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Abstract. The paper concerns the determination of the Angular Momentum Relative Amended
Potential (AMR potential) in the framework of the Full n-Body problem and some of its basic
properties are discussed. The AMR potential is derived using two different approaches : first
using a Routh reduction of the system relative to rotation about the total angular momentum,
second as a variation of the Sundman Inequality, using the Cauchy inequality.
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1. Introduction

In this contribution the “Angular Momentum Relative Amended Potential” (AMR
potential) is derived and some of its basic properties are discussed. This amended poten-
tial was specifically developed for the Full n-Body problem [Scheeres (2012)], which
concerns the dynamics of n rigid bodies as they attract each other gravitationally,
and as they impact and rest on each other. In the current contribution this problem
is stated using Jacobi coordinates as derived in [Scheeres & Brown (2023)], with a
new discussion on the Lagrangian dynamics of this statement. The AMR potential is
derived using two different approaches. First it is derived using a Routh reduction of
the system relative to rotation about the total angular momentum, which shows that
it is directly related to the forces acting within the system. Then it is derived as a
variation of the Sundman Inequality, using the Cauchy inequality. It is compared with
a few other amended potentials in common usage, derived as related versions of the
Sundman Inequality or through geometric mechanics as the Smale Amended Potential
[Simo et al. (1991)]. The results provide a rigorous and multi-faceted derivation of the
angular momentum relative amended potential, establishing its use for evaluation of
equilibria and their energetic stability.

2. Model

Consider the finite-density n-body problem where all of the component bodies are
rigid and can thus rotate and rest on each other as well as orbit about each other, as
derived and discussed in [Scheeres (2012, 2016)]. To pose the problem define N + 1 finite
density bodies Pi, each of which has a mass distribution Bi, where i= 0, 1, 2, ..., N . Each
body has a mass mi =

∫
Bi
dm, a rigid body inertia dyadic ĪRi =− ∫Bi

ρ̃ · ρ̃ dm, a center of

mass position ri, an orientation dyadic T̄i, a velocity vi, and an angular velocity Ωi, all
generally specified with respect to an inertial frame, except that the orientation dyadic
will orient the body frame in inertial space and the rigid body inertia dyadic is specified
in a body-fixed frame. The attitude definition of each body can use Euler Angles, which
allow a traditional Lagrangian approach to specifying the equations of motion. With this
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assumption, the orientation dyads and the angular velocities for each body are functions
of its Euler Angles and their rates, Θi =

[
θ1i , θ

2
i , θ

3
i

]
and Θ̇i =

[
θ̇1i , θ̇

2
i , θ̇

3
i

]
, leading to the

functional form T̄(Θi) and Ω(Θi, Θ̇i).
One important implication of the finite density rigid body assumption is that any two

bodies have a constraint on how close their centers of mass can come to each other,
denoted as ‖rij‖� d(rij ,Tij), where rij = rj − ri and T̄ij = T̄T

j · T̄i and equality occurs
when the two bodies touch. This form of the constraint implicitly implies that the bodies
are mutually convex, although this assumption can be relaxed. As discussed in [Scheeres
(2019)] this formulation can accommodate the holonomic and non-holonomic constraints
that arise when the components are in contact. As a final note, the mutual potential
between any two bodies i and j is Uij(rij , T̄ij) =−G ∫Bi

∫
Bj

dmi dmj/
∣∣rij + ρj − ρi

∣∣
where G is the gravitational constant. This leads to the total gravitational potential
U =

∑
0�i<j�N Uij .

2.1. Jacobi Coordinates

Given the standard form of the problem, transform the positions and velocities of the
bodies into Jacobi Coordinates, which makes them all relative to each other in a recursive
way. Note that the rigid body components are not affected by this transformation, which
only operates on the centers of mass of each body.
The Jacobi formulation defines a sequence of transformations where the position and

velocity of each body Pi is measured from the collective center of mass of the bodies
Pj , j = 0, 1, . . . , i− 1 [Scheeres & Brown (2023)]. To start the sequence define: M0 =
m0,R0 =V0 = 0,RC

0 = r0, and VC
0 = v0. Then the remaining Jacobi coordinates are

defined as

Ri = ri −RC
i−1 (2.1)

Vi = vi −VC
i−1 (2.2)

Mi =Mi−1 +mi (2.3)

RC
i =

1

Mi

[
Mi−1R

C
i−1 +miri

]
(2.4)

VC
i =

1

Mi

[
Mi−1V

C
i−1 +mivi

]
(2.5)

all for i= 1, 2, . . . , N . The center of mass position and velocity vectors RC
i and VC

i are
computed accounting for all bodies with that index and lower. The relative position and
velocity vectors Ri and Vi are of body i relative to the center of mass of all bodies with
index i− 1 and lower. The vector RC

N is the total center of mass of the entire system.
Finally, note that the difference of two body positions rj and ri where j > i can be

stated as

rj − ri =Rj −Ri +RC
j−1 −RC

i−1 = Rj −Ri +

j−1∑
k=i

mk

Mk
Rk (2.6)

Thus, when considering the potential energy, the mutual potential between bodies j and
i, rij , is only a function of Rk from k= i, i+ 1, . . . , j.

2.2. Angular Momentum, Energy and Moments of Inertia

A key advantage of the Jacobi coordinates is that they explicitly decouple the quantities
of angular momentum, moment of inertia and kinetic energy at a given order from each
other and are only a function of the lower order indices. Define the angular momentum,
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kinetic energy and inertia tensor at each order, respectively,

Hi =
Mi−1mi

Mi
Ri ×Vi + T̄i · ĪRi ·Ωi (2.7)

Ti =
1

2

Mi−1mi

Mi
(Vi ·Vi) +

1

2
Ωi · ĪRi ·Ωi (2.8)

Īi =
Mi−1mi

Mi

[
R2

i Ū−RiRi

]
+ T̄i · ĪRi · T̄T

i (2.9)

The term Ū is the unity dyadic, the product RR is a dyad, and the rigid body angular
momentum and rotational inertia are mapped from a body-fixed frame into the inertial
frame with the orientation dyadic T̄i. Then the system total Angular Momentum, Kinetic
Energy and Inertia Dyadic are, respectively,

H=

N∑
i=0

Hi +MNRC
N ×VC

N (2.10)

T =

N∑
i=0

Ti +
1

2
MNVC

N ·VC
N (2.11)

Ī=

N∑
i=0

Īi +MN

[
RC

N ·RC
N Ū−RC

NRC
N

]
(2.12)

and the total system energy can be defined as

E =

N∑
i=0

Ei +
1

2
MNVC

N ·VC
N (2.13)

Ei = Ti + Ui (2.14)

where Ui =
∑i−1

j=0 Uji. The self-potential of a given body could be included, but is not in
this formulation.

2.3. Lagrangian and Equations of Motion

The coordinates of the system can be gathered into a standard coordinate and velocity
vector

Q=
[
Θ0, . . . ,Ri,Θi, . . . ,RN ,ΘN ,R

C
N

]
(2.15)

Q̇=
[
Θ̇0, . . . ,Vi, Θ̇i, . . . ,VN , Θ̇N ,V

C
N

]
(2.16)

With this notation, the Lagrangian is defined as

L(Q, Q̇) = T (Q, Q̇)−U(Q) (2.17)

The equations of motion for the ith Jacobi coordinate are

Mi−1mi

Mi
V̇i =− ∂U

∂Ri
(2.18)

The rotational equations of motion for the ith rigid body are

d

dt

(
Ωi · ĪRi · ∂Ωi

∂Θ̇i

)
=Ωi · ĪRi · ∂Ωi

∂Θi
− ∂U
∂Θi

(2.19)
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2.4. Routh Reduction of the Linear Momentum

The first step is to remove the linear momentum, which can be formally done via a
Routh reduction [Greenwood (1977)]. The Lagrangian is independent of the final center
of mass termRC

N , thus the linear momentum integral is found from d
dt

∂L
∂VC

N

= 0, leading to

MNVC
N =P = Constant (2.20)

Then the center of mass velocity can be solved for as a function of the constant:
VC

N = 1
MN

P
This momentum can be removed from the Lagrangian by first forming the Routhian

function

LR =L−VC
N · ∂L

∂VC
N

= T −U − 1

2MN
P ·P (2.21)

The Routhian can be used to recover the center of mass motion after the rest of the
solution is found [Greenwood (1977)]

VC
N =−∂LR

∂P
=

1

MN
P

which can be solved by quadrature.
This reduction is trivial, but sets the stage for the more consequential reduction of the

angular momentum. One can arbitrarily set P= 0, which resets the Lagrangian to the
original form, LR =L.

2.5. Routh Reduction of the Angular Momentum Magnitude

Instead of removing the entire angular momentum, as in [Simo et al. (1991)], one can
focus on the simpler reduction of the angular momentum magnitude, which is key to the
AMR amended potential definition.
The system has a constant angular momentum which can be stated as H=HĤ.

A simple rotation of the system about the angular momentum direction, which is fixed
in inertial space, yields a well defined angular coordinate and its time derivative, θ and θ̇.
Note the simple relationship between the system moment of inertia, spin rate and angular
momentum magnitude

θ̇=
H

IH
(2.22)

IH = Ĥ · Ī · Ĥ (2.23)

The IH term is only a function of the Jacobi coordinates and Euler angles and is the
instantaneous system moment of inertia about the angular momentum direction. It is
important to note that the angular rate θ̇ is not constant and is a function of the
coordinates.
The Lagrangian system can be rewritten in a rotating coordinate frame defined by the

angular velocity Ω= θ̇Ĥ. This is easily done in by rewriting the Jacobi velocities using
the transport rule:

Vi =R′
i +Ω×Ri (2.24)

where the ()′ signifies a time derivative in the rotating frame. Similarly, the angular
velocities of the rigid bodies must be redefined relative to this overall rotation, yielding

Ωi = ωi +Ω (2.25)
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where ωi represents the new rotation of these bodies relative to the rotating frame. The
Euler angles and their time derivatives are also redefined relative to this rotating frame.
Rewriting the kinetic energy of the system one finds

T =

N∑
i=1

Mi−1mi

2 Mi

[
R′

i ·R′
i + 2Ω ·Ri ×R′

i −Ω · R̃i · R̃i ·Ω
]

+
1

2

N∑
i=0

[
ωi · ĪRi · ωi + 2Ω · ĪRi · ωi +Ω · ĪRi ·Ω] (2.26)

which can be rewritten as

T = TR +Ω ·HR +
1

2
Ω · Ī ·Ω (2.27)

HR =

N∑
i=1

Mi−1mi

2 Mi
Ri ×R′

i +

N∑
i=0

ĪRi · ωi (2.28)

The quantity HR is the total angular momentum of the system relative to the rotating
frame, which must equal zero and is a constant. However, it cannot be eliminated from
the kinetic energy as the partials of this term are still required to properly state the
equations of motion. Also note that the kinetic energy term TR is the system kinetic
energy relative to the rotating frame, and the velocities are the time derivatives of the
coordinates relative to the rotating frame, discussed in more detail in [Scheeres (2019)].

Make the explicit substitution Ω= θ̇Ĥ yielding the transformed Lagrangian

L= TR + θ̇Ĥ ·HR +
1

2
θ̇2Ĥ · Ī · Ĥ−U (2.29)

With the velocity θ̇ exposed as such, and the overall orientation angle about the angular
momentum vector θ well defined but absent from the Lagrangian, the angular momentum
integral can be identified as d

dt
∂L
∂θ̇

= 0, leading to

θ̇Ĥ · Ī · Ĥ+ Ĥ ·HR =H = constant (2.30)

Solving for the angular rate results in

θ̇=
H

IH

[
1− Ĥ ·HR

H

]
(2.31)

where IH is, as before, the total moment of inertia of the system about the angular
momentum vector. Again note that HR = 0, but this equality is not enforced until after
the equations of motion and related quantities are defined.
Applying the Routh reduction to the Lagrangian yields the Routhian

LR =L− θ̇
∂L

∂θ̇

=L− θ̇
[
θ̇IH + Ĥ ·HR

]
= TR −U − 1

2
θ̇2IH (2.32)

To complete the transformation substitute θ̇ into the expression to find

LR = TR −U − H2

2IH

[
1− Ĥ ·HR

H

]2
(2.33)
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Note that the amended potential has the additional term
[
1− Ĥ·HR

H

]2
which contributes

to the equations of motion as the partials of this term are not generally equal to zero.
Once the system is solved, the rotation term can be reconstructed following the

Routhian approach

θ̇=−∂LR

∂H

=
H

IH

[
1− Ĥ ·HR

H

]2
+
H2

2IH
2

[
1− Ĥ ·HR

H

]
Ĥ ·HR

H2

=
H

IH
(2.34)

where, in the last step HR = 0.
Finally, as the system is time invariant, the Jacobi integral can be found, equal to

Q̇ · ∂LR

∂Q̇
−LR, which yields the classical energy

E = TR + E (2.35)

E =
H2

2IH
+ U (2.36)

Note that in this derivation, Q̇ · ∂HR/∂Q̇=HR = 0 as the angular momentum is linear
in the velocities. From this last statement, along with the fact that TR � 0, the useful
inequality is found

E �E (2.37)

This inequality is sharp, meaning that equality can occur when the internal kinetic energy
is zero. This happens, in particular, when the system is at an equilibrium. It can also
be verified that when the system is at an equilibrium the condition δE = ∂E/∂Q · δQ� 0
holds for all feasible δQ. If the bodies are not in contact, then the variation in each
coordinate is zero, whereas if any bodies are in contact then the allowable variations will
only increase energy [Scheeres (2019)].

3. Alternate Derivation

The AMR potential can also be derived using a different approach related to Cauchy’s
inequality and resulting in a modified version of the Sundman inequality. The total
angular momentum of the system can be defined as an integral over the entire mass
distribution, which contains all of the rigid bodies [Scheeres (2019)].

H=

∫
B
r× v dm (3.1)

The magnitude is then H and the unit vector is Ĥ=H/H.
Also recall the similarly general definitions for kinetic energy, polar moment of inertia

and inertia tensor.

T =
1

2

∫
B
v · v dm (3.2)

IP =

∫
B
r · r dm (3.3)

Ī=−
∫
B
r̃ · r̃ dm (3.4)
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The usual Sundman Inequality derivation is made using the polar moment of iner-
tia, as found in [Pollard (1966)]. Starting with the angular momentum definition,

H2 =
∣∣∫

B r× v dm
∣∣2 �

(∫
B |r× v| dm)2. Then the Cauchy-Schwartz inequality can be

applied to find
(∫

B |r× v| dm)2 � (∫B v2 dm) (∫B r2 dm). From above these two inte-

grals are the kinetic energy and polar moment of inertia, leading to H2 � 2T IP . Using
the relationship E = T + U , then H2 � 2(E −U)IP , the polar amended potential and
related Sundman inequality is found as

EP =
H2

2IP
+ U �E (3.5)

Here EP is the polar moment of inertia version of the amended potential.
A sharper alternate approach to Sundman’s inequality can be followed that utilizes the

system moment of inertia about Ĥ, and results directly in the AMR amended potential.
At the start, the change is trivial and just recognizes that the angular momentum vector is
oriented along the Ĥ vector. Thus, H = Ĥ ·H=

∫
B Ĥ · r× v dm, where since the angular

momentum direction is a constant it can be brought inside the integral. Note that Ĥ ·
r× v= v · (Ĥ× r) and apply the Cauchy-Schwartz inequality to H2 to find

H2 =

(∫
B
v · Ĥ× r dm

)2

�
(∫

B
v2 dm

)(
−Ĥ ·

∫
B
r̃ · r̃ dm · Ĥ

)
which immediately leads to H2 � 2T IH . Again using the relationship E = T + U , then
H2 � 2(E −U)IH which leads to

E =
H2

2IH
+ U �E (3.6)

Note that the defined lower quantity is the AMR amended potential E . Substituting the
Jacobi integral from the rotating, reduced dynamical system, E = TR + E , it is clear that
the AMR amended potential equals the energy when the system is at an equilibrium.

4. Comparisons with Other Amended Potentials

There are several versions of the amended potential that can be used to define different
variations of the Sundman inequality, relating angular momentum, moment of inertia and
energy. It is instructive to compare these to gain insight into the relations between them.
These are succinctly summarized with a few theorems and proofs.

4.1. Comparison with EP
Theorem 4.1.

EP � E
If there are any three-dimensional distributions of material then EP < E , while if the
entire system is planar, including the rigid bodies, then EP = E .
Proof. To prove this it is sufficient to show that IH � IP in general, and is either
strictly less than or equal for the different cases considered. Note that IP = 1

2Trace(Ī) =
1
2 (I1 + I2 + I3) where Ii are the principal moments of inertia of the system, assumed
ordered as I1 � I2 � I3. Then IH � I3 and the most extreme case to consider is

I3 �
1

2
(I1 + I2 + I3) , (4.1)

however this can be reduced to I3 � I1 + I2 which is a fundamental result. It can easily be
shown that equality only holds for fully planar mass distributions. Thus, if the system has
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3-dimensional rigid bodies the result becomes a strict inequality, I3 < 1
2 (I1 + I2 + I3).

If the systems are fully planar then IH = I3 = IP .

Thus the polar moment of inertia compresses three dimensional mass distributions,
including the moments of inertias for rigid bodies, into a lumped value that does not
provide a sharp inequality. This implies that at equilibrium, the polar amended potential
is not equal to the total energy for systems with three dimensional mass distributions.

4.2. Smale Amended Potential

A version of the amended potential that is used in geometric mechanics analysis of
these problems is the Smale Amended Potential [Simo et al. (1991)]:

EGM =
1

2
H · Ī−1 ·H+ U (4.2)

This potential bounds the AMR potential.

Theorem 4.2.

E � EGM �E

The two potentials are equal when the system is in a relative equilibrium.

Proof. One only needs to proveH2/I2H �H · Ī−1 ·H. Normalize byH2, choose a diagonal

coordinate representation for Ī denoted as êi, i= 1, 2, 3, and note that Ĥ=
∑3

i=1 hiêi.
Then the inequality can be reduced to

1�
(
h21I1 + h22I2 + h23I3

) (
h21

1

I1
+ h22

1

I2
+ h23

1

I3

)

= h41 + h42 + h43 + h21h
2
2

(
I2
I1

+
I1
I2

)
+ h22h

2
3

(
I3
I2

+
I2
I3

)
+ h23h

2
1

(
I1
I3

+
I3
I1

)
+ 2
(
h21h

2
2 + h22h

2
3 + h23h

2
1

)− 2
(
h21h

2
2 + h22h

2
3 + h23h

2
1

)
=
(
h21 + h22 + h23

)2
+ h21h

2
2

(I1 − I2)
2

I1I2
+ h22h

2
3

(I2 − I3)
2

I2I3
+ h23h

2
1

(I3 − I1)
2

I3I1

= 1+ h21h
2
2

(I1 − I2)
2

I1I2
+ h22h

2
3

(I2 − I3)
2

I2I3
+ h23h

2
1

(I3 − I1)
2

I3I1
or

0� h21h
2
2

(I1 − I2)
2

I1I2
+ h22h

2
3

(I2 − I3)
2

I2I3
+ h23h

2
1

(I3 − I1)
2

I3I1
(4.3)

which is true by inspection. When the system is at an equilibrium, it must rotate uni-
formly about only one of the principle moments of inertia of the system, meaning hihj = 0
for i = j. In this case the bound becomes an equality, meaning that the two potentials
are equal when evaluated at an equilibrium.

Despite the fact that the Smale potential bounds the AMR potential, they both yield
conditions for equilibria and by extension for energetic stability of an equilibria.

Theorem 4.3. If the system is in a non-contact equilibrium configuration, then

δEGM = δE = 0
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Proof. Note that, based on the Lagrangian derivation, when the system is at such an
equilibrium then δE = 0. To prove the other equality first express the first variation of
both quantities:

δEGM =−1

2
H · Ī−1 · δĪ · Ī−1 ·H+ δU (4.4)

δE =−1

2

(
H

IH

)2

δIH + δU (4.5)

Cancelling like terms reduces the proof to showing the following result(
H

IH

)2

δIH =H · Ī−1 · δĪ · Ī−1 ·H (4.6)

When in an equilibrium H · Ī−1 = Ī−1 ·H=Ω= θ̇Ĥ by definition, as it will be rotating
about a principal moment of inertia. Thus, substituting for the definition of IH and
noting that H/IH = θ̇, equality is shown to be trivially true.

This is an interesting result, given that the one potential in general bounds the other,
and implies that either potential can be used to evaluate equilibria and stability.

4.3. Disaggregated AMR Amended Potential

A different potential version that bounds the AMR amended potential can be defined.
This form disaggregates the potential into a series of component parts. This approach is
specialized to the Jacobi coordinates, and was derived and proven in [Scheeres & Brown
(2023)]. Define a disaggregated version of the potential as

Ei = H2
i

2IHi

+ Ui (4.7)

where Hi is the angular momentum arising from the ith Jacobi coordinate, IHi
= Ĥ · Īi ·

Ĥ, and Ui =
∑i

j=0 Uij . Note that
∑N

i=1Hi =H.

Then in [Scheeres & Brown (2023)] it was proven that:

E �
N∑
i=1

Ei �E (4.8)

and that at an equilibrium the two potentials are equal. The individual Ei components do
not provide information on the dynamics. One should note, specifically, that the angular
momentum terms Hi are not necessarily conserved, and thus can individually vary when
taking variations. Only when they are summed is that quantity conserved.

5. Conclusions

In this contribution the Angular Momentum Relative amended potential is derived
and compared with other amended potential versions. When the dynamical system is
composed of rigid bodies, it is shown that the AMR potential dominates the potential
defined using the polar moment of inertia. It is also shown that the Smale amended
potential bounds the AMR potential, but that they are equal at an equilibrium and that
they can both yield conditions for evaluating such equilibria and their stability.
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