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Abstract

Let X be a finite-dimensional separable metric space, presented as a disjoint union of subsets, X = AU B.
We prove the following theorem: For every prime p, c-dimz, X < c-dimgz, A + ¢-dimg, B + 1. This
improves upon some of the earlier work by Dydak and Walsh.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 55M10, 55P20; secondary 54F45,
55P99.

Keywords and phrases: Urysohn-Menger sum formula, cohomological dimension, finite groups, Bock-
stein rings, Moore spaces, Eilenberg-MacLane complexes, Blakers-Massey theorem.

1. Introduction

Cohomological dimension theory (of separable metrizable spaces) is in many respects
parallel to the classical (Lebesgue covering) dimension theory (see, for example, the
survey by Kuz’minov [13]). This is particulary true for the cohomological dimension
c-dimz over the ring of integers Z. The basic reason for that is the equivalence of
¢-dimz X and dim X for finite dimensional spaces X, a fact which was established
already in the 1930’s by Aleksandrov, the founder of (co)homological dimension
theory. However, in general, c-dimz X and dim X need not be the same — there exist
infinite dimensional spaces X of finite cohomological dimension over Z, the first
such example having been found by Drani$nikov in 1987 [1, 2]. This result has had
other important implications, since it provided dimension raising cell-like maps, thus
solving another outstanding problem for many years in geometric (Bing) topology
(see, for example, the survey by Mitchell and Repovs [14]).
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One of the classical results of the Lebesgue covering dimension theory is the
Urysohn-Menger sum formula [11]: it asserts that for all subsets A and B of X such
that X = AU B,

) dimX <dimA +dimB + 1.

It was only very recently that (1) was verified for the cohomological dimension
over Z: in 1992 Rubin [15] proved that

) ¢-dimz X < ¢c-dimz A + ¢-dimz B + 1.

On the other hand, it was shown in 1992 by Draninikov, Repov§ and Séepin [6]
that the Urysohn-Menger sum formula (1) fails for cohomological dimension over
arbitrary abelian groups: they have constructed subsets A and B of R* such that

(3) C-dimQ/z(A 0] B) > C-dimQ/Z A+ C-dimQ/Z B +1.

(Subsequently, Dydak [9] presented a different approach to this construction.)
Rubin’s argument [15] for (2) is based on the resolution method, which can be
traced back to the 1970’s pioneering work of Edwards (see, for example, the survey
by Walsh [16]). Roughly speaking, a resolution of a polyhedron L for some integer n,
isareplacement of all (n 4 1) and higher dimensional simplices of L by the Eilenberg-
MacLane spaces K(®Z, n). In the 1980’s Drani$nikov [1] adapted this method for
the Bockstein rings 7, = Z / pZ and Z,, that is the localization of Z at the prime p
(see also the surveys [2] and [14]). Subsequently, Dydak and Walsh [10] used this
method to prove the Urysohn-Menger sum formula (1) for cohomological dimension
c-dimg over all Bockstein rings R € {Zy), Z,}ic . pew (Where & is the set of all
primes and Z , is the localization of the integers at £), however they had to impose the
restriction that both c-dimz A > 2 and c-dim; B > 2. (Note that such arestriction was
unnecessary in Rubin’s paper [15] since c-dimz X = 1 obviously impliesdim X = 1.)
Let AE(X) denote the class of all absolute extensors for X. Recall that the standard
definition of the cohomological dimension of X over an abelian group G is

4 c-dimg X <n ifandonlyif K(G,n) € AE(X).

It follows from the work by Drani8nikov [3, 4], that the Eilenberg-MacLane complexes
K (G, n) in the definition (4) can be replaced by the Moore spaces M (G, n):

%) c-dimg X <n ifandonlyif M(G,n) € AE(X).
Recall that M (G, n) is a polyhedron such that

G ifi =n,

H,(M(G, n)) = 1
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The equivalence (5) is true for n > 2 and the conclusion c-dimg X < r also holds for
n = 1. This result allows instead for a different type of resolution of a polyhedron L,
based on Moore spaces as building blocks.

The purpose of this paper is to remove the dimensional restrictions from the Dydak-
Walsh theorem [10]. We were able to achieve this by using the new type of resolutions
described above, that is, using the Moore spaces M (G, n). We shall only give the
proof for the case of the finite groups Z, since the proof for Z, is similar. This result
was obtained in August 1992. Subsequently, Dydak {8] announced a generalization
of (6) to all rings R with unity.

THEOREM 1.1. For all subsets A, B C X of a finite-dimensional separable metric
space X and for every prime p, the following holds:

6) c-dimg, (A U B) < c-dimg, A + c-dimgz, B + 1.

2. Preliminaries

We shall require the following result from [3]:

THEOREM 2.1. Suppose dim X < oo and that for some n > 2 and some abelian
group G,c-dimg X < n. Then the corresponding Moore space M (G, n) is an absolute
extensor for X, M(G,n) € AE(X).

We shall also need the following version of the Blakers-Massey theorem from [12,
Proposition 16.30]:

PROPOSITION 2.2. Let (X, A) € AHEP and suppose (X, A) is (n — 1)-connected
and A is (s — 1)-connected. Then the homomorphism 7, (X, A, x) — m.(X/A, %) is
an (n + s — 1)-isomorphism, for every r > 0.

PROPOSITION 2.3. Let p be any prime, n > k and let K be any (k — 1)-connected
polyhedron such that 1;(K) = @ Z,, for allk < i < n. Then there exists an inclusion
K < K such that:

() m(K)=@Z,fori <n+1,and
(i1) the inclusion-induced homomorphism H *(IZ 3 4,) — H*(K; Z,) is bijective
for x < k and surjective for x > k.

PROOF. Let K' = K U, B'*? where {¢; : dB'"> — K};en are the generators
of m,.1(K). Let K = (K, K)z,, that is, K is obtained from K' by replacing all
(n + 2)-dimensional simplices of K'\ K by the Moore spaces M(Z,, n + 1). (See [2]
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for more on this construction.) Join all copies of M(Z,, n+ 1) in K by arcs in K'\K
to obtain the wedge VM (Z,, n + 1).
Consider a couple (K,vM (Z,, n + 1)) and its exact sequence

P, Z s (VM Ty 0+ 1) S 71 (K) = T (R VM@ n+ 1)) > o
By Proposition 2.2, we have that
7(K,vM) > m.(K/ v M) = 7,(K" /wedge of arcs) = m,(K')

is an isomorphism for r = n + 1, since V(M (Z,, n + 1)) is n-connected and (K, vM)
is 0-connected. By construction, 7, ;(K!) = 0; thus ¢ is an epimorphism, and hence
the image is P Z,,.

PROPOSITION 2.4, Let K be such that H(K) = @ Z,. Then there exists an
inclusion K < K such that
i) m(K) = Dz, foralli; and
(i) H'(K;Z,) —» H'(K;Z,)is anisomorphism fori < k and is an epimorphism
fori > k.

PROOF. Let K be the abelianization of K , that is, K is obtained from K by attaching
2-cells along the commutators of all the generators of the fundamental group. Then
7 (K) = @1Z, The map H'(K;Z,) — H'(K;Z,) is an isomorphism because
2-disks are attached by homology trivial maps (commutators). Apply Proposition 2.3,
starting from #» = 1 and K to get a sequence

K‘—-)Kli>K2‘£>K3;>"',
where K, = K, m;(K,) = @ Z, fori < n, and j is an isomorphism in dimension
one, and j* is an epimorphism for * > 1. Finally, define K = lim K.
PROPOSITION 2.5. If dim X < oo and c-dimz, X = 1 then K € AE(X) if m;(K) =
@®Z, foralli.
PROOF. See [3, 7].

3. (cdg, n)-resolutions

DEFINITION. Let cd; be an abbreviation for c-dimg. Suppose that we have a
polyhedron K with some triangulation . Then a map { : K — K is called a
(cdg, n)-resolution if for every simplex o € 7, ¥ ~'(0) € AE(cdg < n, dim < 00)
and ¢ ! xm: K™ — ¢~ 1(K™) is a homeomorphism.
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Property (x) of such a resolution means: For every simplex o € t and for every
integer n < i, the map H'(y~'(c); R) - H'(¥~'(30); R) is an epimorphism and
H"(y'(0); R) > H"(y¥"'(d0); R) is an isomorphism (for i < n an isomorphism
of trivial groups).

THEOREM 3.1. Forall p,n,K, and t there exists a (cdz,, n)-resolution  : K-> K
with the property (x).

PROOFE. The proof is by induction on dim K. For dim K = n + 1, replace (n + 1)-
simplexes by K(Z,, n)’s, by identifying the boundary of the simplex with the n-
skeleton of K(Z,, n). For the inductive step m to m + 1: Suppose that dim K =
m + 1. Consider ¥; : K™ — K™ _ Fix an (m + 1)-simplex 0. Let L = ;' (30).
Then by the construction H,(L) = @Z,. Apply Proposition 2.4 to obtain the
embedding L < L. Then by Proposition 2.5, Le AE(cdz, < n,dim < o0) and so
the property (*) holds.

REMARK. Such a resolution with a weaker form of the property (x) was constructed
in [2], whereas in [10] a (cdgz,, n)-resolution with the property () was constructed
just for n > 2. The argument in [10] is quite different from ours and it does not
allow for an extension to the case n = 1 (hence the restrictions c-dimz A > 2 and
c-dimy B > 2 in their proof of the special case of Theorem 1.1). The rest of our proof
of Theorem 1.1 is to some extent similar to the argument in [10]; however, it is in
many respects more elementary.

NOTATION. Let (K, 7) be a polyhedron with a triangulation 7, let f : X — K
be a map. Then the notation c-dimg(f, ) < n means that the following extension
problem has a solution for each subcomplex A C K of K:

X f7'A)

2 B

T ¢
K <« A — K(R,n)

(cf. the survey of Drani8nikov [2}).

PROPOSITION 3.2. Suppose that f : X — K is a map and that for every simplex
o € 1 the map H"(f'(0); R) - H"(f '(80); R) is an epimorphism. Then
c-dimg(f, 7) < n.

The proof of Proposition 3.2 is trivial. The following two theorems are taken
from {2] with only minor changes:
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THEOREM 3.3. Suppose that for every open covering w of the metric space Y there
exists an w-map g : Y — K, with v and there exists a t-lifting g’ : Y — X for some
f X — Kwithc-dimg(f, t) < n. Thenc-dimgp ¥ < n.

Here t-lifting means that if g(x) € o0 € t then f o g’(x) € o and the w-map has
the property that g~!(7) < w, where < means refinement.

THEOREM 3.4. Suppose c-dimg Y < n. Then for every map g : Y — K with a
triangulation t, and for every (cdg, n)-resolution v : K — K, there is a t-lifting
g:Y > K.

We shall also need the following assertion from [10]:

LEMMA 3.5. If X is (n—1)-connected and Y is (m — 1)-connected then H" ™' (X x
Y;R)Z H'(X; H"(Y; R)).

PROPOSITION 3.6. Suppose that we have resolutions: 1/} K > K ((cdg, n)-
resolution) and yr, : L — L ((cdg, m)-resolution) and both have the property (x).
Let & = ¢~(0), 6 = ¥, (8). Then the following are isomorphisms:

H™ ™ (G % 8)— H™ ™ (6 * 38),

H™ (G % §)— H™™ (30 * 8) and

Hn+m+l(0". *3)_) Hn+m+1(5.(; *5\5)

over the ring R, where 35 = {7 (38) and 30 = ¥~ (30).
PROOF. Notice that « is an isomorphism:

Hn+m+l(o". * S) — Hn+m+l(0". * 38)
|| [
H™(6; H™(8)) = H"(5; H™(3%)).

Similarly the second one is isomorphism. Now the third one:

H (G % 8) — Hn+m+|(5; * é:g)

I I
H"(6; H™(6)) H"(30; H™(35))
I I

H' G, DR > H'Go:BR).

Now 8 is an isomorphism, since it is for just one R; so it follows for finite sums € R.
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4. The proof of Theorem 1.1

LEMMA 4.1. The map H™ ™' (6 %8; R) & H™"+'(8(6%8); R) is an epimorphism,
where (G * 8) = (6 * 38) U (30 % 8) <> & 4.

PROOF. Consider the following Mayer-Vietoris cohomology sequences over R
(where s =n+m + 1):

— H"™™(36 % 38) —> H(3(G x8) — H (G *3d) @© H (36 %8) — H(35%06) > -
Ty T I
- 0 - H'(G*8) — H(b6+8) © H(6x8) — H(@G6*8) — ---
It suffices to show that y is an isomorphism. Suppose that dimo < n and dimé§ < m.
Then all cohomology groups above vanish. If dimo > n and dimé > m, we have
that 85 * 33 is (n + m)-connected, hence H"™ (36 * 38) = 0 and the Five Lemma
yields-the assertion.

It remains to consider the case when dimo < n and dimé > m or vice versa.
Then 6 ~ point: hence & * 85 =~ point, and & x* 8 ~ point. We want to show that
H™m+1(3(6 % 8)) = 0. It sufices to prove that H"*™ (34 * 83) maps onto, since we
know it maps into. To this end, consider the following diagram:

H™™(36 x8) —> H"™™13(6 *8))
I I
H™m (S % 8) —_— Hn+k+1(Sk % 38)

I Il
Hn+m—k—1(8) N Hn+m—k—1(a§),

and recall that 3¢ = S*, so by the property () there exists an epimorphism. Hence
we get a zero where we need it.

PROPOSITION 4.2. Suppose that  : K — K is a (cdg, n)-resolution and @ L—
L is a (cdg, m)-resolution, both with the property (x). Then c-dimg (Y * ¢, T x ') <
n+m+ 1.

PROOF. Follows by Lemma 4.1 and Proposition 3.2.

DEFINITION. Suppose that A, B C X are disjoint subsets of X, X = AU B and
suppose that f : A — K and g : B — L are any maps. Then define the map
fCJg :AUB — K % L as follows: Let f : U — K be an extension of a map f’,
which is close to, and hence homotopic to the map f, over an open neighbourhood
UcCXofAin X andlet g : V — L be an extension of a map g’, which is close
to, and hence homotopic to, the map g, over an open neighbourhood V C X of B in
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X (cf. [10, Lemma 4.2}). Let ds(x) = p(x, X\U) and dz(x) = p(x, X\V) be the
distance functions. Now, define for every x € X,

(FUQ) = (F(x), g(x). ds(x)/(da(x) + d3 (x))).

Letw : K« L — [0, 1] be the natural projection of the join K * L onto the interval
[0, 1]. (Collapse K and L to a point, respectively.)

LEMMA 4.3. Suppose that X = A U B. Then for every cover w of X there exist
maps ¢4 © A — K with a triangulation © and ¢g : B — L with a triangulation t’

such that ¢, U g is an w-map onto K x L with respect to the triangulation t * t'.

PROOF. Choose a cover w, (respectively wg) which is a star-refinement of w and
consider the projection onto nerves, ¢, (respectively ¢p).

PROPOSITION 4.4. Suppose that X = A U B and that there are maps v . K> K,
o:L—> L f:A—> Kwithart-lifting f': A— Kandg : B — L witha
t'-lifting g’ : B — L. Then the map f CJg :AUB — K x L has a (v = U)-lifting
q:AUB —> K xL.

PROOF. Define the lifting as follows: g(x) = (f'(x), g'(x), (n(f CJ 13)163) 8

PROOF OF THEOREM 1.1. It suffices to prove Theorem 1.1 for the case when the
subsets A, B C X are disjoint; AN B = . Indeed, if AN B # @ we define B = B\A
and it follows that

C-dimR(A U B) = C-dimR(A U Bl) < c—dimR A+ C-dimR B +1
< c¢-dimg A + ¢c-dimz B + 1.

So suppose now that ANB =@, AUB = X, ¢c-dimzp A < n and c-dimg B < m. We
shall prove that c-dimgz (AU B) <n +m + 1.

To this end, consider an arbitrary cover w of X and apply Lemma 4.3 to get maps
@s:A— Kandgp: B— L. Next, apply Theorem 3.1 to obtain the corresponding
resolutions of K and L, that is, a (cdg, n)-resolution ¥ : K — K with the property
(%) and a (cdg, m)-resolution ¢ : [ — L with the property (x).

By Proposition 4.2, c-dimg(yy * ¢, T * ') < n 4+ m + 1, and by Theorem 3.4
and Proposition 4.4, there exists a lifting g : AUB — K * L of g, v @p which is
a (v * t')-lifting. Since w as an arbitrary covering, it follows by Theorem 3.3 that
c-dimg(A U B) < n+m + 1 as asserted.
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