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Introduction

To get a glimpse of the main theme of the book, consider an arbitrary cloud of
N points xi = (xi, yi) ∈ R2, i = 1, . . . , N , in the plane, dense enough to form
some geometric shape. For instance in Figure 1.1 the shape looks like a rotated
letter “T”; similarly in the frontispiece, the cloud of points is concentrated on
the letters “C” and “D” (for Christoffel and Darboux). Then we invite the reader
to perform the following simple operations on the preferred cloud of points:

1. Fix n ∈ N (for instance n = 2) and let s(n) =
(
n+2

2

)
.

2. Let vn(x) = (1, x, y, x2, x y, . . . , x yn−1, yn) be the vector of all monomials
xiy j of total degree i + j ≤ n.

3. Form Xn ∈ R
n×s(n) , the design matrix whose ith row is v(xi), and the

real symmetric matrix Mn ∈ R
s(n)×s(n) with rows and columns indexed by

monomials such that

Mn :=
1
N

XT
nXn.

4. Form the polynomial

x 7→ pn(x) := vn(x)TM−1
n vn(x).

5. Plot the level sets Sγ := {x ∈ R2 : pn(x) = γ} for some values of γ, and in
red for the particular value γ =

(2+n
2

)
.

As the reader can observe in Figure 1.1, the various level sets (and in particular
the red one) capture quite accurately the shape of the cloud of points.
The above polynomial pn is associated with the cloud of points (xi)i≤N only

via the real symmetric matrix Mn in a conceptually simple manner, the main
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Figure 1.1 n = 4; N = 1000; level sets Sγ
(
in red for γ =

(
2+4

2

))
.

computational step being matrix inversion. It turns out that Mn is called the
moment matrix associated with the empirical probability measure

µN :=
1
N

N∑
k=1

δxi , (1.1)

where δx is the Dirac measure at the point x, and Mn =
1
N

∑N
i=1 vn(xi) vn(xi)T .

The reciprocal function x 7→ ΛµN
n (x) := pn(x)−1 is called the Christoffel

function (say of degree n as pn is polynomial of degree 2n) associated with the
empirical measure µN . It depends only on the moments of µN , up to order 2n.
In mathematical terms, the level sets Sγ in Figure 1.1 depict the shape of

the support of the measure µN . This striking property is not an accident for
this particular cloud. Indeed in Figure 1.2 we have displayed other clouds of
two-dimensional points with various shapes and the corresponding level sets Sγ
for various values of γ and n. Again, remarkably, the level sets Sγ approximate
to high precision the shape of clouds even for a relatively small value of n. The
same observation applies for the picture on the book cover where the shape
of the “C” and “D” letters is very well approximated by level sets Sγ of the
bivariate Cristoffel polynomial p10 of degree 20, and in particular by the one
with boundary in red.
It turns out that in fact this property holds in the general framework of the

Christoffel function Λµn associated with an abstract measure µ on a compact
set Ω ⊂ Rd . This time one replaces the empirical moment matrix Mn with
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Figure 1.2 Level sets Sγ (in red for γ =
(

2+n
2

)
) for various clouds and various

values of n.

the exact moment matrix Mn(µ) associated with µ. For instance for Ω ⊂ R2,
Mn(µ) now reads

Mn(µ) :=
∫
Ω

vn(xi) vn(xi)T dµ(x),

where the integral is understood coordinate-wise. Notice that the empirical
probability measure µN in (1.1) could have been obtained from a sample of N
points (xi)i≤N ⊂ Ω, drawn from some probability distribution µ on Ω.
This property has been known for a long time in various related domains

of mathematics, for example approximation theory, orthogonal polynomials,
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potential theory, reproducing kernel Hilbert spaces, function theory, spectral
analysis, statistical mechanics, to cite a few. However, most works in these areas
have been concerned with the asymptotic analysis of Λµn (appropriately scaled)
when n → ∞, and proportionally much less attention has been paid to the study
of ΛµN

n for fixed n, when µN is some empirical measure µN supported on a
cloud of points, not to mention the clear benefits and potential applications in
data analysis.

We know sketch out the structure of the book. It is divided into three rather
distinct parts:

Part ONE consists of four chapters and focuses on historical and theoretical
background. After introducing the key concept of a reproducing kernel Hilbert
space (RKHS), classical results pertaining to Christoffel–Darboux kernel in the
univariate case and separately the more involvedmultivariate case are recorded.
More specifically:
Chapter 3 recalls classical results referring to the univariate Christoffel

function (either in complex setting C or in the real line). Familiar results,
sometimes several decades old, offer a necessary comparison basis for
multivariate analogs. The latter are sometimes much more involved, still under
investigation, or simply do not exist.
Chapter 4 focuses on the real multivariate Christoffel function for a measure

on a compact set Ω ⊂ Rd and introduces both qualitative and quantitative
asymptotics results. Several key theorems are stated without proofs due to
intricate ingredients or necessary vast preliminaries (such as, for instance,
pluripotential theory). Such important details fall beyond the scope of the
present book. For the interested reader we provide some historical notes,
technical statements and their sources. The level of depth and sophistication
of recent advances in the multivariate theory of Christoffel–Darboux is barely
suggested by our brief comments.
Chapter 5 is concerned with CD kernels associated with measures supported

by a real algebraic variety. Think for instance of data points located by their very
nature on a subset of the Euclidean sphere or a torus. In the singular support
situation we fully exploit the concept of localized Hilbert function spaces. In
spite of its theoretical flavor this is the natural framework for manipulating a
structured moment matrix. To be more precise, it is quite remarkable that the
degenerate moment matrix Mn (already described in the introduction above
in dimension 2 and easily accessible from observed data) encodes profound
analytical and geometrical characteristics of the generating measure.
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Part TWO develops the motivation of this book, namely the utilization of the
Christoffel–Darboux kernel associated with the empirical measure supported
on a cloud of data points as the central carrier of structural information. How
to decode this information into qualitative geometric, analytic or probabilistic
features is our main task.

Chapter 6. As is typical in statistics and data analysis, a finite sample of size
N is drawn independently from some unknown distribution µ with compact
support S ⊂ Rd . As detailed in the introduction, this provides an empirical
version of the Christoffel function, related to the empirical measure supported
on the finite sample. As expected, a generalization trade-off occurs at this
point. For small values of n and large N the empirical Christoffel function
is close to its population counterpart related to µ. On the other hand, for
large n, the empirical Christoffel function has a trivial behavior which does
not depend at all on µ. As described in Chapter 4, the population Christoffel
function captures information on the underlying measure µ and its support
S provided that the degree n increases. Therefore, in order to benefit from
this phenomenon and avoid the trivial behavior of the empirical Christoffel
function, it is crucial to relate the degree n of the Christoffel function. This
chapter exposes recent results about statistical concentration for the Christoffel
function and joint asymptotics in (n, N ) under certain restrictions related to
relative growth of n and N . Furthermore, in the context of singularly supported
population measure µ with support contained in an algebraic set (which can be
described by polynomial equations) we describe a finite-sample convergence
phenomenon. Namely, under technical assumptions, the intrinsic rigidity of
algebraic sets allows us to prove that, beyond a certain sample size N0, with
probability 1 the information contained in a finite sample is sufficient to fully
characterize through the moment matrix the underlying algebraic set, that is,
the set of equations describing it.

Chapter 7 illustrates the theory and expands on occurrences of CD kernels
and Christoffel functions in statistics, for example the empirical CD kernel
constitutes a higher-degree generalization of the well-known Mahalanobis
distance. First in a parameteric regression setting, it turns out that the CD kernel
has a natural interpretation in terms of predictive variance. This view allows us
to make a direct connection with well-established quantities, such as leverage
scores, and to discuss the problem of optimal design of experiments through the
prism of the Christoffel function. Beyond parametric regression, the statistical
results developed in Chapter 6 are illustrated on support inference problems for
which we provide Christoffel function based estimators which benefit from
the conceptual simplicity of the CD kernel, the main computational step
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being matrix inversion. This chapter also reports empirical results which were
obtained for singularly supported densities on an algebraic set (sphere, torus),
a situation that occurs for certain types of data (orientation, angles, positions
on earth). We also provide results related to the motivating example of this
introduction with outlier detection problems where we consider unsupervised
network intrusion detection.

Part THREE contains a representative selection of complementary topics.

Chapter 8 focuses on two applications: one in basic approximation theory
of nonsmooth functions, the other in the spectral analysis of certain ergodic
dynamical systems. The clear advantages of treating such fundamental
questions of mathematical analysis with techniques originating in the study
of a CD kernel are simply stunning.
Chapter 9 deals with recent advances of immediate relevance to the topics

of the book: stability under perturbations of Christoffel–Darboux kernels and
a noncommutative, matrix analysis scheme of isolating the dense cloud from
scattered and possibly embedded outliers of a 2D point distribution.
Chapter 10 is concerned with some spectral characterization as well as

extensions of the Christoffel function. A first extension is to depart from the
standard and classical L2(µ) Hilbert space associated with the underlying
measure µ and rather consider standard Lp (µ) Banach spaces. Another
extension is to consider some natural convex cones of polynomials (positive on
the support of µ) rather than “squares” in the variational L2(µ) formulation of
the Christoffel function. This yields alternative Christoffel-like functions with
their own properties. Finally, when viewing the standard Christoffel function as
single-point interpolation, it is also natural to investigate its naturalmulti-point
extension.
The year appearing in cross references, for instance Hilbert (1953) or Marcel

Riesz (2013), does not reflect the date of the original publication, but rather the
year of a reprint edition.
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