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Abstract

Let X be a finite-dimensional separable metric space, presented as a disjoint union of subsets, X — A U B.
We prove the following theorem: For every prime p, c-dim^^ X < c-din^ A + c-diiri2p B + 1. This
improves upon some of the earlier work by Dydak and Walsh.
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1. Introduction

Cohomological dimension theory (of separable metrizable spaces) is in many respects
parallel to the classical (Lebesgue covering) dimension theory (see, for example, the
survey by Kuz'minov [13]). This is particulary true for the cohomological dimension
c-dimj over the ring of integers Z. The basic reason for that is the equivalence of
c-dim2 X and dim X for finite dimensional spaces X, a fact which was established
already in the 1930's by Aleksandrov, the founder of (co)homological dimension
theory. However, in general, c-dimz X and dim X need not be the same - there exist
infinite dimensional spaces X of finite cohomological dimension over 2, the first
such example having been found by DraniSnikov in 1987 [1,2]. This result has had
other important implications, since it provided dimension raising cell-like maps, thus
solving another outstanding problem for many years in geometric (Bing) topology
(see, for example, the survey by Mitchell and Repovs [14]).
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One of the classical results of the Lebesgue covering dimension theory is the
Urysohn-Menger sum formula [11]: it asserts that for all subsets A and B of X such
that X = A U B,
(1) dim A" < dim A + dim fi + 1.

It was only very recently that (1) was verified for the cohomological dimension
over / : in 1992 Rubin [15] proved that

(2) c-dim2 X < c-dim2 A + c-dimz B + 1.

On the other hand, it was shown in 1992 by Dranisnikov, Repovg and Scepin [6]
that the Urysohn-Menger sum formula (1) fails for cohomological dimension over
arbitrary abelian groups: they have constructed subsets A and B of K4 such that

(3) c-dime//(v4 U B ) > c-dime/z A + c-dime/z B + I.

(Subsequently, Dydak [9] presented a different approach to this construction.)
Rubin's argument [15] for (2) is based on the resolution method, which can be

traced back to the 1970's pioneering work of Edwards (see, for example, the survey
by Walsh [16]). Roughly speaking, a resolution of a polyhedron L for some integer n,
is a replacement of all (n + 1) and higher dimensional simplices of L by the Eilenberg-
MacLane spaces K{®2, n). In the 1980's Dranisnikov [1] adapted this method for
the Bockstein rings 1P = Z/pTL and Z(p), that is the localization of 2 at the prime p
(see also the surveys [2] and [14]). Subsequently, Dydak and Walsh [10] used this
method to prove the Urysohn-Menger sum formula (1) for cohomological dimension
c-dinitf over all Bockstein rings R e {2(f), ZP}£Ĉ >, pe&> (where & is the set of all
primes and Z[t) is the localization of the integers at £), however they had to impose the
restriction that both c-dimR A > 2 and c-dim« B > 2. (Note that such a restriction was
unnecessary in Rubin's paper [15] since c-dim2 X = 1 obviously implies dim X = 1.)

Let AE(X) denote the class of all absolute extensors for X. Recall that the standard
definition of the cohomological dimension of X over an abelian group G is

(4) c-dimGX<n if and only if K(G, n) e AE(X).

It follows from the work by Dranignikov [3,4], that the Eilenberg-MacLane complexes
K(G, n) in the definition (4) can be replaced by the Moore spaces M(G, n):

(5) c-dimG X < n if and only if M(G, n) e AE(X).

Recall that M(G, n) is a polyhedron such that

)) = r !j!""'
0 xfi^n.

https://doi.org/10.1017/S1446788700038672 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038672


[3] The Urysohn-Menger sum formula 275

The equivalence (5) is true for n > 2 and the conclusion c-dimG X < n also holds for
n = 1. This result allows instead for a different type of resolution of a polyhedron L,
based on Moore spaces as building blocks.

The purpose of this paper is to remove the dimensional restrictions from the Dydak-
Walsh theorem [10]. We were able to achieve this by using the new type of resolutions
described above, that is, using the Moore spaces M(G,n). We shall only give the
proof for the case of the finite groups 1P since the proof for ~l{t) is similar. This result
was obtained in August 1992. Subsequently, Dydak [8] announced a generalization
of (6) to all rings R with unity.

THEOREM 1.1. For all subsets A, B c X of a finite-dimensional separable metric
space X and for every prime p, the following holds:

(6) c-dimz (A U B) < c-dimZo A + c-dim* B + l.

2. Preliminaries

We shall require the following result from [3]:

THEOREM 2.1. Suppose dimX < oo and that for some n > 2 and some abelian
group G, c-dimc X < n. Then the corresponding Moore space M(G, n) is an absolute
extensor for X, M(G, n) e AE(X).

We shall also need the following version of the Blakers-Massey theorem from [12,
Proposition 16.30]:

PROPOSITION 2.2. Let (X, A) e AHEP and suppose (X, A) is (n - \)-connected
and A is (s — \)-connected. Then the homomorphism nr(X, A, *) —> nr(X/A, *) is
an (n + s — \)-isomorphism, for every r > 0.

PROPOSITION 2.3. Let p be any prime, n > k and let K be any (Ic — \)-connected
polyhedron such that Tij(K) = 0 2 p /o r all k < i < n. Then there exists an inclusion
K ^ K such that:

(i) m(K) = ®lpfori <n + \; and
(ii) the inclusion-induced homomorphism H*(K; Tp) -> H*(K; ~IP) is bijective

for * < Ic and surjective for * > k.

PROOF. Let Kl = K Uv. B"+2 where {<pt : 9Bf+2 -+ K}i€N are the generators
of nn+\{K). Let K = (Kl, K)z , that is, K is obtained from A"1 by replacing all
(n + 2)-dimensional simplices of Kl\K by the Moore spaces M(ZP, n + 1). (See [2]
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for more on this construction.) Join all copies of M(TP, n + 1) in K by arcs in K\K
to obtain the wedge vM(Zp, n + 1).

Consider a couple (K, vM(Zp, n + 1)) and its exact sequence

)lp = 7rM+1(vM(Zp, n + 1)) -* nn+1(K) -+ nn+l(K, vM(Ip, n + 1)) -* • • •

By Proposition 2.2, we have that

nr(K, VM) -> nr(K/vM) = JT,.( AT'/wedge of arcs) ^^(A"1)

is an isomorphism for r = n + 1, since v(M(Zp, n + 1)) is ̂ -connected and (K, vM)
is O-connected. By construction, nn+i (AT1) = 0 ; thus a is an epimorphism, and hence
the image is

PROPOSITION 2.4. Let K be such that Hk{K) = 0 2 P . 77^n r/iere exists an
inclusion K c-> K such that

(i) 7r, (K) = 0 Zp for all i; and
(ii) H' (K; Zp) —> H'(K; ~lp) is an isomorphism for i < k and is an epimorphism

for i > k.

PROOF. Let K be the abelianization of A", that is, K is obtained from K by attaching
2-cells along the commutators of all the generators of the fundamental group. Then
7ij(K) — 0 Z P . The map Hl(K\Zp) —> Hl(K;Zp) is an isomorphism because
2-disks are attached by homology trivial maps (commutators). Apply Proposition 2.3,
starting from n = 1 and K to get a sequence

K *-> AT, A K2 A K3 ^ • •• ,

where K^ — K, 7r,(A'n) = 0 Z P for / < n, and j* is an isomorphism in dimension
one, and j* is an epimorphism for * > 1. Finally, define K = lim AT,-.

PROPOSITION 2.5. 7/dimX < oo andc-dimZp X = 1 then K e AE(X) ifnj(K) =

@7LP for alii.

PROOF. See [3,7].

3. (cd/j, n)-resolutions

DEFINITION. Let cdR be an abbreviation for c-dim^. Suppose that we have a
polyhedron K with some triangulation r. Then a map xjr : K —> K is called a
(cdfl, n)-resolution if for every simplex a e r, \js~l(o-) e AE(cd« < n, dim < oo)
and f~l\KM\ KM -+ Vr~'(^(n)) is ahomeomorphism.
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Property (*) of such a resolution means: For every simplex a e r and for every
integer n < i, the map H'(\jf~l(a); R) —> H'(\J/~l(da); R) is an epimorphism and
H"(\l/~l(a); R) —> Hn(\//~1(da); R) is an isomorphism (for / < n an isomorphism
of trivial groups).

THEOREM 3.1. For all p,n,K, and x there exists a (cd/p, n)-resolution \js : K —> K

with the property (*).

PROOF. The proof is by induction on dim K. For dim K = n + 1, replace (n + 1)-
simplexes by K(Zp,nYs, by identifying the boundary of the simplex with the n-
skeleton of K(ZP, n). For the inductive step m to m + 1: Suppose that dim AT =
m + \. Consider f, : K'im) -> K(m). Fix an (m + l)-simplex a. Let L = f~\do).
Then by the construction Hn{L) = ® 2 P . Apply Proposition 2.4 to obtain the
embedding L c-> L. Then by Proposition 2.5, L € AE(cd2/) < n, dim < oo) and so
the property (*) holds.

REMARK. Such a resolution with a weaker form of the property (*) was constructed
in [2], whereas in [10] a (cdzp, «)-resolution with the property (*) was constructed
just for n > 2. The argument in [10] is quite different from ours and it does not
allow for an extension to the case n — 1 (hence the restrictions c-dimR A > 2 and
c-dinifl B > 2 in their proof of the special case of Theorem 1.1). The rest of our proof
of Theorem 1.1 is to some extent similar to the argument in [10]; however, it is in
many respects more elementary.

NOTATION. Let (K, r) be a polyhedron with a triangulation r, let / : X —> K
be a map. Then the notation c-dimff(/, T) < n means that the following extension
problem has a solution for each subcomplex A c K of K:

K <-^ A - % * K(R,n)

(cf. the survey of Dranisnikov [2]).

PROPOSITION 3.2. Suppose that f : X -> K is a map and that for every simplex
a e T the map H"{f~\a); R) -* Hn{f~\do)\ R) is an epimorphism. Then
c-dimR(/, r) < n.

The proof of Proposition 3.2 is trivial. The following two theorems are taken
from [2] with only minor changes:
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THEOREM 3.3. Suppose that for every open covering co of the metric space Y there
exists an co-map g : Y —>• K, with x and there exists a x-lifting g' : Y —*• X for some
f : X -> K with c-dimR(/, r) < n. Then c-dimR Y < n.

Here x-lifting means that if g(x) e a e x then f o g'(x) e a and the a>-map has
the property that g~l(x) -< co, where < means refinement.

THEOREM 3.4. Suppose c-dimR Y < n. Then for every map g : Y —> K with a
triangulation x, and for every (cdR, n)-resolution ty : K —»• K, there is a x-lifting
g':Y - • K.

We shall also need the following assertion from [10]:

LEMMA 3.5. IfX is (n- \)-connectedand Y is (m - \)-connectedthen Hn+m+i(X*
Y;R) = Hn(X;Hm(Y;R)).

PROPOSITION 3.6. Suppose that we have resolutions: \(r : K —> K ((c<\R,n)-
resolution) and i/̂  : L -> L f(cds, m)-resolution) and both have the property (*).
Let o = \js~x(o), 8 = ^["'(5). Then the following are isomorphisms:

H"+m+l (a * « ) - • //»+»+• (do * 8) and

Hn+m+l (o * 5)-)- / / n + m + 1 ( 3^ * 35)

over the ring R, where 35 = ^,"'(35) and do = \fr"l(da).

PROOF. Notice that a is an isomorphism:

Hn+m+l(o * 5) -> Hn+m+x (o * 35)

II II
H" (o ;Hm(8)) A Hn(o;Hm(d8)).

Similarly the second one is isomorphism. Now the third one:

Hn+m+l(cr*8) —> Hn+m+l(do*d8)
II _ II

H"(o;Hm(o)) Hn(do;Hm(d8))

Now p is an isomorphism, since it is for just one R; so it follows for finite sums 0 R.
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4. The proof of Theorem 1.1

LEMMA 4.1. ThemapHn+m+l(a*8; R) -4 Hn+m+i(3(a*8); R)isanepimorphism,
where d(a * 8) = (a * d8) U (da * 8) ^- a * 8.

PROOF. Consider the following Mayer-Vietoris cohomology sequences over R
(where s = n + m + I):

- • H " + m ( d a * d 8 ) - + H s ( d ( a * 8 ) ) - + H s ( o * d 8 ) © H s ( d a * 8 ) - + H ' ( d 8 * d a ) - + •••

-^ 0 ^ H ' ( a * 8 ) -+ H ' ( & * 8 ) © H s ( a * 8 ) ^ H s ( a * 8 ) -> •••

It suffices to show that y is an isomorphism. Suppose that dim a < n and dim 8 < m.
Then all cohomology groups above vanish. If dim<7 > n and dim<5 > m, we have
that da * 38 is (n + m)-connected, hence H"+m(3a * d8) = 0 and the Five Lemma
yields the assertion.

It remains to consider the case when dim a < n and dim 8 > m or vice versa.
Then a ~ point: hence a * dS ~ point, and CT * 8 ~ point. We want to show that
H"+m+l(d(a * 8)) = 0. It sufices to prove that Hn+m(da * d8) maps onto, since we
know it maps into. To this end, consider the following diagram:

Hn+m(da *8) — • Hn+n+l(3(& * I))

II II
Hn+m(Sk *8) —> Hn+k+l(Sk * 38)

and recall that da = Sk, so by the property (*) there exists an epimorphism. Hence
we get a zero where we need it.

PROPOSITION 4.2. Suppose that f : K —• K is a (cdR, n)-resolution andy : L -»•
L is a (cdR, m)-resolution, both with the property (*). Then c-dim# (\{r *<p, z * r ') <
n + m + 1.

PROOF. Follows by Lemma 4.1 and Proposition 3.2.

DEFINITION. Suppose that A, B c X are disjoint subsets of X, X = A U 6 and
suppose that f : A -± K and g : B —>• L are any maps. Then define the map

* _
/ U g : A U 5 — > • £ * L a s follows: Let / : U —> K be an extension of a map / ' ,
which is close to, and hence homotopic to the map / , over an open neighbourhood
U c X of A in X and let g : V —*• L be an extension of a map g', which is close
to, and hence homotopic to, the map g, over an open neighbourhood V C X of B in
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X (cf. [10, Lemma 4.2]). Let dA(x) = p(x, X\U) and dB(x) = p(x, X\V) be the
distance functions. Now, define for every x e X,

(fUg)(x) = (f(x), g(x),dB(x)/(dA{x) + dB(x))).

Let TV : K * L —> [0, 1 ] be the natural projection of the join K * L onto the interval
[0, 1]. (Collapse K and L to a point, respectively.)

LEMMA 4.3. Suppose that X = A U B. Then for every cover w of X there exist
maps <pA : A —>• K with a triangulation x and cpB : B —>• L vv/r/z a triangulation x'

i'Mc/j f/za/ <p,4 U #>B w a« co-map onto K * L with respect to the triangulation r * r'.

PROOF. Choose a cover a)^ (respectively <yfi) which is a star-refinement of co and
consider the projection onto nerves, cpA (respectively <pB).

PROPOSITION 4 . 4 . Suppose that X = AU B and that there are maps f : K - • K,

cp : L ->• L , / : A -+ K with a x-lifting f ' : A ^ - K and g : B ->• L W/?/J a

x'-lifting g' : B -> L. T̂ en ?/?e map / U g : / i U f i - > / ! : * L t e a ( r * x')-lifting
q : AU B ^ K *L.

PROOF. Define the lifting as follows: q(x) = (f'(x), g'(x), (n(f U g))(x)).

PROOF OF THEOREM 1.1. It suffices to prove Theorem 1.1 for the case when the
subsets A, B c X are disjoint; i4 D fi = 0. Indeed, if A n £ ^ 0 we define £ ' =
and it follows that

A UB) = c-dim«(A U B') < c-dimR A + c-dimR B' + 1

< c-dimR A + c-diirifl B + 1.

So suppose now that AH B = 0, AU B = X, c-dim« /I < n and c-dim,? B < m. We
shall prove that c-dim«(/4 U B ) < n + m + l.

To this end, consider an arbitrary cover co of X and apply Lemma 4.3 to get maps
<pA : A -* K and <pB : B —> L. Next, apply Theorem 3.1 to obtain the corresponding
resolutions of K and L, that is, a (cdR, n)-resolution ^ : K —>• K with the property
(*) and a (cdR, m)-resolution <p : L —> L with the property (*).

By Proposition 4.2, c-dimff(i/'' * <p, x * r ') < n + m + 1, and by Theorem 3.4

and Proposition 4.4, there exists a lifting q : A U B ^- K * L of (pAUcpB which is

a (T * r'Hifting. Since a; as an arbitrary covering, it follows by Theorem 3.3 that

c-dims(/4 U B) < n + m + 1 as asserted.
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