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Let G be a compact connected simple Lie group of type (n1, . . . , nl), where
n1 < · · · < nl. Let Gk be the gauge group of the principal G-bundle over S4

corresponding to k ∈ π3(G) ∼= Z. We calculate the mod-p homology of the classifying
space BGk provided that nl < p − 1.

Keywords: Gauge group; classifying space; homology

2020 Mathematics subject classification: Primary: 55R40
Secondary: 81T13

1. Introduction

Let G be a Lie group and P → X be a principal G-bundle over a manifold X.
Automorphisms of P are by definition G-equivariant self-maps of P covering the
identity map of X. The topological group of automorphisms of P is called the gauge
group of P ; we denote this group by G(P ). The classifying space of G(P ) is denoted
by BG(P ).

Gauge groups are fundamental in modern physics and geometry. Since the clas-
sifying space BG(P ) is homotopy equivalent to the moduli space of connections
on P as in [1], the topology of gauge groups over 4-manifolds and their classifying
spaces has proved to be of immense value in studying diffeomorphism structures on
4-manifolds [5], Yang–Mills theory [2], and invariants of 3-manifolds [6]. Donaldson
famously used the rational cohomology of BG(P ) in the case when G = SU(2) and
X is a simply-connected 4-manifold in order to construct polynomial invariants to
distinguish diffeomorphism types. Ever since, an important problem has been to
calculate the mod-p (co)-homology of BG(P ) when G = SU(2) and X is a simply-
connected 4-manifold for a prime p, in the hope of finding new polynomial invariants
of diffeomorphism types.

A certain subring of the mod-2 cohomology of BG(P ) was studied by Masbaum
[16] when G = SU(2) and X is a simply-connected closed 4-manifold, but otherwise
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nothing else is known. In terms of other Lie groups, Choi [3] has some partial
results on the mod-2 homology for G = Sp(n) and X = S4. In this paper we make
significant progress, completely calculating the mod-p homology of BG(P ) for a
family of Lie groups G when X = S4. In particular, this includes the pivotal case
of G = SU(2) for p � 5.

To state our results, we need some notation. Let G be a compact connected simple
Lie group. Principal G-bundles over S4 are classified by π3(G), where π3(G) ∼= Z

since G is simple. Let Gk denote the gauge group of a principal G-bundle over S4

corresponding to k ∈ Z ∼= π3(G). Let Mapk(S4, BG) be the component of the space
of continuous (not necessarily pointed) maps from S4 to BG which are of degree
k, and similarly define Map∗

k(S4, BG) with respect to pointed maps. There is a
fibration

Map∗
k(S4, BG) → Mapk(S4, BG) ev−→ BG (1.1)

where ev evaluates a map at the basepoint of S4. Let G〈3〉 be the three-connected
cover of G. For each k ∈ Z, the space Map∗

k(S4, BG) is homotopy equivalent to
Ω3G〈3〉. By [1, 7], there is a homotopy equivalence BGk � Mapk(S4, BG). Thus
there is a homotopy fibration

Ω3G〈3〉 → BGk
ev−→ BG. (1.2)

The Lie group G has type (n1, . . . , nl) if the rational cohomology of G is gen-
erated by elements in degrees 2n1 − 1, . . . , 2nl − 1, where n1 < · · · < nl. Unless
otherwise indicated, homology is assumed to be with mod-p coefficients.

Theorem 1.1. Let G be a compact connected simple Lie group of type (n1, . . . , nl)
and let p be a prime. If nl < p − 1 then there is an isomorphism of Z/pZ-vector
spaces

H∗(BGk) ∼= H∗(BG) ⊗ H∗(Ω3G〈3〉).

Under the assumption of theorem 1.1 the Lie group G is p-locally homotopy
equivalent to the product

∏l
i=1 S2ni−1, so we can also calculate the Poincaré

series of H∗(BGk) by theorem 1.1 (corollary 4.5). Remarkably, theorem 1.1 implies
that the mod-p homology of BGk is independent of k for p large, whereas there
is more than one p-local homotopy type in the family {BGk}k∈Z for p large as
was proved in [12]. The approach to theorem 1.1 is to consider the Serre spec-
tral sequence applied to the fiberwise coproduct of (1.2). Control is obtained
over the differentials by showing that the first nontrivial differential is a trans-
gression on a certain element, which is not obvious, and then atomicity-style
arguments (cf. [18]) are used to show the spectral sequence must collapse at the
E2-term.

Of key interest is when G = SU(2). Theorem 1.1 holds if p � 5 in this case. We
also obtain partial results for the prime 3, which are of a different flavour than those
in theorem 1.1. Let (m, n) denote the gcd of integers m and n. For (k, 3) = 1, it
is the Serre spectral sequence for the homotopy fibration SU(2) → Ω3SU(2)〈3〉 →
BGk induced from (1.2) that collapses at the E2-term.
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Theorem 1.2. Let G = SU(2) and p = 3. If (k, 3) = 1 then there is an isomor-
phism of Z/3Z-vector spaces

H∗(BGk) ∼= H∗(Ω3S3〈3〉)/(x3)

where x3 is a generator of H3(Ω3S3〈3〉) ∼= Z/3Z and (x3) is the ideal generated by
x3.

The case (k, 3) = 3 is still open. The difference of the mod-p homology of BGk

for G = SU(2) in Theorems 1.1 and 1.2 comes from the homotopy commutativity
of SU(2); it is homotopy commutative if and only if p � 5 as in [17]. This is notable
because the product decomposition Gk � G × Ω4G〈3〉 as An-spaces is guaranteed
by the higher homotopy commutativity of G as in [11, 12], whereas theorem 1.1
shows the homological product decomposition as A∞-spaces.

2. Serre spectral sequence

Consider a homotopy fibration

F → E → B (2.1)

over a path-connected base B such that F is an H-space and there is a fiberwise
action of F on E which restricts to the multiplication of F . We assume that π1(B)
acts trivially on H∗(F ). Let (Er, dr) denote the associated homology Serre spectral
sequence.

Lemma 2.1. There is a coalgebra map

μ : Er
p,q ⊗ Hq′(F ) → Er

p,q+q′

having the following properties.

(1) The map

μ : Hp(B) ⊗ Hq(F ) = E2
p,0 ⊗ Hq(F ) → E2

p,q

coincides with the canonical isomorphism;

(2) For x ∈ Er and y ∈ H∗(F ),

dr(μ(x ⊗ y)) = μ(dr(x) ⊗ y).

Proof. Since the action of F on E is fiberwise, there is a homotopy commutative
diagram

Since rows of this diagram are homotopy fibrations, there is a map between
associated homology Serre spectral sequences. Since the homology Serre spectral
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sequences of the top row is isomorphic with (Er ⊗ H∗(F ), dr ⊗ 1), we obtain the
map μ. By definition, μ is a coalgebra map. The second statement holds because
the differential on H∗(F ) in Er ⊗ H∗(F ) is trivial. Let p : E → B denote the pro-
jection. For each y ∈ E, π−1(π(y)) is homotopy equivalent to the orbit space y · F
including y. Therefore, by the construction of the Serre spectral sequence, the first
statement holds. �

Corollary 2.2. If d2 = · · · = dr−1 = 0, then the map μ : Er
p,0 ⊗ Hq(F ) → Er

p,q

coincides with the canonical isomorphism

Er
p,q

∼= Hp(B) ⊗ Hq(F ).

Let F → E → B be a homotopy fibration which is a homotopy retract of (2.1).
Let (E

r
, d

r
) denote the associated homology Serre spectral sequence.

Lemma 2.3. If d
2

= · · · = d
r−1

= 0 and d
r 	= 0, then the following statements

hold:

(1) d
r
x 	= 0 for some x ∈ H∗(B) = E

r

∗,0;

(2) If y is an element of least degree in H∗(B) = E
r

∗,0 with d
r
y 	= 0, then y is

transgressive and d
r
(y) is a primitive element of H∗−1(F ) = Êr

0,∗−1.

Proof. Let i : E
2 → E2 and q : E2 → E

2
denote the inclusion and the retraction,

respectively. Since

d2(x) = d2(i∗(x)) = i∗(d
2
(x)) = 0

the hypothesis that d
2

= 0 implies that d2 = 0. Therefore E
3

= E
2

is a retract of
E3 = E2. Iterating this argument, since d3 = · · · = d

r−1
= 0, we also obtain d2 =

· · · = dr−1 = 0 and therefore E
r

is a retract of Er. The inclusion and retraction at
the rth-stage may still be denoted by i : E

2 → E2 and q : E2 → E
2
. Suppose that

d
r
(x) = 0 for all x ∈ Hp(B) = Êr

p,0. Then

dr(x) = dr(i∗(x)) = i∗(d
r
(x)) = 0,

implying dr = 0 by lemma 2.1 and corollary 2.2. This is a contradiction, so the first
statement is proved.

Let y be an element of least degree element in H∗(B) = E
r

∗,0 such that d
r
y 	= 0.

Let Δ denote comultiplication, and set

Δ(y) = y ⊗ 1 + 1 ⊗ y +
∑

i

y′
i ⊗ y′′

i

where |y′
i| < |y| and |y′′

i | < |y| for each i. Since y is an element of least degree in
H∗(B) = Er

∗,0 with dry 	= 0, we have dry′
i = 0 and dry′′

i = 0 for each i. Therefore

Δ(dr(y)) = dr(Δ(y)) = dr

(
y ⊗ 1 + 1 ⊗ y +

∑
i

y′
i ⊗ y′′

i

)
= dr(y) ⊗ 1 + 1 ⊗ dr(y)

so dr(y) is primitive.
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If r < |y|, then by corollary 2.2, dr(y) = μ(a ⊗ b) for some non-trivial a ∈
H|y|−r(B) and b ∈ Hr−1(F ). This is impossible because μ(a ⊗ b) is not primitive
by lemma 2.1. Thus r � |y|. Clearly, r � |y| since r > |y| implies dr(y) lands in the
second quadrant of the spectral sequence, which is zero. Therefore r = |y|, implying
that y is transgressive. Moreover, since

d
r
(y) = d

r
(q∗(y)) = q∗(dr(y))

and dry is primitive, d
r
y is also primitive. Therefore the second statement is proved.

�

Next, we consider a family of homotopy fibrations Fn → En → B with a com-
mon base B for n ∈ Z. Let (Er

n, dr
n) denote the associated homology Serre spectral

sequence. We can form a homotopy fibration

∐
n∈Z

Fn →
∐
n∈Z

En → B.

Let (Êr, d̂r) denote the associated homology spectral sequence.

Lemma 2.4. If (Êr, d̂r) collapses at the second term, then so does (Er
n, dr

n) for each
n ∈ Z.

Proof. Since there are isomorphisms

(E2
n)p,q

∼= Hp(B) ⊗ Hq(Fn) and Ê2
p,q

∼= Hp(B) ⊗
(⊕

n∈Z

Hq(Fn)

)
,

the inclusion En → E induces an injection E2
n → Ê2. Then the statement is proved

by induction on r. �

3. The mod-p homology of Ω3G〈3〉 when G is p-regular

Localize at an odd prime p and take homology with mod-p coefficients. If G is p-
regular of type (n1, . . . , nl) then there is a homotopy equivalence G �∏l

i=1 S2ni−1.
Therefore

Ω3G〈3〉 � Ω3S3〈3〉 ×
l∏

i=2

Ω3S2ni−1. (3.1)

This is an equivalence of H-spaces and so induces an isomorphism of Hopf algebras
in homology. In this section we record a property of Ω3G〈3〉 which will be important
later. This begins with a general definition.
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In general, for a path-connected space X of finite type, let PH∗(X) be the
subspace of primitive elements in H∗(X). Let

Pn
∗ : Hq(X) → Hq−2(p−1)n(X)

be the dual of the Steenrod operation Pn. For r � 1, let βr be the rth-Bockstein.
Let MH∗(X) be the subspace of PH∗(X) defined by

MH∗(X) = {x ∈ PH∗(X) | Pn
∗ (x) = 0 for all n > 0 and βr(x) = 0 for all r � 1}.

Since MH∗(X) records information about the primitive elements in H∗(X), if X �
A × B then

MH∗(X) = MH∗(A × B) = MH∗(A) ⊕ MH∗(B).

Now consider MH∗(Ω3G〈3〉). The product decomposition (3.1) implies that

MH∗(Ω3〈G〉) = MH∗(Ω3S3〈3〉) ⊕
(

l⊕
i=2

MH∗(Ω3S2ni−1)

)
. (3.2)

By [4] there is an isomorphism of Hopf algebras

H∗(Ω3S2n+1) ∼=
⊗

k�1,j�0

Λ(a2(npk−1)pj−1)

⊗
⊗

k�1,j�1

Z/pZ[b2(npk−1)pj−2] ⊗
⊗
k�0

Z/pZ[c2nk−2] (3.3)

such that |ai| = |bi| = i. Here, the generators are primitive and many are related
by the action of the dual Steenrod algebra. Selick [18] determined MH∗(Ω3S2n+1)
in full, we record only the subset of elements of odd degree.

Lemma 3.1. If n > 1 then MHodd(Ω3S2n+1) = Z/pZ{a2np−3}.

In the references that follow for Ω3S3〈3〉, the statements in [19] are in terms
of Anick spaces, but by [8] the space ΩS3〈3〉 is homotopy equivalent to the Anick
space T 2p+1(p) for p � 3. By [19, proposition 4.1], for p odd there is an isomorphism
of Hopf algebras

H∗(Ω3S3〈3〉) ∼= H∗(Ω2S2p−1) ⊗ H∗(Ω3S2p+1) (3.4)

which respects the action of the dual Steenrod operations and the Bockstein oper-
ations. This can be phrased in terms of a generating set using the isomorphism of
Hopf algebras

H∗(Ω2S2p−1) ∼=
∞⊗

k=0

Λ(ā2(p−1)pk−1) ⊗
∞⊗

k=1

Z/pZ[b̄2(p−1)pk−2] (3.5)

proved in [4], where |āi| = |b̄i| = i, and the n = p case of (3.3). Again, the generators
are primitive and many are related by the action of the dual Steenrod algebra.
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A description of MH∗(Ω3〈3〉) in full was given in [19, lemma 4.2], but again we
need to only record the subset of elements of odd degree.

Lemma 3.2. MHodd(Ω3S3〈3〉) = Z/pZ{ā2p−3}.

Combining (3.2), lemmas 3.1 and 3.2 we obtain the following.

Lemma 3.3. If G is p-regular of type (n1, . . . , nl) then

MHodd(Ω3G〈3〉) = Z/pZ{ā2p−3, a2n2p−3, . . . , a2nlp−3}.

4. The proof of theorem 1.1

We continue to localize at an odd prime p and take homology with mod-p coef-
ficients. Let G be a compact connected simple Lie group of type (n1, . . . , nl).
Consider the homotopy fibration sequence

G
∂k−→ Ω3G〈3〉 gk−→ BGk

ev−→ BG.

First, we show properties of ∂k : G → Ω3G〈3〉.

Lemma 4.1. Suppose that G is p-regular. Then ∂k are null homotopic for all k if
and only if nl < p − 1.

Proof. Let εi : S2ni−1 → G be the inclusion for i = 1, . . . , l, where G �∏l
i=1 S2ni−1. By [15] ∂k corresponds to the Samelson product 〈kε1, 1G〉 through the

adjoint congruence [G, Ω3G〈3〉] ∼= [S3 ∧ G, G], where Ω3G〈3〉 is homotopy equiva-
lent to the component of Ω3G containing the basepoint. By the linearity of Samelson
products, 〈kε1, 1G〉 = k〈ε1, 1G〉. Thus we aim to get a condition that guarantees
the triviality of 〈ε1, 1G〉. Arguing as in [10], we can see that 〈ε1, 1G〉 is trivial if
and only if 〈ε1, εi〉 is trivial for all i. It is shown that 〈ε1, εi〉 is trivial for all i if
and only if nl < p − 1 in [13] when G is a classical group and in [9] when G is an
exceptional group. Thus the proof is complete. �

Since Gk is homotopy equivalent to the homotopy fibre of ∂k, the following is
immediate from proposition 4.1.

Corollary 4.2. If nl < p − 1 then there is a homotopy equivalence Gk � G ×
Ω4G〈3〉.

Next, we consider the map gk : Ω3G〈3〉 → BGk.

Lemma 4.3. If nl < p − 1 then the restriction of (gk)∗ to MHodd(Ω3G〈3〉) is an
injection.

Proof. First, for n � 2, consider the homotopy fibration Ω4S2n+1 → ∗ → Ω3S2n+1.
We claim that the element a2np−3 ∈ H∗(Ω3S2n+1) transgresses to a nonzero element
in H∗(Ω4S2n+1). To see this, let E2 : S2n−1 → Ω2S2n+1 be the double suspen-
sion. Let Wn be the homotopy fibre of E2. Then there is a homotopy fibration

https://doi.org/10.1017/prm.2022.61 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.61


1812 D. Kishimoto and S. Theriault

ΩS2n+1 ΩE2

−−−→ Ω3S2n+1 → Wn. By [4] this fibration induces an isomorphism of Hopf
algebras

H∗(Ω3S2n+1) ∼= H∗(ΩS2n+1) ⊗ H∗(Wn).

In particular, since Wn is (2np − 4)-connected, the element a2np−3 ∈ H∗(Ω3S2n+1)
corresponds to an element c ∈ H2np−3(Wn). On the other hand, Wn has a single
cell in dimension 2np − 3, so c represents the inclusion of the bottom cell. Now
consider the homotopy fibration diagram

As c represents the bottom cell in H2np−3(Wn), it transgresses nontrivially to a
class d ∈ H2np−4(ΩWn). Since a2np−3 maps to c, the naturality of the transgression
implies that a2np−3 must transgress to a nontrivial class in H2np−4(Ω4S2n+1).

Next, consider the homotopy fibration diagram

(4.1)

By corollary 4.2, the map Ωgk has a left homotopy inverse. In particular, (Ωgk)∗ is
an injection. Since G is p-regular for nl < p, the left column in the fibration diagram
is a product of the homotopy fibrations Ω4S3〈3〉 → ∗ → Ω3S3〈3〉 and, for 2 � i � nl,
Ω4S2ni−1 → ∗ → Ω3S2ni−1. Therefore, by the argument in the first paragraph of
the proof, the element a2ni−1 ∈ MH∗(Ω3G〈3〉) transgresses to a nontrivial element
in H2nip−4(Ω4G〈3〉). As this element injects into H2nip−4(Gk), the naturality of the
transgression in (4.1) implies that (gk)∗(a2nip−3) must be nontrivial.

Finally, consider the element ā2p−3 ∈ H∗(Ω3G〈3〉). It comes from an element
x ∈ H2p−3(Ω3S3〈3〉). The description of H∗(Ω3S3〈3〉) in (3.4) implies that Ω3S3〈3〉
is (2p − 4)-connected and has a single cell in dimension 2p − 3. Thus x repre-
sents the inclusion of the bottom cell. Therefore, x transgresses to a nontrivial
element in H2p−4(Ω4S3〈3〉), and so ā2p−3 transgresses to a nontrivial element in
H2p−4(Ω4G〈3〉). Since (Ωgk)∗ is an injection, the naturality of the transgression in
(4.1) implies that (gk)∗(a2p−3) is nontrivial. �
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Consider the fibration

Map∗(S4, BG) → Map(S4, BG) ev−→ BG (4.2)

where ev is the evaluation map at the basepoint of S4. Since G is p-regular and we
are localizing at the prime p, S3 is a homotopy retract of G. Therefore (4.2) is a
homotopy retract of the fibration

Map∗(ΣG,BG) → Map(ΣG,BG) ev−→ BG. (4.3)

We may identify Map∗(ΣG, BG) with Map∗(G, G) by the adjoint congruence.
Map∗(G, G) is an H-space by the composite of maps, and there is a fiberwise
action of Map∗(G, G) on Map(ΣG, BG) given by

Map(ΣG,BG) × Map∗(G,G) → Map(ΣG,BG), (f, g) 
→ f ◦ Σg.

Thus lemma 2.3 applies to the fibration (4.2). The inclusion of the fibre in (4.2) may
be identified with the coproduct of the maps Map∗

k(S4, BG) → Mapk(S4, BG) for
all k ∈ Z. Equivalently, this is the coproduct of the maps gk : Ω3G〈3〉 → BGk for
all k ∈ Z. Each (gk)∗ is injective on MHodd(Map∗(S4, BG)) by lemma 4.3, so the
coproduct is as well. This leads to the mod-p homology Serre spectral sequence for
(4.2) collapsing at the E2-term.

Proposition 4.4. Let G be a compact connected simple Lie group of type
(n1, . . . , nl), let p be a prime, and suppose that nl < p − 1. Then the mod-p
homology Serre spectral sequence for (4.2) is totally nonhomologous to zero.

Proof. Let (Er, dr) denote the mod-p homology Serre spectral sequence for (4.2).
Let z ∈ Hm(Map∗(S4, BG)) be an element in the kernel of g∗ of least dimension,
where g : Map∗(S4, BG) → Map(S4, BG) is the fibre inclusion of (4.2). We begin
by establishing some properties of z.

Property 1: z is primitive. If not, then Δ(z) = Σα∈Az′α ⊗ z′′α for some elements
z′α, z′′α of degrees < m such that {z′α ⊗ z′′α}α∈A is linearly independent, where Δ is
the reduced diagonal. The reduced diagonal is natural for any map of spaces, so
(g∗ ⊗ g∗) ◦ Δ = Δ ◦ g∗. Now

(g∗ ⊗ g∗) ◦ Δ(z) = (g∗ ⊗ g∗)(Σαz′′α ⊗ z′′α) = Σαg∗(z′α) ⊗ g∗(z′′α)

is a sum of linearly independent elements since z′α, z′′α are of degrees < m while the
element of least degree in Ker g∗ is of degree m. On the other hand,

Δ ◦ g∗(z) = Δ(0) = 0.

This contradiction implies that Δ(z) must be 0; that is, z is primitive.
Property 2: Pn

∗ (z) = 0 for every n � 1. Suppose Pn
∗ (z) = y for some n � 1, where

y is nonzero. The (dual) Steenrod operations are natural for any map of spaces, so
g∗Pn

∗ = Pn
∗ g∗. Now

g∗Pn
∗ (z) = g∗(y)
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is nonzero, since |y| < m while the element of least degree in Ker g∗ is of degree m.
On the other hand,

Pn
∗ g∗(z) = Pn

∗ (0) = 0.

This contradiction implies that Pn
∗ (z) = 0 for every n � 1.

Property 3: βr(z) = 0 for every r � 1. The reasoning is exactly as in the proof
of property 2.

Property 4: z is in the image of the transgression for the mod-p homology Serre
spectral sequence for the homotopy fibration (4.2). By assumption, the first non-
trivial differential dr in the mod-p homology Serre spectral sequence for (4.2)
satisfies the properties of lemma 2.3. In particular, dr is determined by how
it acts on the elements in H∗(BG). The E2-term of the spectral sequence is
H∗(BG) ⊗ H∗(Map∗(S4, BG)). Since z is an element of least degree in the ker-
nel of (gk)∗ and is of degree m, the map (gk)∗ is an injection in degrees < m.
Thus the spectral sequence is totally non-homologous to zero in this degree range,
implying that it collapses at E2. In particular, the differential dr on an element of
H∗(BG) of degree � m is zero, and so as dr satisfies the properties of lemma 2.3,
dr(x ⊗ y) = 0 for x ∈ Ht(BG) with t � m and y ∈ H∗(Map∗(S4, BG)). Hence, for
degree reasons, if z is in the image of dr then the only possibility is that z = dr(x)
and r = m + 1 for some x ∈ Hm+1(BG). That is, z is in the image of the transgres-
sion. On the other hand, as z ∈ Ker g∗, it cannot survive the spectral sequence and
so must be hit by some differential.

Property 5: z has odd degree. By property 4, in the mod-p homology Serre spectral
sequence for (4.2), we have z = dm+1(x) for some x ∈ Hm+1(BG). As H∗(BG) is
concentrated in even degrees, the degree of z must be odd.

Let’s examine the consequences of properties 1 to 5. Collectively, Properties
1 to 3 imply that z ∈ MH∗(Map∗(S4, BG)). Property 5 then implies that z ∈
MHodd(Map∗(S4, BG)). But g∗ is an injection on MHodd(Map∗(S4, BG)) as we
saw above, implying in turn that z /∈ Ker g∗, a contradiction. Thus g∗ is an injection,
and this completes the proof. �

We are ready to prove theorem 1.1.

Proof of theorem 1.1. By proposition 4.4, the mod-p homology Serre spectral
sequence for (4.2) collapses at the E2-term. Thus, as (4.2) is the fiberwise coproduct
of the fibrations Map∗

k(S4, BG) → Mapk(S4, BG) ev−→ BG in (1.1) for all k ∈ Z, it
follows from lemma 2.4 that the mod-p homology Serre spectral sequence for each
fibration collapses at the E2-term. Equivalently, the mod-p homology Serre spectral
sequence for Ω3G〈3〉 → BGk

ev−→ BG collapses at the E2-term for all k ∈ Z. �

We calculate the Poincaré series of the mod-p homology of BGk. Let Pt(X) denote
the Poincaré series of the mod-p homology of a space X. Let

P (t) =
∏
k�0

(1 + t2(p−1)pk−1)
∏
k�1

1
1 − t2(p−1)pk−2

Qn(t) =
∏

k�1,j�0

(1 + t2(npk−1)pj−1)
∏

k�1,j�1

1
1 − t2(npk−1)pj−2

∏
k�0

1
1 − t2nk−2

.
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Corollary 4.5. Under the same hypothesis of theorem 1.1, the Poincaré series of
the mod-p homology of BGk is given by

Pt(BGk) = P (t)Qp−1(t)
l∏

i=2

Qni−1(t)
l∏

i=1

1
1 − t2ni

.

Proof. By theorem 1.1, Pt(BGk) = Pt(BG)Pt(Ω3G〈3〉). Since nl < p − 1, the
mod-p cohomology of BG is a polynomial algebra with generators in dimen-
sion 2n1, . . . , 2nl, and so Pt(BG) =

∏l
i=1

1
1−t2ni

. By (3.1), Pt(Ω3G〈3〉) =

Pt(Ω3S3〈3〉)∏l
i=2 Pt(Ω3S2ni−1). By (3.3), (3.4) and (3.5), Pt(Ω3S3〈3〉) =

P (t)Qp−1(t) and Pt(Ω3S2ni−1) = Pni−1(t), completing the proof. �

5. The mod-3 homology of SU(2)-gauge groups

The mod-p homology of BGk for G = SU(2) and p � 5 is given by theorem 1.1. Since
SU(2)-gauge groups are pivotal in Donaldson Theory, in this section we expand
beyond the statement of theorem 1.1 by also calculating the mod-3 homology.

Since there is a homeomorphism SU(2) ∼= S3, we phrase what follows in terms
of S3. By (1.2) there is a homotopy fibration sequence

S3 ∂k−→ Ω3S3〈3〉 gk−→ BGk
ev−→ BS3.

By [14] we have the following.

Lemma 5.1. The map ∂1 : S3 → Ω3S3〈3〉 has order 12.

In the proof of lemma 4.1 it is shown that ∂k = k ◦ ∂1. In particular, if we localize
at p = 3 then ∂k has order 3/(k, 3). Observe that for p = 3, the description of
H∗(Ω3S3〈3〉) in (3.4) implies that Ω3S3〈3〉 is 2-connected with a single cell in
dimension 3.

Lemma 5.2. If p = 3 and (k, 3) = 1 then the map ∂k : S3 → Ω3S3〈3〉 induces an
injection in mod-3 homology.

Proof. By hypothesis, (k, 3) = 1 so the above discussion implies that ∂k is nontriv-
ial. Thus it represents a nontrivial element in π3(Ω3S3〈3〉) ∼= π6(S3〈3〉) ∼= π6(S3).
On the other hand, by [20], the 3-component of π6(S3) is isomorphic to Z/3Z.
Therefore ∂k represents a generator of the 3-component of π3(Ω3S3〈3〉). Next, since
Ω3S3〈3〉 is 2-connected, the Hurewicz map π3(Ω3S3〈3〉) ⊗ Z/3Z → H∗(Ω3S3〈3〉) is
an isomorphism, where we take homology with mod-3 coefficients. By the naturality
of Hurewicz maps there is a commutative diagram
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where the vertical maps are the Hurewicz maps. We saw that the top and the right
maps are isomorphisms. The left arrow is an isomorphism by the Hurewicz theorem.
Thus the bottom arrow is an isomorphism, completing the proof. �

Next, by (3.4) together with (3.3) and (3.5), H3(Ω3S3〈3〉) ∼= Z/3Z and if x3 is
its generator, then Λ(x3) is a tensor product factor of H∗(Ω3S3〈3〉).

Proof of theorem 1.2. Consider the homotopy fibration S3 ∂k−→ Ω3S3〈3〉 gk−→ BGk.
By lemma 5.2, (∂k)∗ is an injection. Therefore the homology Serre spectral sequence
for this homotopy fibration is totally non-homologous to zero, implying that it
collapses at the E2-term, so H∗(Ω3S3〈3〉) ∼= H∗(S3) ⊗ H∗(BGk). Since H∗(S3) ∼=
Λ(y3) for |y3| = 3 such that y3 corresponds to x3 and as observed above, Λ(x3) is a
tensor product factor of H∗(Ω3S3〈3〉), we obtain the isomorphism asserted in the
statement of the theorem. �
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