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Characterization of soft materials, such as polymers, using conventional transmission electron 

microscopy (TEM) techniques typically applied to harder materials (i.e. metals and ceramics), normally 

results in beam damage while essentially providing no structural information. Four-dimensional 

scanning TEM (4D-STEM) captures the complete reciprocal space information while allowing for the 

practical evaluation of applied dose, addressing the challenges associated with the characterization of 

soft materials [1]. 

 

Conductive polymer binders provide both electronic conductivity and mechanical support for Si-based 

composite anodes in Li-ion batteries [2,3,4]. They moderate volume changes during electrochemical 

cycling and provide improved capacity retention. Promising polymer binders include poly(9,9-

dioctylfluorene-co-fluorenone-co-methylbenzoic ester), abbreviated as PFM, and some of its derivatives. 
 

In this work, spin-coated TEM samples of polyfluorene-based polymers were characterized using 4D-

STEM in order to address the in-plane structure of the polymer chains at the nanometer length scale at 

different annealing conditions. The polymer exhibits stronger scattering at lower q values as compared 

to typical crystalline materials. Using 4D-STEM, we could discern between rotationally homogeneous 

and oriented lobes of low-q scattering, indicating crystallinity associated with - stacking between the 

polymer chains. Example diffraction patterns are shown in Figure 1(a-c). 

 

The orientation of the polymer chain alignment (and associated - stacking) was then mapped to reveal 

the granular morphology (see Fig. 1 (d-e)), where in this context a grain is defined as a region of 

continuous single orientation of the - stacking, which does not change abruptly. The implication of 

the grain morphology will be discussed in terms of electrochemical behavior and compared to X-ray 

diffraction and other characterization techniques [5]. 
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Figure 1. (a)-(c) examples of diffraction patterns from different annealing conditions (weighted average 

over 3x3 pixels). (d) and (e) flow line maps of the polymer chains corresponding to some of the samples 

with diffraction patterns shown in (a-c). 
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