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On the Inequality for Volume and
Minkowskian Thickness

Gennadiy Averkov

Abstract. Given a centrally symmetric convex body B in E
d, we denote by Md(B) the Minkowski space

(i.e., finite dimensional Banach space) with unit ball B. Let K be an arbitrary convex body in Md(B).
The relationship between volume V (K) and the Minkowskian thickness (= minimal width) ∆B(K) of

K can naturally be given by the sharp geometric inequality V (K) ≥ α(B) · ∆B(K)d, where α(B) > 0.
As a simple corollary of the Rogers-Shephard inequality we obtain that

(

2d

d

)

−1 ≤ α(B)/V (B) ≤ 2−d

with equality on the left attained if and only if B is the difference body of a simplex and on the right

if B is a cross-polytope. The main result of this paper is that for d = 2 the equality on the right

implies that B is a parallelogram. The obtained results yield the sharp upper bound for the modified

Banach–Mazur distance to the regular hexagon.

1 Introduction

By E
d, d ≥ 2, we denote the d-dimensional Euclidean space with the origin o. The

volume in E
d is denoted by V. The abbreviations bd, int and conv stand for the

boundary, interior, and convex hull, respectively. A set K ⊆ E
d is said to be a convex

body if it is convex, compact and has non-empty interior, cf. [BF74, Sch93]. The

class of convex bodies in E
d is denoted by Kd, while Bd denotes the class of cen-

trally symmetric convex bodies in E
d with center at the origin. With K ∈ Kd we

associate the support function hK (u) := max {〈x, u〉 : x ∈ K} and the width function

wK(u) := hK (u) + hK (−u). The convex body DK := {x − y : x, y ∈ K} is called the

difference body of K. It is known that hDK(u) = wK(u). The difference body of a tri-

angle is said to be an affine regular hexagon. The classes of triangles and affine regular

hexagons in E
2 are denoted further by T and H, respectively. If o ∈ int K, then the

convex body K∗
=

{

u ∈ E
d : hK(u) ≤ 1

}

is called the polar body of K.

A finite dimensional real Banach space is called a Minkowski space, cf. [Tho96] and

the surveys [MSW01, MS03]. If B ∈ Bd, then by Md(B) we denote the Minkowski

space with unit ball B. The norm in Md(B) is denoted by ‖ · ‖B. Since B is a subset

of the Euclidean space E
d, we see that Md(B) is equipped with an auxiliary Euclidean

structure. Every measure α · V with α > 0 could be used as a volume in Md(B),

see [Tho96, §1.4]. Further on, as a volume in Md(B) we will use either the mea-

sure V , which is determined from the auxiliary Euclidean structure of Md(B), or

the normalized volume VB( · ) := V ( · )/V (B), which is independent on the auxil-

iary Euclidean structure of Md(B), i.e., VB(K) = VB ′(K ′) for K ∈ Kd, B ∈ Bd and

K ′ := A(K), B ′ := A(B), where A is a non-singular linear transformation in E
d.
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186 G. Averkov

For d = 2 volume and normalized volume will be called area and normalized area,

respectively.

Given a convex body K in Md(B) and a vector u ranging over E
d\{o}, we introduce

the Minkowskian width function wK,B(u) := wK(u)/hB(u). In terms of Minkowskian

measures wK,B(u) can be given as the minimal Minkowskian distance occurring be-

tween points p1 ∈ H1 and p2 ∈ H2, where H1 and H2 are supporting hyperplanes

of K with outward Euclidean normals u and −u, respectively. The Minkowskian di-

ameter diamB(K) := max {‖x − y‖B : x, y ∈ K} of K is equal to the maximum of

wK,B(u), (for the proof, see for instance [Ave03b, Theorem 2]). The minimum of
wK,B(u) is called the Minkowskian thickness ∆B(K) of K, cf. [Ave03b]. In terms of the

difference body of K, ∆B(K) and diamB(K) can be given by the equalities

∆B(K) = max {α > 0 : α · B ⊆ DK} ,(1)

diamB(K) = min {α > 0 : DK ⊆ α · B} ,(2)

i.e., ∆B(K) and diamB(K) are Minkowskian in- and circumradii of DK, respectively

(cf. [Ave03b, Theorems 2 and 3]).

For K ∈ Kd and B ∈ Bd we introduce the quantities

f (K, B) :=
VB(K)

∆B(K)d
,(3)

f (B) := min
{

f (K, B) : K ∈ K
d
}

.(4)

One can show that the functional f (B) is affine invariant, i.e., f (B) is a well-defined

quantitative characteristic of Md(B). We see that f (αK, B) = f (K, B) for every

α > 0. Hence the quantity f (B) can also be treated as the least possible normal-

ized volume of a convex body K ⊆ Md(B) of Minkowskian thickness one. On the

other hand f (B) is the unique positive value yielding the sharp geometric inequality

(5) VB(K) ≥ f (B) · ∆B(K)d.

If d = 2 and Md(B) is the Euclidean plane, then convex bodies yielding equality

in (5) are precisely equilateral triangles, which was shown by Pál (see [BF74, Sec-

tion 44]). Heil [Hei78] asked for the bodies yielding equality in (5) in the case when

Md(B) is the Euclidean space with d ≥ 3. In [Hei78] he also constructed a convex

body which might yield equality in the above mentioned case.

Now we are ready to give a precise formulation of the announced new results.

Theorem 1 Let Md(B), d ≥ 2, be an arbitrary Minkowski space. Then

(6)
(

2d

d

)−1
≤ f (B) ≤ 2−d.

with equality on the left attained if and only if B is the difference body of a simplex and

on the right if B is a cross-polytope.
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Theorem 2 Let B ⊆ E
2 be an arbitrary centrally symmetric planar convex body with

center at the origin. Then f (B) =
1
4

(i.e., f (B) is maximal) if and only if B is a paral-

lelogram.

It should be mentioned that it is an open question whether Theorem 2 can be

extended to higher dimensions, i.e., it is unknown whether for d ≥ 3 the condition

f (B) = 2−d implies that B is a cross-polytope.

Further on, let us discuss some application of Theorems 1 and 2. In the literature

on convexity and local theory of Banach spaces the class Bd (as well as Kd) is often

endowed with certain affine invariant distance-functions, cf. [MS86, TJ89, Pis89],

and [Grü63, § 2]. For instance, the well-known Banach–Mazur distance d1(B1, B2)

between convex bodies B1 and B2 in Bd is the least possible α ≥ 1 such that for some

linear image B ′

1 of B1 we have B ′

1 ⊆ B2 ⊆ αB ′

1, cf. [LM93, Section 5] and [Sza91]. Let

Bd

aff be the class obtained from Bb by identifying every two affinely equivalent bodies.

Since the functional d1 is affine invariant with respect to both its arguments, it can

also be considered for the elements of Bd

aff . Then (Bd

aff , ln d1) is a compact metric

space, cf. [Mac51]. The above space is usually called the Banach–Mazur compactum

or Minkowski compactum (we notice that in some sources not d1 but the metric ln d1

is called the Banach–Mazur distance). Another distance often introduced on Bd

aff is

the modified Banach-Mazur distance, see [Grü63, § 2], [Khr01a, Khr01b]. The volume

ratio of convex bodies B1 and B2 in Bd is defined by

(7) vr(B1, B2) :=
( V (B1)

V (B ′

2)

) 1/d

,

where B ′

2 is an affine image of B2 which is contained in B1 and has maximal vol-

ume. Then the modified Banach–Mazur distance between B1 and B2 is the quantity

d2(B1, B2) := vr(B1, B2) vr(B2, B1) and again (Bd

aff , ln d2) turns out to be a com-

pact metric space, cf. [Lev52]. The distance d2 is weaker than d1 in the sense that

d2(B1, B2) ≤ d1(B1, B2) for B1, B2 ∈ Bd.

Using Theorems 1 and 2 we get

Theorem 3 Let B ⊆ E
2 be a centrally symmetric planar convex body with center at

the origin, and H be an affine regular hexagon. Then

vr(B, H)2 ≤ 4/3,(8)

vr(H, B)2 ≤ 3/2,(9)

d2(B, H)2 ≤ 2.(10)

Moreover, in each of the above three inequalities the equality is attained if and only if B

is a parallelogram.

We notice that Asplund gave estimates analogous to (10) with respect to the stan-

dard Banach–Mazur distance d1. More precisely, in [Asp60] he found the maximum

of the Banach–Mazur distance to the regular hexagon and to the parallelogram. The

diameter of Bd

aff with respect to ln d2 is unknown (even for d = 2). The diameter of

Bd

aff with respect to ln d1 is known only for the case d = 2, cf. [Str81] and [Tho96,

Problem 2.4.2].
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2 Proof of Theorem 1

For a convex body K ∈ Kd the volumes of K and DK are related by the inequalities

(11)
(

2d

d

)−1
≤

V (K)

V (DK)
≤ 2−d

with equality on the left if and only if K is a simplex and on the right if and only if

K is centrally symmetric, see [Sch93, § 7.3]. The inequality on the left-hand side of

(11) is the famous Rogers–Shephard inequality.

A convex body K ⊆ Md(B) is called reduced in Md(B) if it does not properly

contain a convex body of the same thickness in Md(B), (cf. the papers [Las90, LasM]

contain general results on reduced bodies in Euclidean and Minkowski spaces). One

can easily see that the bodies yielding equality in (5) are necessarily reduced in Md(B).

The following theorem (proved in [LasM]) describes reduced bodies in Minkowski

spaces with polytopal balls.

Theorem 4 Let B ⊆ E
d be a d-dimensional convex polytope with vertices ±bi , where

i ∈ {1, 2, . . . , n} and n ≥ d. Then every convex body K ∈ Kd which is reduced in

Md(B) can be represented by

K = conv

n
⋃

i=1

(λ[−bi , bi] + pi)

where λ := 1
2
· ∆B(K) and p1, . . . , pn are appropriately chosen points in Md(B).

Proof of Theorem 1 I. Let us prove (6). We consider an arbitrary K ∈ Kd with

∆B(K) = 1. Then, in view of (1), B ⊆ DK, and by (11) we get V (K)/V (B) ≥
(

2d

d

)

−1V (DK)/V (B) ≥
(

2d

d

)

−1. Consequently, f (B) ≥
(

2d

d

)

−1 with equality if and

only if K is a simplex and B = DK. The inequality f (B) ≤ 2−d follows from the

trivial equality f (B, B) = 2−d.

II. Now we assume that B is a cross-polytope and show that f (B) = 2−d. Let us

consider convex polytopes P ⊆ E
d given by

(12) P = conv

d
⋃

i=1

( 1

2
[−ui , ui] + pi

)

,

where u1, . . . , ud is a fixed basis in E
d and p1, . . . , pd are variable points in E

d. In

[McM82] and also in [Mar89] the polytopes P with minimal volume were described.

Theorems given in the above mentioned papers imply that the polytope P with p1 =

· · · = pd = o (i.e., the cross-polytope) yields the minimal volume. Assume that

±ui , i ∈ {1, 2, . . . , d}, are (all) vertices of B. Then, in view of Theorem 4, any

reduced body in Md(B) having Minkowskian thickness one can be given by (12) with

an appropriate choice of pi , i ∈ {1, . . . , d}. Consequently, the volume of 1
2
B does

not exceed the volume of any reduced body in M2(B) having Minkowskian thickness

one, which implies that f (B) = f ( 1
2
B, B) = 2−d.
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3 Proofs of Theorems 2 and 3

We start this section with preliminary notes on the geometry of Minkowski planes

which we shall need later on in the proofs. The following lemma extends some basic

properties of Euclidean one-dimensional cross-section measures in E
2 for Minkowski

planes, for the proof see [Ave03b, Theorem 4].

Lemma 5 Let P be a convex polygon in a Minkowski plane M2(B). Then

(i) For some vertices v1 and v2 of P we have ‖v1 − v2‖B = diamB(P).

(ii) For some Euclidean side normal u of P we have wP,B(u) = ∆B(P).

The isoperimetrix B̃ in a Minkowski plane M2(B) is the polar body of B rotated

by the angle π
2

about the origin, cf. [Tho96, Chapter 4] and [MarS]. Let T be an

arbitrary triangle with Euclidean side normals ui , i ∈ {1, 2, 3}. Then the quantities

hi := wT,B(ui) are called the Minkowskian heights of T. By ãi we denote the length

of the side with Euclidean normal ui measured in the Minkowski plane M2(B̃). The

Euclidean formula area =
1
2

height × base for the area of a triangle can be extended

for Minkowski planes to the formula

(13) V (T) =
1

2
hi ãi,

which is discussed in [Ave03c, § 6] and [Tho96, § 4.6].

From (13) we see that for some k ∈ {1, 2, 3} we have hk = min {hi : i = 1, 2, 3}
and ãk = max {ãi : i = 1, 2, 3}. But in view of Lemma 5, hk = ∆B(T) and ãk =

diamB̃(T). Thus, (13) implies

(14) V (T) =
1

2
∆B(T) diamB̃(T).

A triangle T is said to be equilateral in a Minkowski plane M2(B) if all its sides have

the same length in M2(B). Using the well-known monotonicity lemma (cf. [MSW01,

§3.5] as well as [Ave, Ave03a, AvM04]), it can be easily shown that for every direction

u there exists an equilateral triangle in M2(B) with a side parallel to u. Obviously,

if T is an equilateral triangle in M2(B) with sides of Minkowskian length one, then

all vertices of the affine regular hexagon DT lie in bd B and all sides of DT have

Minkowskian length one.

The following characterization of Minkowskian reduced triangles follows from

(13) and Lemma 5. The proof of Theorem 6 can be found in [Ave03c, Theorem 7]

and [CG85, §6] (equivalence (ii) ⇔ (iii)) .

Theorem 6 Let T be an arbitrary triangle in a Minkowski palne M2(B). Then the

following conditions are equivalent:

(i) T is reduced in M2(B);

(ii) T has equal heights in M2(B);

(iii) T is equilateral in M2(B̃).
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In [Ave05] the bodies K ∈ Kd yielding equality in (5) were described for the case

of an arbitrary B in B2. In particular, the following result was obtained.

Theorem 7 Let M2(B) be an arbitrary Minkowski plane. Then there exists a Minkow-

skian reduced triangle T yielding equality in (5), or, in other words, f (B) can be given

by

(15) f (B) = min
{

f (T, B) : T ∈ T, T is reduced in M
2(B)

}

.

Now let us examine the inequality for the area and the Minkowskian diameter of

a triangle. This inequality will be needed in the proof of Theorem 2. For B ∈ B2 and

a triangle T in E
2 we introduce the following quantities

g(T, B) :=
VB(T)

diamB(T)2
,(16)

g(B) := max {g(T, B) : T ∈ T} .(17)

Analogously to the remark on the quantity f (B) we state that g(B) is the largest pos-

sible normalized area of a triangle T ⊆ Md(B) having Minkowskian diameter one.

Further on, g(B) is the coefficient which determines the sharp geometric inequality

(18) VB(T) ≤ g(B) · diamB(T)2,

where T is an arbitrary triangle in M2(B). In view of (15), f (B) is the minimum of

f (T, B), when T ranges over T, which shows that the quantity g(B) is in some sense

dual to f (B). The following theorem presents basic properties of g(B).

Theorem 8 Let M2(B) be an arbitrary Minkowski plane. Then the following state-

ments hold.

(i) Triangles T yielding equality in (18) are necessarily equilateral in M2(B), i.e.,

(19) g(B) = max
{

g(T, B) : T ∈ T, T is equilateral in M
2(B)

}

.

(ii) We have

(20)
1

8
≤ g(B) ≤

1

6

with equality on the left attained if and only if B is a parallelogram and on the

right if and only if B is an affine regular hexagon.

Proof In order to prove part (i) we consider an arbitrary non-equilateral triangle

T in M2(B) with diamB(T) = 1 and then we show the existence of a triangle T ′ ⊆
M2(B) with diamB(T ′) = 1 and strictly larger area. The latter implies the triangles

T which are non-equilateral in M2(B) cannot yield equality in (18). Let p1, p2, p3

denote the vertices of T. Since diamB(T) = 1, in view of Lemma 5(i), at least one

side of T has Minkowskian length one.
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We start with the case when precisely one side of T, say [p2, p3], has Minkowskian

length one and the remaining two sides have Minkowskian length strictly smaller

than one. Then, due to the continuity of the Minkowskian norm, we have that for

those points p ′

1 in M2(B) which are sufficiently close to p1 the Minkowskian distance

from p ′

1 to p2 and p3 is strictly less than one. But then we can take p ′

1 above such that

conv{p ′

1, p2, p3} ⊇ T, see Figure 1, and put T ′ := conv{p ′

1, p2, p3}.

Now let us switch to the opposite case, i.e., precisely two sides of T, say [p1, p3]

and [p2, p3], have Minkowskian length one and the remaining side [p1, p2] is of

Minkowskian length less than one. We may replace T by any translate of T, and

thus without loss of generality we restrict our considerations to the case when p3 co-

incides with the origin. Then the boundary of the Minkowskian unit ball B contains

the vertices p1 and p2 of T. Since ‖p1−p2‖B < 1, the point p2−p1 lies in the interior

of B. Hence the line l through p2 − p1 and p2 has non-empty intersection with the

interior of B, see Figure 2. Consequently, l splits bd B into two boundary arcs, which

intersect l precisely by their endpoints.

Let γ be the boundary arc of B with endpoints in l and such that γ and the origin

lie on the different sides of l. Now let p ′

2 be a point on γ which is sufficiently close

to p2 but does not coincide with p2, see Figure 2. Then ‖p ′

2 − p1‖B < 1. Clearly,

we can define the triangle T ′ by T ′ := conv{o, p1, p ′

2}. Indeed, the Minkowskian

diameter of T ′ defined like that is equal to one, which is clear from the constructions

that we have performed. Since p ′

2 6∈ l, the height of T ′ with respect to the base [o, p1]

is larger than the height of T with respect to the same base, see Figure 2. Hence, T ′

has larger area than T. This finishes the proof in the second case.

p2 p3

p1

p ′

1

o p1

p2p2 − p1

p ′

2l

B

Figure 1 Figure 2

In [WW91] the range of the area of Minkowskian equilateral triangles with Min-

kowskian side length one was found. In view of (19) one can easily see that (ii) follows

directly from the results presented in [WW91]. We remark in addition that the in-

equality g(B) ≤ 1
6

together with the corresponding characterization of the equality

case is rather obvious, while the inequality g(B) ≥ 1
8

(without characterization of the

equality case) was first presented in [Cha66] (cf. also [Tho96, Lemma 4.2.6]).

Now we are ready to prove the main theorem of this paper.
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Proof of Theorem 2 It is clear that all K ∈ K2 with f (K, B) = f (B) are necessarily

reduced in M2(B). Let Th(B) and Ts(B) denote the classes of triangles having equal

Minkowskian heights and equal Minkowskian sides, respectively. In other words,

Th(B) is precisely the class of reduced triangles in M2(B) (see Theorem 6), and Ts(B)

is the class of equilateral triangles in M2(B). Using (14) it is easy to verify that

4V (B)V (B̃) f (T, B)g(T, B̃) = 1,

or, equivalently,

(21) 4V (B)V (B̃) f (T, B) =
1

g(T, B̃)
.

Theorem 6 states that Th(B) = Ts(B̃). Taking in (21) the minimum over all trian-

gles T from Th(B) = Ts(B̃) we arrive at

4V (B)V (B̃) min
T∈Th(B)

f (T, B) = min
T∈Ts(B̃)

1

g(T, B̃)
.

Hence

4V (B)V (B̃) min
T∈Th(B)

f (T, B) =
1

maxT∈Ts(B̃) g(T, B̃)
.

Applying (15) and (19) we then obtain

(22) 4V (B)V (B̃) f (B)g(B̃) = 1.

The quantity V (B)V (B̃) involved in (22) is known as the volume-product of B.

Mahler [Mah39] proved that

(23) V (B)V (B̃) ≥ 8

with equality if and only if B is a parallelogram, see also [Tho96, pp. 54–55] and

[Rei86] for related higher-dimensional results.

The sufficiency need not be proved, since it is already involved in Theorem 1.

The necessity holds since for any B which is not a parallelogram we have the sharp

inequality f (B) < 1
4
. Indeed, if B is not a parallelogram, then by Theorem 8(ii) we get

the sharp inequality g(B) > 1
8

and by the remark to (23) we get the sharp inequality

V (B)V (B̃) > 8. Applying these sharp inequalities together with (22) we easily arrive

at the inequality f (B) < 1
4
.

Proof of Theorem 3 Let us prove (8). From (7) we obtain that

(24) vr(B, H)2
= min

{

V (B)

V (H ′)
: H ′ ∈ H, H ′ ⊆ B

}

.

(We recall that H denotes the class of affine regular hexagons.) From (2) we can see

that H ′ is an affine regular hexagon contained in B if and only if H ′
= DT, where
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T is a triangle with diamB(T) ≤ 1. Obviously for the triangle T as above we have

6V (T) = V (H ′). Thus, (24) can be reformulated with the help of the triangles T

above as follows.

vr(B, H)2
=

1

6
min

{

V (B)

V (T)
: T ∈ T, diamB(T) ≤ 1

}

.

Raising the above equality to the power −1 and slightly transforming the right-hand

side we come to the equality

(25) vr(B, H)−2
= 6 max

{

V (T)

V (B)
: T ∈ T, diamB(T) ≤ 1

}

.

For T ∈ T with diamB(T) < 1 the ratio V (T)/V (B) increases if we replace T by

the triangle 1
diamB(T)

T, having Minkowskian diameter one. Consequently, the above

maximum can be taken over triangles T with diamB(T) = 1, which implies that the

right-hand side of (25) is equal to 6g(B). Thus, applying Theorem 8(ii), we get

(26) vr(B, H)2
=

1

6g(B)
≤

4

3
.

Now let us prove (9). From (7) we deduce that

(27) vr(H, B)2
= min

{

V (H ′)

V (B)
: H ′ ∈ H, H ′ ⊇ B

}

.

By (1) we see that H ′ is an affine regular hexagon with H ′ ⊇ B if and only if H ′ is the

difference body of a triangle T with ∆B(T) ≥ 1. Again, for triangles T as above we

have 6V (T) = V (H ′). Now we can reformulate (27) in terms of triangles as follows:

(28) vr(H, B)2
= 6 min

{

V (T)

V (B)
: T ∈ T, ∆B(T) ≥ 1

}

.

For triangles T with ∆B(T) > 1 the ratio V (T)/V (B) decreases if we replace T by

the triangle 1

∆B(T)
T, having Minkowskian thickness one. Consequently the above

minimum can be taken over T ∈ T with ∆B(T) = 1. Thus, the right-hand side of

(28) is equal to 6 f (B). Therefore, applying (6) for d = 2, we get

(29) vr(H, B)2
= 6 f (B) ≤

3

2
.

Inequality (10) follows directly from (8) and (9). In view of relations (29) and

(26) expressing vr(H, B)2 and vr(B, H)2 by f (B) and g(B), respectively, we infer that

the characterizations of equality cases in (8)–(10) are direct corollaries of Theorem 2

and Theorem 8(ii).
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