y ∈ G, where kG and jG are the quasihyperbolic and distance-ratio metrics, respec-
tively. Note that jG(x, y) � kG(x, y) holds for every domain G and all x, y ∈ G by [21, lemma
2·1].

2·6. Ferrand’s metric

Since the definition of the quasihyperbolic metric relies on the Euclidean metric, it is not
defined for all subdomains of the Möbius space and therefore it is not Möbius invariant. To
overcome this shortcoming, Ferrand [12] modified the definition as follows. For a subdomain
G of R

n
with card (∂G) � 2, define a density function

wG(x) = sup
a,b∈∂G

|a − b|
|x − a| |x − b| , x ∈ G \ {∞} ,

and the metric σG in G,

σG(x, y) = inf
γ∈�

∫
γ

wG(t)|dt|, (2·7)

where � is the family of all rectifiable curves in G joining x and y. The following result is
due to Ferrand [12, p.122] and σG(x, y) is now called the Ferrand metric [23, Chapter 5].

LEMMA 2·8. Let G ⊂R
n

be a domain with card (∂G) � 2. The Ferrand metric σG has
the following properties:

2 In [20], condition (2·5) was given in the slightly different form kG(x, y) � a jG(x, y) + b for some constants
a, b. We easily see that we can take b = 0 by letting a be larger if necessary. See [53, 2·50 (2)].

https://doi.org/10.1017/S030500412200024X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200024X


280 T. SUGAWA, M. VUORINEN, T. ZHANG

(i) σG is a Möbius invariant metric;

(ii) When G is either Bn or Hn, σG coincides with the hyperbolic metric hG;

(iii) kG � σG � 2kG for every domain G �Rn.

We remark that the metric σG was recently studied by D. A. Herron and P. K. Julian [26].

2·9. Möbius metric

Let G ⊂R
n

be an open set with card (∂G) � 2. The Möbius metric on G is defined as
follows ([55, pp.115–116], Seittenranta [47]):

δG(x, y) := log (1 + mG(x, y)) , mG(x, y) := sup
a,b∈∂G

|a, x, b, y| . (2·10)

Note that the Möbius metric δG coincides with the hyperbolic metric hG when G is either
Bn or Hn [55, lemma 8·39]. A metric very similar to the Möbius metric is the Apollonian
metric of Beardon [5].

2·11. Chordal distance-ratio metric

For a proper subdomain G of R
n

we define the chordal (spherical) distance-ratio
metric by

ĵG(x, y) = log

(
1 + q(x, y)

min{d̂G(x), d̂G(y)}

)
,

where

d̂G(x) = inf
a∈∂G

q(x, a).

The triangle inequality for this metric follows from [47, lemma 2·2].
The following results are due to Seittenranta [47].

LEMMA 2·12. Let G be an open subset of R
n

with card (∂G) � 2 . Then δG is a Möbius
invariant metric and the following hold:

(i) δG � σG;

(ii) δG � 2 ĵG
(iii) if G �Rn , then jG � δG � 2jG.

Proof. The fact that δG satisfies the triangle inequality, assertions (i) and (iii) follow from
theorems 3·3, 3·4 and 3·12 in [47], respectively. In order to show assertion (ii), we introduce
the auxiliary metric

j∗G(x, y) = log

(
1 + q(x, y)

d̂G(x)

)
+ log

(
1 + q(x, y)

d̂G(y)

)
.

Theorem 3·6 in [47] means the inequality δG(x, y) � j∗G(x, y) for x, y ∈ G. It is easy to verify
the inequalities ĵG(x, y) � j∗G(x, y) � 2 ĵG(x, y). Thus assertion (ii) now follows.

As a consequence of the previous lemma, we have the following inequality, which will be
used in the proof of Theorem 1·2 later:
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jG(x, y) � 2 ĵG(x, y), x, y ∈ G �Rn. (2·13)

We note that there is no constant c = c(n) > 0 depending only on n such that jG(x, y) �
c ĵG(x, y), x, y ∈ G, holds for all proper subdomains G of Rn. The following result follows
also from the previous lemma.

LEMMA 2·14. The metric space (G, δG) is proper for G ⊂R
n

with card (∂G) � 2.

Proof. By the Möbius invariance, we may assume that G ⊂Rn. Then jG � δG by Lemma
2·12 (iii). Therefore, it is enough to show that (G, jG) is proper in this case. For a ∈ G
and 0 < r, we have to show that the set B = {x ∈ G : jG(x, a) < r} is relatively compact.
It is enough to show that B is bounded and dist(B, ∂G) > 0. The inequality log (1 + |x −
a|/dG(a)) � r holds for x ∈ B and thus |x − a|� dG(a)(er − 1), which proves that B is
bounded. On the other hand, the inequality log (1 + |x − a|/dG(x)) � r holds for x ∈ B.
Note that dG(x) � dG(a)/2 if |x − a|� dG(a)/2. For x ∈ B with |x − a|� dG(a)/2, we thus
have dG(x) � |x − a|/(er − 1) � dG(a)/(er − 1). Therefore, we have shown dist(B, ∂G) �
min{dG(a)/2, dG(a)/(er − 1)} > 0 as required.

2·15. Möbius uniform domains

We now consider a Möbius invariant characterisation of uniform domains. As we
saw above, uniform domains in Rn are characterised by the condition (2·5) in terms of
quasihyperbolic and distance-ratio metrics. These two metrics are invariant under simi-
larity transformations but unfortunately not under Möbius transformations. To overcome
this lack of invariance we apply Ferrand’s Möbius invariant metric σG and the Möbius
metric δG .

Definition 2·16 ([47]). We say that a domain G ⊂R
n

with card (R
n \ G) � 2 is Möbius

uniform, if there exists a constant c � 1 such that for all x, y ∈ G

σG(x, y) � c δG(x, y) .

Note that Definition 2·5 only applies to subdomains of Rn whereas Definition 2.16 applies
to subdomains of R

n
. Indeed, we have the following result.

PROPOSITION 2·17. Let G ⊂Rn be a domain with card (∂G) � 2. Then G is Möbius
uniform if and only if it is uniform in the sense of (2·5).

Proof. From Lemmas 2·8 and 2·12 it follows that if G is Möbius uniform with a constant
c1, then it is uniform in the sense of (2·5) with the constant 2c1 . Conversely, from Lemmas
2·8 and 2·12 it follows that if G is uniform in the sense of (2·5) with a constant c2, then it is
Möbius uniform with the the constant 2c2 .

Therefore, we will use the shorter term “uniform” below for both uniform domains and
Möbius uniform domains unless we want to emphasise which definition is intended.

We end this section with a proof of Lemma 1·10.

Proof of Lemma 1·10. By assumption, there is a number r > 0 such that the punctured disk
0 < |z − a| < r is contained in G. It is enough to prove the assertions for a = 0 and r = 1.
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By assumption, we can find a finite boundary point b of G so that

mG(z, z0) � |0, z, b, z0| = |b||z − z0|
|z||b − z0| �

|b||z0|
2|z||b − z0| =:

C

|z|
for z ∈ G with 0 < |z| < |z0|/2. Hence,

δG(z, z0) = log (1 + mG(z, z0)) � log (1 + C/|z|) = log
1

|z| + O(1)

as z → 0. Next we estimate wG(z) from above for 0 < |z|� 1/4. For b ∈ ∂G \ {0}, we have
|z − b|/|b|� 1 + |z|/|b|� 1 + |z| and |z − b|/|b|� 1 − |z|/|b|� 1 − |z| and thus

16

5
� 1

|z|(1 + |z|) �
|b|

|z||z − b| �
1

|z|(1 − |z|) = 1

|z| + 1

1 − |z| �
1

|z| + 4

3

for 0 < |z|� 1/2. For b1, b2 ∈ ∂G \ {0}, we have |z − bj|� |bj| − |z|� 3|bj|/4 � 3/4 and

|b1 − b2|
|z − b1||z − b2| �

|z − b2| + |z − b1|
|z − b1||z − b2| = 1

|z − b1| + 1

|z − b2| �
8

3

as z → 0. Hence, we obtain wG(z) � 1/|z| + 4/3 for 0 < |z|� 1/4. For a given z0, we take a
point z1 ∈ G so that |z1|� min{|z0|, 1/4}. Then, for 0 < |z| < |z1|, we have

σG(z, z0) � σG(z, z1) + σG(z1, z0) �
∫

γ

|dt|
|t| + O(1) = log

1

|z| + O(1),

where γ is the curve going from z1 to the point (|z1|/|z|)z along the circle |t| = |z1| and then
going to z radially. Since δG(z, z0) � σG(z, z0), (1·11) follows.

Secondly, we prove (1·12). For simplicity, we further assume that 1, ∞ ∈ ∂G. (For the
general case, we may use a suitable Möbius transformation to reduce to this case.) Then

D∗ = {z ∈C : 0 < |z| < 1} ⊂ G ⊂C \ {0, 1}
and therefore

ρD∗(z) � ρG(z) � ρC\{0,1}(z)

for 0 < |z| < 1. Since

ρD∗(z) = 1

|z| log (1/|z|) and ρC\{0,1}(z) = 1

|z|(C0 + log (1/|z|)) ,

where C0 = 1/ρC\{0,1}( − 1) (see [30] for instance), we have

ρG(z) = 1

|z| log (1/|z|) + O

(
1

|z| log2 (1/|z|)
)

as z → 0. Noting the fact that the real function 1/[t log2 t] is integrable over (0, 1/2], we
obtain the required asymptotics (1·12) as required.

Remark 2·18. As the above proof shows, (1·11) is valid also in dimensions n � 2.

3. Modulus and M-domains

We recapitulate some of the basic facts about moduli of curve families and quasiconfor-
mal maps, following [19, 52]. Let � be a family of curves in R

n
. We say that a non-negative
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Borel-measurable function ρ : Rn →R∪ {+∞} is an admissible function for �, if∫
γ

ρds � 1 for each locally rectifiable curve γ in �. The (conformal) modulus of � is

M(�) = inf
ρ∈F (�)

∫
Rn

ρndm,

where F (�) is the family of admissible functions for � and m stands for the n-dimensional
Lebesgue measure. We set M(�) = ∞ when F (�) is empty. The most important property of
the modulus is a quasi-invariance; that is, a homeomorphism f : G → G′ between domains
in R

n
is K-quasiconformal if and only if

M(�)/K � M(f (�)) � KM(�)

for all families of curves � in G. In particular, M(f (�)) = M(�) for a conformal homeomor-
phism f .

For two curve families �1 and �2 in R
n
, we say that �2 is minorised by �1 and denote

�2 > �1 if every γ ∈ �2 has a subcurve which belongs to �1. A collection of curve families
�j (j = 1, 2, . . .) is said to be disjointly supported if there are Borel sets �j (j = 1, 2, . . .)
such that all curves in �j are contained in �j and that m(�j ∩ �j′) = 0 for j 
= j′. Then the
following properties of the conformal modulus are fundamental (see [52] or [19]).

LEMMA 3·1.

(1) If �1 < �2, then M(�1) � M(�2). In particular, M(�2) � M(�1) for �2 ⊂ �1.

(2) For a collection of curve families �j (j = 1, 2, . . .),

M

⎛
⎝⋃

j

�j

⎞
⎠�

∑
j

M(�j).

Moreover, equality holds if the collection is disjointly supported.

A pair (G, E) of a domain G in R
n

and a compact set E in G is called a condenser. The
capacity of the condenser (G, E) is

cap (G, E) = M(�(E, ∂G; G)) . (3·2)

Another equivalent definition makes use of Dirichlet integral minimisation property [19,
theorem 5·2·3]. Here and hereafter, for sets E, F, G ⊂R

n
, let �(E, F; G) denote the family

of all curves joining the sets E and F in G, and let �(E, F) = �(E, F; R
n
). Here, a curve

γ : [a, b] →R
n

is said to join E and F in G if γ (a) ∈ E, γ (b) ∈ F and if γ ((a, b)) ⊂ G. For
a compact set E in R

n
, we write cap E = 0 (cap E > 0) if cap (G, E) = 0 (cap (G, E) > 0)

for some bounded domain G containing E cf. [55, 7·12]. Note that cap (G′, E) = 0 for
any domain G′ containing E if cap E = 0. It is known that E is totally disconnected and
has Hausdorff dimension 0 if cap E = 0 , see [45, p.120, corollary 2], [46, p.166, theorem
VII·1·15].

A domain R in R
n

is called a ring if the complement R
n \ R consists of exactly two con-

nected components, say, E and F, and R is often denoted by R(E, F). In particular, RG,n(s) :=
R(B

n
, [se1, ∞]), s > 1, is called the Grötzsch ring and RT ,n(t) := R([ − e1, 0], [te1, ∞]),

t > 0, is called the Teichmüller ring, where e1 is the unit vector (1, 0, . . . , 0) in Rn. The
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capacity of the ring R(E, F) is cap R(E, F) = cap (R
n \ F, E) and its modulus is

mod R(E, F) =
(

ωn−1

cap R(E, F)

)1/(n−1)

.

When R = R(E, F) is the standard ring {x ∈Rn : a < |x| < b}, one has mod R = log (b/a).
The capacities of RT ,n(t) and RG,n(s) are denoted by τn(t) and γn(s), respectively. By
[55, lemma 5·53], τn : (0, +∞) → (0, +∞) and γn : (1, +∞) → (0, +∞) are decreasing
homeomorphisms and they satisfy the functional identity

γn(s) = 2n−1τn(s2 − 1), s > 1. (3·3)

Here we state a couple of fundamental properties of uniformly perfect sets. Recall that
a ring R = R(E1, E2) is said to separate a set A in R

n
if A ⊂ E1 ∪ E2 and A ∩ Ej 
= ∅ for

j = 1, 2. Then the following characterization of uniformly perfect sets is well known (see,
for instance, [3] for planar case and [22] for general case).

LEMMA 3·4. Let A be a compact set in R
n

with card (A) � 2. Then A is uniformly per-
fect precisely when there exists a constant M > 0 such that mod R � M for every ring R
separating A.

We also note the following simple fact.

LEMMA 3·5. Let G be a domain in R
n

for which the complement C =R
n \ G contains at

least two points. Then ∂G is uniformly perfect if and only if so is C.

Proof. By the previous lemma, it is enough to show that a ring R separates C if and only if R
separates ∂G. Indeed, if a ring R = R(E1, E2) separates C then R ⊂ G and each Ej meets C.
Note that R

n \ E2 = R ∪ E1 is a domain. Choose a point a from E1 ∩ C and z0 from R and
take a curve γ : [0, 1] →R

n \ E2 with γ (0) = z0 and γ (1) = a. Then there is a t ∈ (0, 1] such
that γ (t) ∈ ∂G. Obviously, γ (t) ∈ E1, which implies that E1 ∩ ∂G 
= ∅. Likewise we have
E2 ∩ ∂G 
= ∅. We now conclude that R separates ∂G.

Conversely, suppose that a ring R = R(E1, E2) separates ∂G. Then R ⊂ G or R ∩ G = ∅. If
the latter occurs, one component of R

n \ R, say E1, contains G. Then E2 ∩ ∂G = ∅, which
contradicts the choice of R. Hence the latter case cannot occur. Therefore, we have shown
that R separates C .

For the study of the geometry of the modulus metric below, we now introduce a new class
of conformally invariant domains, M-domains. The definition of this class makes use of the
continuum criterion introduced and studied by O. Martio [35]. The continuum criterion is
closely connected with the potential theoretic boundary regularity of a domain [36].

3·6. Definition

We say that a closed set C ⊂Rn satisfies the continuum criterion at x ∈ C if there exists a

continuum K ⊂ {x} ∪
(
R

n \ C
)

such that

M(�(K, C; R
n \ C)) < ∞.

We write M(x, C) < ∞ if this holds, and otherwise we write M(x, C) = ∞.
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We now recall that a continuum is a compact connected set in R
n

containing at least two
points. We note that M(x0, C) = ∞ if a continuum C0 ⊂ C contains x0. In fact, the sphere
|x − x0| = r meets both K and C for all small enough r > 0 in this case. A simple application
of the following lemma implies that

M(�(K, C; R
n \ C)) � M(�(K, C; R

n
)) = ∞

for every continuum K with x0 ∈ K ⊂ (R
n \ C) ∪ {x0}. Here we have used the relation

�(K, C; R
n \ C) < �(K, C; R

n
) and Lemma 3·1.

LEMMA 3·7 (Vaisala [52, theorem 10·12]). Let 0 < a < b < +∞. Let E and F be closed
sets in R

n
and suppose that the sphere |x| = t meets both E and F for every t with a < t < b.

Then M(�(E, F; R
n
)) � cn log (b/a), where cn is a positive constant depending only on n.

We now define the notion of M-domains.

Definition 3·8. A boundary point x of a domain G ⊂R
n

is said to satisfy the M-condition
(relative to G) if M(x, R

n \ G) = ∞; in other words, the complement R
n \ G does not satisfy

the continuum criterion at x. The domain G is called an M-domain if every boundary point
x ∈ ∂G satisfies the M-condition relative to G.

By the above observation, a point x ∈ ∂G satisfies the condition M(x, R
n \ G) < ∞ only if

the singleton {x} is a connected component of ∂G. On the other hand, any isolated point x of
∂G satisfies M(x, R

n \ G) < ∞.
We need the following result in the proof of Theorem 1·1. Our proof is similar to that of

[35, lemma 3·5].

LEMMA 3·9. Let G be a domain in R
n

. Suppose that a point x0 ∈ ∂G \ {∞} and a
continuum K in G ∪ {x0} with x0 ∈ K satisfy the condition M(�(K, ∂G; G)) < ∞. Then

lim
r→0

M(�(K ∩ B
n
(x0, r), ∂G; G)) = 0.

Proof. If ∂G = {x0}, the assertion trivially holds. Thus we may assume that ∂G contains
at least two points. By the conformal invariance of the capacity, we may assume that
∞ ∈ ∂G. For brevity, we write B(r) = B

n
(x0, r) and S(r) = ∂B(r) throughout the proof.

Let M0 = M(�(K, ∂G; G)) < ∞ and choose r0 > 0 large enough so that K ⊂ B(r0). For a
decreasing sequence rj (j = 0, 1, 2, . . .) with rj → 0 (j → ∞), consider the ring Rj = {x ∈
Rn : rj+1 < |x − x0| < rj}. We can choose such a sequence so that

cj := cap Rj =
(

ωn−1

log (rj/rj+1)

)1/(n−1)

satisfies
∞∑

j=0

cj < ∞ .

For instance, for cj = 2−j, we define rj recursively by the formula

rj+1 = rj exp
(
−ωn−1 c1−n

j

)
= rj exp

(
−ωn−12(n−1)j

)
for j = 0, 1, 2, . . . . It is obvious that rj → 0 as j → ∞ for this choice. Let Kj = K ∩ Rj and
denote by �j the family of curves joining Kj and ∂G in the set {x ∈ G : rj+2 < |x − x0| <
rj−1} for j = 1, 2, . . . . Then the families �N+3j (j = 0, 1, 2, . . .) are disjointly supported and
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contained in the family �(K, ∂G; G) for N = 1, 2, 3, . . . . By Lemma 3·1 (ii) we obtain

∞∑
j=0

M(�N+3j) � M(�(K, ∂G; G)) = M0 (N = 1, 2, 3, . . .)

and hence

∞∑
j=1

M(�j) � 3M0.

For a given number η > 0, take a large enough integer N > 0 so that

∞∑
j=N

M(�j) < η and
∞∑

j=N−1

cj < η.

By construction, we easily see that the curve family �(Kj, ∂G; G) \ �j is minorised by the
family

�(S(rj), S(rj−1); Rj−1) ∪ �(S(rj+2), S(rj+1); Rj+1).

Thus, by Lemma 3·1 (i), we obtain

M(�(Kj,∂G; G))

� M(�j) + M(�(Kj, ∂G; G) \ �j))

� M(�j) + M(�(S(rj), S(rj−1); Rj−1)) + M(�(S(rj+2), S(rj+1); Rj+1))

= M(�j) + cap Rj−1 + cap Rj+1.

Therefore, we finally have

M(�(K ∩ B(rN), ∂G; G)) � M(�({x0}, ∂G; G)) +
∞∑

j=N

[
M(�j) + cj−1 + cj+1

]
< 0 + η + η + η = 3η.

Hence we obtain M(�(K ∩ B
n
(x0, r), ∂G; G)) < 3η for 0 < r � rN .

The next theorem due to Martio [35, theorem 3·4] will also be used in Section 4.

LEMMA 3·10. Let G be a proper subdomain of R
n

and fix a point a ∈ G. For a boundary
point x0 of G with x0 
= ∞, set

L(ε) = inf
K

M(�(K, ∂G; G)),

where the infimum is taken over all continua K joining a and the sphere Sn−1(x0, ε) in G.
Then M(x0, R

n \ G) = ∞ if and only if L(ε) → ∞ as ε → 0+.

It is clear that M-domains are invariant under Möbius transformations and conformal
mappings. We next give an example of an M-domain which does not have uniformly perfect
boundary.

https://doi.org/10.1017/S030500412200024X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200024X


Conformally invariant complete metrics 287

3·11. Example

Let {sk} and {rk} (k = 1, 2, 3, . . .) be two sequences of positive numbers converging to 0
monotonically with the following property:

(∗) αk := sk − rk − (sk+1 + rk+1) > 0.

Then the closed balls Bk = B
n
(ske1, rk), k = 1, 2, . . ., are disjoint because dist(Bk, Bk+1) =

αk > 0, where e1 = (1, 0, . . . , 0) ∈Rn. Let C = {0} ∪⋃∞
k=1 Bk and K0 = {x = (x1, . . . , xn) ∈

Rn : x1 � 0} ∪ {∞}. Note that the ring Rk = {x : rk < |x − ske1| < rk
′} separates C, where

rk
′ = rk + min{αk−1, αk}. Observe that αk−1 � αk if and only if 2sk − sk−1 − sk+1 � rk+1 −

rk−1. This condition is fulfilled when {sk} is convex.

(1) The domain G =R
n \ (K0 ∪ C) is an M-domain because every connected com-

ponent of K0 ∪ C is a continuum. However, ∂G is not uniformly perfect when
lim supk→∞ (rk

′/rk) = ∞. For instance, we can choose a convex sequence {sk} with
2sk+1 � sk (such as sk = 2−k) and let rk = 2−ksk for k � 1. Then

rk+1/rk = sk+1/(2sk) � 1/4, rk
′ = 2krk − (2k+1 + 1)rk+1

and thus

rk
′

rk
� 2k − 1

4
(2k+1 + 1) = 2k−1 − 2−2 → +∞

as k → ∞.

(2) Let G =R
n \ C. Suppose that the sequence of rings Ak = {x : sk − rk < |x| < sk + rk}

satisfies the condition lim supk→∞ mod Ak = ∞. For instance, we can take sk =
2−k2

, rk = sk − 2sk+1. Then M(0, C) = ∞. Indeed, for each k and t ∈ (sk − rk, sk + rk),
the sphere |x| = t intersects C by definition. Hence, for any continuum K with
0 ∈ K ⊂ G ∪ {0}, Lemma 3.7 now yields

M(�(K, ∂G; G)) � M(�(K, C; R
n
)) � cn log

sk + rk

sk − rk

for sufficiently large k. By the assumption, we have M(�(K, ∂G; G)) = ∞. In this
case, the singleton {0} is a connected component of ∂G but the condition M(0, R

n \
G) = ∞ is satisfied.

(3) Let G =R
n \ C again. Then

�(K0, C; G) ⊂
∞⋃

k=0

�k,

where �k = �(K0, Bk; R
n
) for k � 1 and �0 = �(K0, {0}; Rn

). Note that β0 :=
M(�0) = 0. Since the ring R(K0, Bk) contains Rk as a subring, we have

M(�k) = cap R(K0, Bk) � cap Rk = ωn−1(mod Rk)1−n = ωn−1

(
log

rk
′

rk

)1−n

.

https://doi.org/10.1017/S030500412200024X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412200024X


288 T. SUGAWA, M. VUORINEN, T. ZHANG

Let Dk = {x : |x − sk| < sk} for k � 1 and H = {x : x1 > 0} =R
n \ K0. Then

M(�k) = cap (H, Bk) � cap(Dk, Bk) = ωn−1

(
log

sk

rk

)1−n

=: βk

for k � 1. If
∑

k βk < +∞, we have

M(�(K0, C; G)) �
∞∑

k=0

M(�k) �
∞∑

k=0

βk < +∞.

Hence M(0, ∂G) < ∞ in this case. For instance, if we choose sk and rk so that rk = ske−k2

then βk = ωn−1k2−2n satisfies the above condition. Hence, M(0, R
n \ G) < ∞. This gives

an example of a non-isolated boundary point of a domain which does not satisfy the
M-condition.

3·12. Open problem

It is well known that the Hausdorff dimension of the boundary of a domain with uniformly
perfect boundary is positive [29]. We do not know whether the boundary of an M-domain
has positive Hausdorff dimension.

4. Modulus metric

In this section, we first give a definition of the modulus metric μG(x, y) and its dual quan-
tity λG(x, y). After that, we will prove Theorems 1·1 and 1·2. For further results, we refer to
[8, 12-15, 23, 31, 38, 39, 44, 56].

Definition 4·1 ([55, Chapter 8]). Let G be a proper subdomain of R
n

and x, y ∈ G. Then
we define

μG(x, y) = inf
Cxy

M(�(Cxy, ∂G; G)),

where the infimum runs over all curves Cxy in G joining x and y. We also define

λG(x, y) = inf
Cx,Cy

M(�(Cx, Cy; G)),

where the infimum runs over all curves Cx and Cy in G joining x (respectively y) and ∂G.

In some special cases, the extremal configurations for the curve families defining μG(x, y)
and λG(x, y) are known. Indeed, for the case when G =Bn and 0 
= x ∈Bn, y = 0, we have

μBn(x, 0) = M(�([0, x], ∂Bn; Bn)) = γn(1/|x|) , (4·2)

and, by the symmetry principle [19, theorem 4·3·5], with e = x/|x|,
λBn(x, 0) = M(�(( − e, 0], [x, e); Bn)) = 21−nM(�([ − ∞, 0], [x, e/|x|]; Rn

)) (4·3)

= 21−nM(�([ − e, 0], [
|x|2

1 − |x|2 e, +∞]; R
n
)) = 21−nτn(|x|2/(1 − |x|2)) ,

see [23, theorem 10·4] for details. Here, we recall that the Grötzsch capacity function γn(s)
and the Teichmüller capacity function τn(t) are defined by

γn(s) = M(�([0, se1], ∂Bn; Bn)) and τn(t) = M(�([ − e1, 0], [te1, ∞]; R
n
)) ,

for 0 < s < 1 and t > 0.
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Next we look at the case when G =Rn \ {0}. By the definition of λG(te1, −e1), t > 0, there
are two natural choices to connect te1 and −e1 with the boundary {0, ∞} of the domain G ,
either the pair [te1, 0), [− e1, −∞) or the pair [te1, ∞), [− e1, 0) . Therefore

λG(te1, −e1) = min{τn(1/t), τn(t)}
and, because τn : (0, ∞) → (0, ∞) is a strictly decreasing homeomorphism, for t > 1, we
have τn(t) < τn(1) < τn(1/t) and thus

λRn\{0}(te1, −e1) = τn(t) = M(�([− e1, 0), [te1, ∞); Rn \ {0})) , t > 1.

See [1, p.72] and [23, pp.178–181] for more details.
Suppose that G1 and G2 are proper subdomains of R

n
with G1 ⊂ G2. Then for a continuum

Cxy joining x and y in G1 we have �(Cxy, ∂G2; G2) > �(Cxy, ∂G1; G1). By Lemma 3·1 (i),
we further obtain for all x, y ∈ G1

μG2(x, y) � M(�(Cxy, ∂G2; G2)) � M(�(Cxy, ∂G1; G1)).

Hence μG2 (x, y) �μG1 (x, y). By definition, the quantities μG(x, y) and λG(x, y) are both con-
formally invariant. Ferrand [14] proved that λG(x, y)1/(1−n) is a distance function of G. Thus
λG(x, y)1/(1−n) is often called Ferrand’s modulus metric. When n = 2 and G is a simply
connected domain in R

n
with card (∂G) � 2, Ferrand’s modulus metric is the same as the

modulus metric (up to a constant multiple). Moreover, for n � 2 there exists [23, (9·12),
theorem 10·4] a constant cn > 0 depending only on n such that for all x, y ∈Bn

μBn(x, y) � 2n−1cn hBn(x, y) . (4·4)

LEMMA 4·5. Let G be a simply connected hyperbolic domain in R
2 =C. Then μG(x, y) =

4λG(x, y)−1.

Proof. Fix a pair of distinct points x, y ∈ G. The Riemann mapping theorem asserts that
there is a conformal homeomorphism f : G →B2 = {z ∈C : |z| < 1} such that f (x) = 0 and
f (y) = u ∈ (0, 1). Since the modulus metric and Ferrand’s modulus metric are conformally
invariant, we have μG(x, y) = μB2(0, u) and λG(x, y) = λB2(0, u). By (4·2) and (4·3) together
with (3·3), we can write

μB2 (0, u) = γ2(1/u) = 2τ2(u−2 − 1) and λB2 (0, u) = τ2(1/(u−2 − 1))/2 .

In view of the formula τ2(t)τ2(1/t) = 4 [2, 5·19 (7)], we obtain μB2 (0, u)λB2(0, u) = 4 and
thus the assertion.

We take this opportunity to state the following plausible fact with a short proof.

LEMMA 4·6. Let G be a domain in R
n

such that the complement F =R
n \ G is of positive

capacity. Then there is a positive constant c(F) such that the inequality

μG(x, y) � d0 min{q(x, y), c(F)} (4·7)

holds for x, y ∈ G, where d0 > 0 is a constant depending only on n. In particular, the modulus
metric μG induces the same topology on G as the relative topology on G induced by R

n
with

the spherical metric q.
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Proof. The inequality (4·7) follows from [55, theorem 6·1] and implies the inclusion map
(G, μG) → (R

n
, q) is continuous. In order to show the other inclusion map (G, q) → (G, μG)

is continuous, we may assume that G ⊂Rn and replace q by the Euclidean metric. Take an
arbitrary point x ∈ G and choose a small enough number r > 0 so that B := Bn(x, r) ⊂ G. By
the domain monotonicity of the modulus metric, we obtain

μG(x, y) �μB(x, y) = γn(r/|y − x|), y ∈ B,

by (4·2). Since γ (t) → 0 as t → +∞, we see that μG(x, y) → 0 as |y − x| → 0, which proves
the required assertion.

We are now in a position to prove the first main result.

4·8. Proof of Theorem 1·1
The part (i) ⇒ (ii) is obvious. We show now that (ii) implies (iii) by contradiction.

Suppose that G is not an M-domain, namely, M(x0, R
n \ G) < ∞ for some x0 ∈ ∂G. By the

conformal invariance, we may assume that x0 
= ∞. We write B(r) = Bn(x0, r) and B(r) =
B

n
(x0, r) for brevity. By definition, there is a continuum K with x0 ∈ K ⊂ G ∪ {x0} such

that M0 := M(�(K, ∂G; G)) < ∞. Take a point x1 from K ∩ G and fix it. Let r1 = |x1 − x0|
and K1 = K. For each x ∈ K ∩ B(r1) and r ∈ (0, |x − x0|), let K1(x, r) be the connected
component of K1 \ B(r) containing x. Note that K1(x, r) is a continuum. By construction,
K1(x, r) ⊂ K1(x, r′) for 0 < r′ < r < |x − x0|. We set

C1 = C(x1, K1) :=
⋃

0<r<r1

K1(x1, r).

Then, C1 is connected and, for x, y ∈ C1, we have x, y ∈ K1(x1, r) for some 0 < r < r0. In
particular, for such a pair of points x, y and r,

μG(x, y) � M(�(K1(x1, r), ∂G; G)) � M(�(K1, ∂G; G)).

We also see that x0 ∈ C1. Indeed, otherwise C1 would be a continuum in K \ B(ε) for small
enough ε > 0 and thus K1(x1, ε) ⊃ C1 ⊃ C1. Since K1(x1, ε) ⊂ C1, the set C1 would be closed
and have a positive distance to K \ C1, which would violate connectedness of K.

Let K2 be the connected component of the compact set K1 ∩ B(r1/2) containing x0. Since
x0 ∈ C1, we have C1 ∩ K2 
= ∅. Take a point x2 from C1 ∩ K2 and fix it. As before, set C2 =
C(x2, K2). Then C2 ⊂ C1 ∩ K2. Repeating this procedure, we define sequences of points xj,
continua Kj and connected sets Cj inductively with the following properties:

(i) Kj ⊂ B(r121−j);

(ii) xj ∈ Cj ⊂ Cj−1 ∩ Kj

(iii) x0 ∈ Cj ⊂ Kj and

(iv) μG(x, y) � M(�(Kj, ∂G; G)) for all x, y ∈ Cj.

In particular, we observe that

μG(xj, xk) � M(�(Kj, ∂G; G)), j � k.
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By Lemma 3·9, we have

M(�(Kj, ∂G; G)) � M(�(K ∩ B(r121−j), ∂G; G)) → 0 (j → ∞).

Hence, we conclude that {xj} is a Cauchy sequence in (G, μG). Suppose that this sequence is
convergent; that is, μG(xj, x∞) → 0 as j → ∞ for some x∞ ∈ G. On the other hand, since
|xj − x0|� r121−j, we have xj → x0 in R

n
. Lemma 4·6 now implies that x∞ = x0 ∈ ∂G,

which is a contradiction. Therefore, (G, μG) is not complete.
Finally, we prove that (iii) implies (i). If cap ∂G = 0, then

M(�(K, R
n \ G; G)) = M(�(K, ∂G; G)) = 0,

which is not allowed by condition (iii). Therefore, (G, μG) is a metric space under the
assumption (iii). Suppose next that the set X = {x ∈ G : μG(x, a) � r0} is not compact for
some a ∈ G and r0 > 0. Then there is a point x0 ∈ ∂X ∩ (∂G). We may assume that x0 
= ∞.
For every ε > 0, there exists a point x ∈ X ∩ Bn(x0, ε). By definition of X, M(�(K, ∂G; G)) �
r0 for a continuum K in G ∪ {x0} with a, x ∈ K. Therefore, under the notation in Lemma 3·10,
we obtain L(ε) � r0. However, the lemma implies that M(x0, R

n \ G) < ∞. By contradiction,
we have shown that (iii) implies (i).

Next we prove our second result.

4·9. Proof of Theorem 1·2
Since the uniform perfectness is Möbius invariant (Lemma 3·4), we may assume that

∞ ∈ ∂G and thus G ⊂Rn and diam(∂G) = +∞.
First suppose that the boundary ∂G of G is uniformly perfect. Lemma 3·5 implies that the

complement E =R
n \ G is also uniformly perfect. By a theorem of Järvi and Vuorinen [29],

E satisfies the metric thickness condition. Vuorinen [54] proved that for such a domain G
there exists a constant b1 > 0 such that for all x, y ∈ G

μG(x, y) � b1 ĵG(x, y).

Applying (2·13), we obtain (1·3) with b = b1/4.
We next suppose (1·3). Then by Lemma 2·12 (iii), we have μG(x, y) � b jG(x, y). Let E =

R
n \ G and

0 < c < c0 := exp

[
−2

(
2ωn−1

b log 3

)1/(n−1)
]

.

We prove now that {x : cr � |x − a|� r} ∩ E 
= ∅ for every a ∈ E \ {∞} and r > 0. Suppose,
to the contrary, that {x : cr � |x − a|� r} ∩ E = ∅ for some a ∈ E, a 
= ∞, and r > 0. Set
C1 = {x ∈Rn : |x − a|� cr} and C2 = {x ∈R

n
: |x − a|� r}. Then the assumption implies

that the set E decomposes into the two non-empty sets E1 = E ∩ C1 and E2 = E ∩ C2. Pick
two points x, y from the sphere S = Sn−1(a, ρ) so that |x − y| = 2ρ, where ρ = √

c r. We take
a curve C0

xy joining x and y in S. Then, by the subadditivity and monotonicity of the modulus
(Lemma 3·1), we obtain

μG(x, y) � M(�(C0
xy, E))

� M(�(C0
xy, E1)) + M(�(C0

xy, E2))

� M(�(S, C1; G1)) + M(�(S, C2; G2)),
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where G1 = {x : |x − a| < ρ} and G2 = {x : |x − a| > ρ}. As is well known [55, (5·10),
(5·14)],

M(�(S, C1; G1)) = M(�(S, C2; G2)) = ωn−1

( log 1/
√

c)n−1
,

we have

μG(x, y) � 2ωn−1

( − log
√

c)n−1
,

where ωn−1 is the (n − 1)-dimensional area of Sn−1. On the other hand, since dG(x) � |x −
a| = ρ and dG(y) � |y − a| = ρ, we obtain

jG(x, y) = log

(
1 + |x − y|

min{dG(x), dG(y)}
)
� log

(
1 + 2ρ

ρ

)
= log 3.

Thus we have b log 3 � 2ωn−1/(− log
√

c)n−1, that is,[
c � exp

[
−2(2ωn−1/b log 3)1/(n−1)

]
= c0,

]
a contradiction.

In the case when G is either Bn of Hn, the metric μG(x, y) has the explicit expression in
terms of the hyperbolic metric hG [55, theorem 8·6]

μG(x, y) = 2n−1 τn

⎛
⎝ 1

sinh2
(

1
2 hG(x, y)

)
⎞
⎠= γn

(
coth2

(hG(x, y)

2

))
. (4·10)

The decreasing homeomorphism μ : (0, 1] =⇒ [0, ∞) is defined by

μ(r) = π

2

K
(√

1 − r2
)

K(r)
, K(r) =

∫ π/2

0

dt√
1 − r2 sin2 t

,

for r ∈ (0, 1) , μ(1) = 0 . Now the Grötzsch capacity for n = 2 can be expressed as follows

γ2(s) = 2π

μ(1/s)
, s > 1 . (4·11)

In conjunction with the above relations (4·10), (4·11), when G is the unit disk B2 =D in C,
we obtain the expression

μD(z, w) = γ2

(
1

tanh 1
2 hD(z, w)

)
= 2π

μ
(

tanh 1
2 hD(z, w)

) , z, w ∈D.

The following estimate will be used later.

LEMMA 4·13.

μ(tanh x) <
π2

4x
, x > 0.

Proof. From [2, (5·29)], we note the inequality

μ(r) <
π2

4 artanh 4
√

r
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for 0 < r < 1. Let v = (tanh x)1/4 ∈ (0, 1) for x > 0. Since 0 < tanh x = v4 < v < 1, we obtain
x < artanh v. Hence,

μ( tanh x) = μ
(

v4
)

<
π2

4 artanh v
<

π2

4x
.

We are now ready to show our third result.

4·14. Proof of Theorem 1·6
Assume that G is a Möbius uniform domain in R

n
. By Möbius invariance of Definition

2·16, we may assume that G ⊂Rn. By virtue of Lemmas 2·8 and 2·12, the uniformity
assumption reads

kG(x, y) � c jG(x, y), x, y ∈ G

for a positive constant c. By [55, lemma 8·32 (ii)] (see also [23, lemma 10·7]) there are
positive constants b1, b2 depending only on n such that

μG(x, y) � b1kG(x, y) + b2

for all x, y ∈ G. In view of Lemma 2·12, we have the required inequality with dj = cbj

(j = 1, 2).
Next we assume that the inequality (1·7) holds for a simply connected domain G in C

with non-degenerate boundary. We can also assume that G ⊂C. Then, as is well known,
the Koebe one-quarter theorem leads to the inequality kG(x, y) � 2hG(x, y). By the Riemann
mapping theorem, there is a conformal homeomorphism f : G →B2 =D. Since μG and hG

are conformally invariant, we obtain the formula

μG(x, y) = μD(f (x), f (y)) = 2π

μ
(

tanh 1
2 hD(f (x), f (y))

) = 2π

μ
(

tanh 1
2 hG(x, y)

) .

We now apply Lemma 4·13 to get

μG(x, y) � 4

π
hG(x, y) � 2

π
kG(x, y).

Combining this with (1·7) and Lemma 2·12, we have

kG(x, y) � π

2
μG(x, y) � π

2
(2d1jG(x, y) + d2).

Now a result of Gehring and Osgood [20] implies that G is uniform.

4·15. Open problem

As pointed out above, in the case of planar simply connected domains the modulus metric
can be expressed as a function of the hyperbolic metric. We do not know, whether for a
general hyperbolic planar domain, the hyperbolic metric has a minorant in terms of the
modulus metric.

5. Application to quasimeromorphic maps

The modulus of a curve family is one of the most important conformal invariants of geo-
metric function theory which provides a bridge connecting geometry and potential theory.
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The modulus is the main tool of the theory of quasiconformal, quasiregular and quasimero-
morphic mappings in Rn [2, 19, 23, 45, 46, 52]. These mappings are the higher dimensional
counterparts of the classes of conformal, analytic, and meromorphic functions of classical
function theory, respectively. We will now apply our results to prove a Möbius invariant
counterpart of a result of Gehring and Osgood [20] for quasimeromorphic mappings.

We make use of some basic facts of the theory of quasiconformal, quasiregular, and
quasimeromorphic mappings which are readily available in [45, 46, 52, 55]. The first result
shows a Lipschitz type property of quasimeromorphic mappings with respect to the modulus
metric. Note that these mappings are locally Hölder-continuous with respect to the Euclidean
metric as some basic examples show [52, 16·2].

THEOREM 5·1 [55, theorem 10·18]. Let f : G1 → G2 be a non-constant K-
quasimeromorphic mapping where G1, G2 ⊂R

n
. Then for all x, y ∈ G1,

μG2(f (x), f (y)) � K μG1 (x, y) .

In particular, f : (G1, μG1) → (G2, μG2 ) is Lipschitz continuous.

D. Betsakos and S. Pouliasis [8] have recently proved that if f is an isometric homeomor-
phism between the metric spaces

f : (G1, μG1) =⇒ (G2, μG2 ),

then f is quasiconformal and it is conformal if n = 2 . This result gives a solution to
a question of Ferrand– Martin– Vuorinen [15] when n = 2. Very recently this result
was strengthened by Pouliasis and Yu. Solynin [44] and independently by Zhang [56]:
μ-isometries are conformal in all dimensions n � 2 .

We next prove a Harnack-type inequality.

THEOREM 5·2. Let f : G1 → G2 be a K-quasiregular mapping where G1 , G2 are sub-
domains of Rn , n � 2 . If the boundary ∂G2 is uniformly perfect, then the function

uf (x) := dG2(f (x)) = inf{|f (x) − z|: z ∈ ∂G2}
satisfies the Harnack inequality, i.e. there exists a constant D1 such that for all x ∈ G1 , and
all y ∈ B̄n(x, dG1(x)/2) ,

uf (x) � D1 uf (y). (1)

Moreover, there exists a constant D2 such that for all x, y ∈ G1

kG2(f (x), f (y)) � D2 max{kG1(x, y)α , kG1 (x, y)} , α = K1/(1−n). (2)

Proof. Fix x ∈ G1 and y ∈ B̄n(x, d/2) , where d = dG1(x). Then the ring R = {z : d/2 < |z −
x| < d} separates {x, y} from ∂G1 and mod R = log 2. Therefore, by the definitions of μG1 ,

μG1(x, y) � M(�([x, y], G1)) � cap R = ωn−1(log 2)1/(n−1) =: M,

where we used the relation �([x, y], G1) > �(Sn−1(x, d/2), Sn−1(x, d); R) and Lemma 3·1
(ii). (A similar estimate is found at [55, 8·8].) Because ∂G2 is uniformly perfect, it follows
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from Theorem 1·2 and Lemma 2·12 that

μG2 (f (x), f (y)) � cδG2(f (x), f (y)) � cjG2(f (x), f (y)) .

Next, by Theorem 5·1
μG2 (f (x), f (y)) � K μG1(x, y) � K M .

The Harnack inequality (1) with the constant D1 = exp (KM/2) then follows, because for all
z ∈ ∂G2 [55, (2·39)]

jG2(f (x), f (y)) � log
|f (x) − z|
|f (y) − z| .

The proof of (2) follows now from [55, theorem 12·5].

We are next going to prove the following theorem, which extends a result of Gehring and
Osgood [20, theorem 3] for quasiconformal mappings. This proof is based on the above
Harnack inequality.

THEOREM 5·3. Let f :G1 → G2 be a K-quasimeromorphic mapping where G1 , G2 ⊂
R

n
, n � 2 . If the boundary ∂G2 is uniformly perfect, then there exists a constant d3 > 0

such that for all x, y ∈ G1

σG2(f (x), f (y)) � d3 max{σG1(x, y)α , σG1(x, y)} , α = K1/(1−n) .

We prove below in Example (5·5) that the uniform perfectness of G2 cannot be dropped
from Theorem 5·3 and the same example also shows that a similar remark applies to
Theorem 5·2. In this example, the image domain G2 has one isolated boundary point and
cannot therefore be uniformly perfect.

5·4. Proof of Theorem 5·3
Choose Möbius transformations f1, f2 such that 0, ∞ ∈ ∂f1(G1) and 0, ∞ ∈ ∂f2(G2) . Then

g = f2 ◦ f ◦ f −1
1 : f1(G1) −→ f2(G2)

is K-quasiregular and by Theorem 5·2 we have

kf2(G2)(g(x), g(y)) � d3 max{kf1(G1)(x, y)α , kG1(x, y)} , α = K1/(1−n) .

Because f1(G1), f2(G2) ⊂Rn , we obtain by Lemma 2·8 (iii) a similar inequality for the σ

metric, with a bit different constants.

5·5. Example

To show that the condition ∂G2 be uniformly perfect cannot be dropped from Theorem
5·3, we consider the analytic function g(z) = exp ((z + 1)/(z − 1)) which maps the unit
disk B2 onto B2 \ {0} . Let G1 =B2 and G2 =B2 \ {0}, and let xj = (ej − 1)/(ej + 1) for
j = 1, 2, . . .. Then uj = g(xj) = exp ( − ej). The standard formula for the hyperbolic distance
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[4, pp.38–40], [55, (2·17)] shows that

hG1(xj, xj+1) =
∫ xj+1

xj

2dx

1 − x2
= 2 artanh (xj+1) − 2 artanh (xj) = 1

where as

kG2(g(xj), g(xj+1)) =
∫ uj

uj+1

du

u
= ej+1 − ej = (e − 1)ej → +∞

as j → ∞. Thus by (i) and (ii) of Lemma 2·8, when j → ∞, σG2(g(xj), g(xj+1)) → +∞ while
σG1(xj, xj+1) = hG1 (xj, xj+1) = 1. This demonstrates that uniform perfectness is needed in
Theorem 5·3.

6. Logarithmic Möbius metric

In this section we study the logarithmic Möbius metric

�G(z, w) = log (1 + δG(z, w)) , z, w ∈ G ,

on a planar domain G in C=R2 and prove Theorem 1·15. Though the hyperbolic met-
ric hG(z, w) is majorized by twice the Möbius metric 2δG(z, w) for an arbitrary hyperbolic
domain G ⊂C (see [47]), the logarithmic Möbius metric �G(z, w) is not expected to
majorize hG(z, w) in general. Indeed, δG(z, w) is Lipschitz equivalent to hG(z, w) if ∂G is
uniformly perfect as we noted in Introduction. However, the situation is different when ∂G
consists of finitely many points. We now prove the first part of Theorem 1·15. By using the
results from [50] or [49], we could obtain more explicit estimates for the bound c = c(A).
However, for brevity, we shall be content with existence of c > 0 only.

Proof of the first part of Theorem 1·15. Let A be a finite set in C with card (A) � 3 and
G =C \ A. Since both metrics are Möbius invariant, we may assume that ∞ ∈ A so that
G ⊂C. We now consider the function

F(z, w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hG(z, w)

�G(z, w)
(z 
= w)

ρG(z)

wG(z)
(z = w)

on G × G. Here, ρG(z) is the density of the hyperbolic metric on G and wG(z) is defined in
(2·7). Our aim is to find an upper bound of F(z, w). Since the hyperbolic distance is induced
by the Riemannian metric ρG(z)|dz|, we have

lim
w→z

hG(z, w)

|z − w| = ρG(z)

for z ∈ G. On the other hand, by definition of the metric δG(z, w) and the property log (1 +
x) = x + O(x2) (x → 0), we have

lim
w→z

�G(z, w)

|z − w| = lim
w→z

δG(z, w)

|z − w|
= lim

w→z

mG(z, w)

|z − w|
= wG(z)
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for z ∈ G. Therefore, we see that the function F(z, w) is continuous on G × G. Since C×C

is compact, in order to prove that sup(z,w)∈G×G F(z, w) < +∞, it is enough to prove that

F̂(ζ , ω) := lim sup
(z,w)→(ζ ,ω)

F(z, w) < +∞

for each (ζ , ω) ∈ ∂(G × G). Note that ∂(G × G) = (∂G × G) ∪ (G × ∂G) ∪ (∂G × ∂G).
When (a, z0) ∈ ∂G × G = A × G, by Lemma 1·10, we have F̂(a, z0) = 1. (If a = ∞, with
the Möbius invariance of F(z, w) in mind, we may consider the inversion 1/z to reduce to
the finite case.) Likewise, we can see that F̂(z0, a) = 1.

The remaining case is when (a, b) ∈ ∂G × ∂G. We may further assume that a 
= ∞ 
= b. If
a 
= b, letting C > |a − b|2 be a suitable constant, we have

mG(z, w) = |a, z, b, w| = |a − b||z − w|
|a − z||b − w| �

C

|a − z||b − w|
for z, w with |z − a| < ε and |w − b| < ε, where ε > 0 is a small enough number. Therefore,
taking a fixed point z0 ∈ G, we have for the same z, w,

F(z, w) � hG(z, z0) + hG(z0, w)

�G(z, w)

� hG(z, z0)

log
[
1 + log (1 + C′/|a − z|)] + hG(z0, w)

log
[
1 + log (1 + C′/|b − w|)] ,

where C′ = C/ε. Taking the upper limit as z → a and w → b, with the help of (1·12), we
finally get F̂(a, b) � 2.

If a = b, assuming a = 0 and D∗ ⊂ G ⊂C \ {0, 1} as before, we have the esti-
mates hG(z, w) � hD∗(z, w) and mG(z, w) � mC\{0,1}(z, w) for z, w ∈D∗. Hence, F(z, w) �
hD∗(z, w)/�C\{0,1}(z, w). The expected claim is now implied by (6·4), which is a conse-
quence of the following lemma.

Let E∗ := {z : 0 < |z|� e−1}. For z1, z2 ∈ E∗, define

D(z1, z2) = 2 sin(θ/2)

max{τ1, τ2} + |log τ2 − log τ1| , (6·1)

where τ1 = log (1/|z1|), τ2 = log (1/|z2|), θ = | arg (z2/z1)| ∈ [0, π]. It is known that
D(z1, z2) is a distance function on E∗ (see [50, lemma 3·1]).

LEMMA 6·2. Let � =C \ {0, 1}.
(i) hD∗(z1, z2) � (π/4)D(z1, z2) for z1, z2 ∈ E∗.

(ii) D(z1, z2) � M0��(z1, z2) for z1, z2 ∈ E∗, where M0 = 2/ log (1 + log 3) = 2.6980 . . ..

The constants π/4 and M0 are sharp, respectively.

Proof. Part (i) is contained in theorem 3·2 of [50]. The sharpness is observed for z1 =
e−τ , z2 = −e−τ as τ → +∞. We prove only part (ii). Let z1, z2 ∈ E∗. We may assume that
|z1|� |z2| by relabeling if necessary. Then |zj| = e−τj (j = 1, 2) for some 1 � τ2 � τ1 < +∞.
We put τ = τ2, s = τ1/τ and ϕ = sin (θ/2), where θ = | arg (z2/z1)| ∈ [0, π]. Then s � 1,
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0 � ϕ � 1. By definition, we have

m�(z1, z2) � |z1 − z2|
|z1| =

√
(eτ (s−1) − 1)2 + 4ϕ2eτ (s−1).

Let x := es−1 � 1. Then

��(z1, z2) � log
[
1 + log (1 +

√
(xτ − 1)2 + 4ϕ2xτ )

] =: f1(τ , ϕ, x), and

D(z1, z2) = 2ϕ

sτ
+ log (1 + log x) =: f2(τ , ϕ, x).

Further let

f3(τ , ϕ, x) := f2(τ , ϕ, x) − M0f1(τ , ϕ, x).

Then f3(τ , ϕ, x) is decreasing in 1 � τ < +∞, and thus f3(τ , ϕ, x) � f3(1, ϕ, x) for τ � 1. By
straightforward computations, we have

∂2

∂ϕ2
f1(1, ϕ, x) � 0 and

∂2

∂ϕ2
f2(1, ϕ, x) = 0.

Therefore f3(1, ϕ, x) is convex in 0 � ϕ � 1. Since

f3(1, 1, x) = 2

1 + log x
+ log (1 + log x) − M0 log (1 + log (x + 2)),

it is easy to verify that f3(1, 1, x) is decreasing in 1 � x, which leads to f3(1, 1, x) �
f3(1, 1, 1) = 0. Noting that f3(1, 0, x) = (1 − M0) log (1 + log x) < 0, we have f3(1, ϕ, x)� 0
from convexity, and thus f3(τ , ϕ, x) � f3(1, ϕ, x) � 0. This completes the proof of the
required inequality. To show its sharpness, it is enough to put z1 = e−1 and z2 = −e−1.

Remark 6·3. As an immediate consequence of the lemma, we have the inequality

hD∗(z1, z2) � π

2 log(1 + log 3)
�C\{0,1}(z1, z2), 0 < |z1|, |z2|� e−1. (6·4)

As the reader can observe in the proof, this constant (π/4)M0 ≈ 2.11904 is not sharp.

We now complete the proof of Theorem 1·15.
Proof of the second part of Theorem 1·15. Let G be a hyperbolic domain in C with a

puncture at the point a. Suppose that �(δG(z, w)) � hG(z, w) for z, w ∈ G. By the Möbius
invariance of δG and hG, we may assume that a = 0 and that D∗ ⊂ G ⊂C. Then mG(x, −x) �
|0, x, ∞, −x| = 2 and thus δG(x, −x) � log 3 for 0 < x < 1. Therefore, we would have
�( log 3) � hG(x, −x). On the other hand, letting γ be the upper half of the circle |z| = x,
we obtain

hG(x, −x) � hD∗(x, −x) �
∫

γ

|dz|
|z| log (1/|z|) = π

log (1/x)
.

Since log (1/x) → +∞ as x → 0+, we observe that hG(x, −x) → 0 as x → 0+, which
contradicts the above.
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