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Semi-supervised and unsupervised machine learning methods often rely on graphs to model data,
prompting research on how theoretical properties of operators on graphs are leveraged in learning
problems. While most of the existing literature focuses on undirected graphs, directed graphs are very
important in practice, giving models for physical, biological or transportation networks, among many
other applications. In this paper, we propose a new framework for rigorously studying continuum
limits of learning algorithms on directed graphs. We use the new framework to study the PageRank
algorithm and show how it can be interpreted as a numerical scheme on a directed graph involving
a type of normalised graph Laplacian. We show that the corresponding continuum limit problem,
which is taken as the number of webpages grows to infinity, is a second-order, possibly degenerate,
elliptic equation that contains reaction, diffusion and advection terms. We prove that the numerical
scheme is consistent and stable and compute explicit rates of convergence of the discrete solution
to the solution of the continuum limit partial differential equation. We give applications to proving
stability and asymptotic regularity of the PageRank vector. Finally, we illustrate our results with
numerical experiments and explore an application to data depth.

Key words: Partial differential equations on graphs and networks, second-order elliptic equations,
viscosity solutions
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1 Introduction

Due to its versatility in modelling data, graphs are frequently leveraged for applications in
machine learning and data science. A graph structure encodes interdependencies among con-
stituents, such as social media users, images or videos in a collection, or physical or biological
agents, and provides a convenient representation for high dimensional data. For example, in a
graph representing research collaborations, we can represent each author as a node in the graph,
and co-authorship is represented by edges between nodes, with edge weights depending on the
frequency of co-authorship. The resulting graph is undirected as the edges are bi-directional. On
the other hand, transportation and biological networks often result in directed graphs because the
relationship between two nodes is ordered, such as the direction of a train route or a predator–prey
relationship.
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Graph-based methods are particularly prominent in unsupervised and semi-supervised
machine learning tasks that seek to reveal structures and patterns in unlabelled data. For example,
in semi-supervised classification, one has labels for a subset of the nodes in the graph, and the
problem is to propagate the labels to the rest of the graph in a meaningful way. A widely used and
very successful algorithm for semi-supervised classification is Laplacian semi-supervised learn-
ing, originally proposed in [61], which finds the unique graph harmonic function that extends the
labels. There are many extensions and modifications of Laplacian regularisation (see, e.g. , [58,
56, 59, 1, 48, 3]), with more recent methods drawing inspiration from partial differential equa-
tions (PDEs) [6, 23]. For classification problems at very low labelling rates, p-Laplacian regular-
isation has recently been introduced [20, 22]. In unsupervised learning, graph-based algorithms
are used in spectral clustering [40, 42], Laplacian eigenmaps [2], diffusion maps [17], manifold
ranking [32, 33, 52, 55, 60, 54], minimal surface graph partitioning [62] and PageRank [30].

Various types of graph Laplacians appear in nearly all graph-based learning algorithms, due to
the ability of the graph Laplacian to uncover geometric structure in datasets. Graph Laplacians
that are commonly used in practice include the unnormalised Laplacian

Lu(x) =
∑
y∈X

ωxy(u(y) − u(x)),

the random walk Laplacian

Lrwu(x) = 1

dx

∑
y∈X

ωxy(u(y) − u(x))

and the normalised Laplacian

Lnu(x) =
∑
y∈X

ωxy√
dxdy

u(y) − u(x),

where X denotes the set of nodes in the graph, u : X →R, ωxy is the (undirected) edge weight
between x and y, and dx =∑

y∈X ωxy is the degree of node x. The unnormalised graph Laplacian
appears naturally as the gradient of the Dirichlet energy

E(u) =
∑
x,y∈X

ωxy(u(x) − u(y))2.

The random walk Laplacian is exactly the generator for a random walk on X with probability
d−1

x ωxy of stepping from x to y, and the normalised graph Laplacian is a convenient way to
obtain a symmetric normalisation of the graph Laplacian. While these normalisations are most
frequently used in practice, many other choices are possible. For example, see [36] for an analysis
of how the choice of normalisation affects spectral clustering. We note that the random walk
interpretation allows us to view methods like those studied in [61] as performing classification
by randomly walking on the graph until hitting a labelled node. Intuitively, the random walk
will naturally learn the structure of the unlabelled data by remaining within clusters of high
density for long enough to hit a labelled point, before moving to a different cluster. While many
classification algorithms seek graph harmonic functions, the spectrum of graph Laplacians is
widely used to construct low dimensional embeddings of graphs.

The algorithms discussed above are mainly designed for symmetric graphs, where ωxy =ωyx.
Perhaps one of the most widely known algorithms for directed graphs is the PageRank algorithm,
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which is used to evaluate the importance of nodes in a graph based on their link structure. While
the algorithm is most famous for sorting Google search results up until the mid-2000s, variants of
PageRank are used by other tech companies (e.g., Twitter uses a reversed PageRank to identify
influential, topic-specific accounts) and have been adapted to solve problems in neuroscience,
genetics and recommender systems [30]. The PageRank algorithm uses a random surfer model
with teleportation probability α ∈ [0, 1] to rank pages. To describe the model, when the random
surfer is at webpage x, she will with probability α teleport to a random webpage, and with proba-
bility 1 − α click on an outgoing link to another webpage. When the surfer clicks on an outgoing
link, the link is selected at random and we denote by pxy the probability of clicking a link to
website y from website x. When she randomly teleports, the next website is chosen at random
from a teleportation probability distribution v. The inclusion of the teleportation step ensures the
random surfer does not get stuck in disconnected components of the graph.

The PageRank vector is the invariant distribution of the resulting Markov chain, which mea-
sures the amount of time the random surfer spends on each webpage. Webpages that are visited
more often by the surfer are ranked more highly, while websites that are rarely visited are ranked
lower. Mathematically, the PageRank vector r is the (normalised) solution of the eigenvector
problem

((1 − α)P + αv1T )r = r, (1.1)

where P = (pyx)x,y∈X is the probability transition matrix described above, v is the teleportation
probability distribution and 1 is the column vector of all 1’s. We note that by the Perron–
Frobenius theorem [30], the PageRank vector r can be chosen to have real-valued strictly positive
entries. If we choose the normalisation 1T r = 1, so that r is a probability distribution, then the
eigenvector problem (1.1) is equivalent to the linear system

(I − (1 − α)P) r = αv. (1.2)

This formulation is more convenient, since the left-hand side can be interpreted as a type of graph
Laplacian.

The teleportation probability distribution v can be uniform over all webpages or can be nonuni-
form. Indeed, by setting v(x) = δx0 (x) for a specific website x0 leads to a localised PageRank
algorithm that ranks sites nearby x0 [30]. Computationally, the PageRank vector is obtained via
the power method on (1.1), which converges at a rate of |λ2/λ1|, that is, a ratio of the sec-
ond eigenvalue to the leading eigenvalue of the matrix. In the case of PageRank, Haveliwala
and Kamvar [31] show that λ1 = 1 and λ2 = 1 − α, so the convergence rate depends heavily on
the choice of the teleportation parameter. Google takes 1 − α to be 0.85 [38]. There are also
adaptations of semi-supervised learning to directed graphs (see [57]).

Due to the ubiquity of graph Laplacians in graph-based learning problems, much work has
been devoted to understanding how the graph Laplacian is able to uncover geometric and distri-
butional structure from unlabelled data. To do this, one usually assumes the graph is a random
geometric graph with n points and length scale h> 0 and considers the limit as n → ∞ and
h → 0. This means the nodes in the graph are an i.i.d. sample of size n from a density ρ supported
on a d-dimensional manifold M embedded in R

D, and the weights ωxy are defined by

ωxy =�

( |x − y|
h

)
,
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where � : [0, ∞) → [0, ∞) is nonincreasing and usually compactly supported. The first results
to appear in the literature were pointwise consistency results, showing that a graph Laplacian
L applied to a smooth test function ϕ ∈ C3(M) converges, as n → ∞ and h → 0 to a weighted
version of the Laplace–Beltrami operator

	ρϕ = ρadiv(ρb∇(ρcϕ))

for various values of a, b, c that depend on the choice of normalisation of the graph Laplacian.
For example, for the unnormalised graph Laplacian, a = −1, b = 2, c = 0, and for the random
walk Laplacian a = −2, b = 2, c = 0. If h → 0 and n → ∞ simultaneously, then the condition
nhd+2 � log n is required for pointwise consistency, which ensures there are enough neigh-
bours of each data point to apply appropriate concentration of measure results. To obtain O(h)
pointwise consistency rates, it is required that nhd+4 � 1. We contrast this with the condition
nhd � log n required for graph connectivity. For pointwise consistency results of this flavour,
see [7, 37, 35, 34, 4, 46]. Pointwise consistency was extended to k-nearest neighbour graph
constructions in [49], which includes some mildly directed graphs due to antisymmetries in the
k-nearest neighbour relation.

While pointwise consistency results are informative, they do not prove that the solutions of
graph-based problems converge to solutions of their counterparts as n → ∞ and h → 0. This
question is more subtle and requires further analysis. The problem of spectral convergence of
the graph Laplacian spectrum to that of the Laplace–Beltrami operator has been well-studied.
Belkin and Niyogi [5] established L2 spectral convergence (convergence of eigenvalues and
L2 convergence of eigenvectors) when ρ is the uniform distribution and this was extended to
nonuniform distributions with partial convergence rates in [51]. Shi [43] proved convergence
rates and extended the analysis to include manifolds with boundary. The L2 convergence rate
was improved recently in [25] using variational methods, and then further improved in [13] to
agree with the pointwise consistency rate O(h), which is the sharpest known L2 spectral conver-
gence rate. The variational parts of the spectral convergence arguments in [13, 25] were heavily
influenced by earlier work in a non-probabilistic setting [8]. We also mention that very recent
work has established the first L∞ eigenvector convergence rates [19].

For problems in clustering and semi-supervised learning, recent work has begun to address
convergence in the continuum using tools from the calculus of variations and viscosity solutions
of PDEs. Trillos and Slepčev [50] developed a Gamma-convergence framework for proving
discrete to continuum convergence of graph-based problems, and the framework has been applied
to prove discrete to continuum consistency in many problems (see, e.g. , [50, 28, 27, 24, 47, 41]
and the references therein). Discrete to continuum convergence can also be established with
the maximum principle and the viscosity solution framework, as was established in [9, 11] for
the game-theoretic graph p-Laplacian and Lipschitz learning. The maximum principle can also
be used to prove asymptotic Hölder regularity of solutions to graph-based learning problems,
as was done in [14, 9]. For the linear 2-graph Laplacian, [26] used the maximum principle to
establish discrete to continuum convergence rates for regression problems, and [15] used the
maximum principle in combination with random walk arguments to establish convergence rates
for semi-supervised learning at low labelling rates. We also mention that [44] uses the maximum
principle to prove convergence rates for a reweighted version of the graph Laplacian in low label
rate semi-supervised learning context.
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Despite the flurry of recent work on discrete to continuum consistency results, almost none of
the results apply to problems on directed graphs, which are important and widely used in prac-
tice. The only results we are aware of for directed graphs are for k-nearest neighbour graphs [49,
24], which are directed only due to the asymmetry of the k-nearest neighbour relation. Discrete to
continuum results are important for providing insights and further understanding of algorithms.
Furthermore, continuum limits allow us to prove stability of graph-based algorithms, showing
that they are insensitive to the particular realisation of the data, and often can lead to new formu-
lations of learning problems founded on stronger theoretical principles. This paper aims to start
filling this void by studying consistency results for problems on directed graphs. We propose the
random directed geometric graph model, which extends the random geometric graph in a natural
way by adding directionality in the weights. For concreteness, we study the PageRank problem
and prove that the PageRank vector converges in the large sample size limit to the solution of a
continuum, possibly degenerate, elliptic PDE. Depending on the strength of the directionality in
the weights, the continuum PDE can be a first-order equation, which is a new type of result for
consistency of graph Laplacians. Our main results are finite sample size error estimates with high
probability, which imply convergence in the continuum, but are stronger in that they hold in the
non-asymptotic regime. We use these results to prove stability of the PageRank problem, and we
also study the time-dependent version of the problem, which examines the continuum limit of the
distribution of the random surfer. Our proofs use pointwise consistency and the maximum princi-
ple, with appropriate adaptations to directed graphs. We also present the results of some numer-
ical experiments confirming our theoretical results and exploring applications to data depth.

2 Setup and main results

We now describe our setup and main results. Section 2.1 introduces our random directed geo-
metric graph model, and Section 2.2 formulates the PageRank problem in a new way and gives
our main results.

2.1 Random directed geometric graph

In order to study continuum limits for problems on directed graphs, we propose a new model for
a random directed graph that we call a random directed geometric graph. Let x1, x2, . . . , xn be
an i.i.d. sample of size n on the torus Td =R

d/Zd with a density function ρ : Td → [0, ∞). We
define the weight ωxy from x to y by

ωxy =�

( |B(x)(y − x − εb(x))|
h

)
,

where B : Td →R
d×d and b : Td →R

d , and B(x) has full rank for every x ∈T
d . The parameter

h> 0 is the bandwidth of the kernel, and ε > 0 is the strength of the directionality. The kernel
function � is assumed to be nonnegative with compact support. When B = I and b = 0 or ε= 0,
the weights are the same as those of a random geometric graph, which is symmetric. For other
choices of B and b, the corresponding graph is directed, with directional influence along the
vector field b. The matrix B can be viewed as changing the metric locally.

Assume for the moment that � has compact support in [0, 2]. We observe that for fixed x, the
support of the weight y �→ωyx is the ellipse shaped region
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x

x + εb(x)

r1h

r2h

FIGURE 1. A visualisation of the set Ex, which is the support of the weight y �→ωxy in R
2. The blue line

represents the directional preference b(y) multiplied by ε. The ellipse is the set Ex, where ri = 2/
√
λi and

λ1, λ2 are the eigenvalues of B(x)T B(x), and the red arrows indicate the eigenvectors of B(x)T B(x).

Ex :=
{

y ∈R
d
∣∣∣ |B(x)(y − x − εb(x))|

h
< 2

}
(2.1)

which depends on x. Figure 1 gives us a sense of Ex in two dimensions. In the random walk (or
random surfer) interpretation, the random walker moves from x to a point in the set Ex, which
contains a drift term εb(x) and an anisotropic diffusion governed by B.

In the following remarks, we provide an in-depth motivation for the weights in the context of
ranking players in a sports tournament and modelling systematic distortion in the data [45].

Remark 2.1 (Motivation via ranking) Assume each team or player is represented by a feature
vector x ∈R

d that adequately describes each player. When player x and player y play against
each other, we write x 
 y if x wins the game, and y 
 x if y wins. We assume each time x and y
play, x wins with probability P(x 
 y) and y wins with probability P(y 
 x) = 1 − P(x 
 y).

Suppose that x and y play n games, and we assign an edge in our graph from x to y if y wins
more than half of the games, and assign the edge from y to x if x wins more than half the games.
That is, the edge is directed towards the ‘better’ player. The weight on the edge is the excess
number of wins for the winning player. In expectation, if P(x 
 y) ≥ 1

2 , then we have an edge
from y to x with weight

ωyx = −1 + 2P(x 
 y).

If P(y 
 x) ≥ 1
2 , then we have an edge from x to y with weight

ωxy = −1 + 2P(y 
 x) = 1 − 2P(x 
 y).

Now, we make a modelling assumption on P(x 
 y). We assume there is some underlying
(unknown) ranking function

ϕ : Rd → [0, 1],
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so that ϕ(x) ≥ r(y) indicates player x is better than y. A natural model for the probability P(x 
 y)
is then

P(x 
 y) = 1

2
+ ϕ(x) − ϕ(y)

2
,

leading to the weight

ωyx = ϕ(x) − ϕ(y),

when ϕ(x) ≥ ϕ(y). Using a Taylor expansion, we have an edge from y to x if

ϕ(y) ≤ ϕ(x) ≈ ϕ(y) + ∇ϕ(y) · (x − y) + 1

2
(x − y)T∇2ϕ(x − y),

or

∇ϕ(y) · (x − y) + 1

2
(x − y)T∇2ϕ(x − y) ≥ 0. (2.2)

If ϕ is convex, the set of x satisfying the inequality above lie in an ellipse. This gives some
motivation for the directional preference b = ∇ϕ and for the elliptical shape governed by B =
(∇2ϕ)1/2 as they occur in the definition of our weights. We restrict the weights locally to some ball
B(y, 2h) based on the assumption that teams play against similarly ranked teams in a tournament.

Remark 2.2 The work in [45] constructs two operators that can identify the common structures
and the differences, respectively, between two diffeomorphic Riemannian manifolds. An appli-
cation to identifying signals from foetal electrocardiogram data via observed maternal ECG
data is considered. Their algorithm handles cases where there is a systematic diffusion in the
observed vs. target data; our problem is ‘adjacent’ in the sense that we model the diffusion and
directional preferences via B(y) and b(y) in our setup.

2.2 Main results

We now present our setup and main results. We take the random directed geometric graph model
from Section 2.1 with B(x) ≡ I (though see Section for a discussion of how the results change
when B is not the identity). That is, let x1, x2, . . . , xn be an i.i.d. sample of size n on the torus Td

with probability density ρ : Td → [ρmin, ∞), where ρmin > 0, and set Xn = {x1, x2, . . . , xn}. We
define the weight from x to y by

ωn(x, y) =�

( |y − x − εb(x)|
h

)
, (2.3)

and the degree of x by dn(x) =∑
y∈Xn

ωn(x, y). We assume the kernel � is smooth, compactly
supported on [0, 2], nonnegative, nonincreasing, satisfies �(0)> 0 and∫

B(0,2)
�(|z|) dz = 1. (2.4)

As constructed, for example in [48], the probability of a random walk on the graph transi-
tioning from x to y is pxy = dn(x)−1ωn(x, y). Plugging this into (1.2) and denoting the PageRank
vector by rn : Xn →R, we find that rn satisfies the linear system
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rn(x) − (1 − α)
∑
y∈Xn

ωn(y, x)

dn(y)
rn(y) = αv(x) for all x ∈ Xn, (2.5)

where α ∈ (0, 1] is the teleportation probability and v(x) is the teleportation probability distribu-
tion. To simplify the problem, we consider the normalised PageRank vector

un(x) = nhd

dn(x)
rn(x). (2.6)

The degree dn(x) is the most basic measure of the importance of a node in a graph, and the
normalised PageRank vector factors out the direct dependence on the degree to give an under-
standing of the additional geometric structure uncovered by PageRank. We easily see that the
normalised PageRank vector un : Xn →R satisfies the equation

dn(x)un(x) − (1 − α)
∑
y∈Xn

ωn(y, x)un(y) = αnhdv(x) for all x ∈ Xn. (2.7)

We note that (2.7) is considerably simpler to analyse than (2.5) since the degree term dn(y) does
not appear inside the summation. We rewrite this equation by defining the PageRank operator

Lnu(x) := 1

dn(x)

∑
y∈Xn

ωn(y, x)u(y) − u(x). (2.8)

Then (2.7) can be written as

un(x) − γLnun(x) = nhd

dn(x)
v(x) for all x ∈ Xn, (2.9)

where γ = (1 − α)/α. We note that when the graph is symmetric, the PageRank operator is
exactly the random walk graph Laplacian.

The corresponding problem in the continuum is the, possibly degenerate, elliptic PDE

u + γερ
−2div(ρ2bu) − 1

2
σ�γhρ

−2div(ρ2∇u) = ρ−1v on T
d , (2.10)

where σ� = ∫
Rd �(|z|)z2

1dz,

γε = (1 − α)ε

α
and γh = (1 − α)h2

α
. (2.11)

We also denote

η= ‖ρ−2div(ρ2b)‖L∞(Td ). (2.12)

Our first main result is the following continuum limit.

Theorem 2.3 (Convergence of the Second-Order PageRank Problem) Let ρ ∈ C2,ν(Td), b ∈
C2,ν(Td; Rd) and v ∈ C1,ν(Td) for some 0< ν < 1. Assume that γε ≤ 1, 0< γh ≤ 1, and η < 1.
Let un be the solution to the PageRank problem (2.9) and let u ∈ C3(Td) be the solution to the
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PDE (2.10). Then there exists C1, C2, c1, c2 > 0 with C1 depending on γh > 0, such that when
ε+ h ≤ c1(1 − ηγε) we have that

max
x∈Xn

|u(x) − un(x)| ≤ C1(1 − ηγε)
−1(λ+ ε+ h) (2.13)

holds with probability at least 1 − C2n exp(−c2nhd+2λ2) − C2n exp
(−c2nhd+2(1 − ηγε)2

)
,

where 0<λ≤ 1.

Remark 2.4 We remark that when γh > 0 and ηγε < 1, it is a standard result in elliptic PDEs
that (2.10) has a unique solution u ∈ C3,ν(Td). We refer the reader to [21, 29] for more details.

When γh = 0 or γh > 0 is small, the continuum PDE (2.10) is dominated by the first-order
terms and is better approximated by the first-order equation

u + γερ
−2div(ρ2bu) = ρ−1v on T

d . (2.14)

We state the first-order continuum limit as a separate result.

Theorem 2.5 (Convergence of the First-Order PageRank Problem) Let ρ ∈ C1,1(Td), b ∈
C1,1(Td; Rd) and v ∈ C0,1(Td). Assume that γε, γh ≤ 1, η < 1, and ‖Db‖L∞(Td ) ≤ 1

2 (1 − ηγε). Let
un be the solution to the PageRank problem (2.9) and let u ∈ C0,1(Td) be the viscosity solution of
the PDE (2.14). Then there exists C1, C2, c1 > 0 such that

max
x∈Xn

|u(x) − un(x)| ≤ C1

√
λ+ ε+ γh (2.15)

holds with probability at least 1 − C2n exp(−c1nhd+2λ2) − C2n exp
(−c1nhd+2(1 − ηγε)2

)
,

where 0<λ≤ 1. We note that C1 depends on 1 − ηγε.

Remark 2.6 When ηγε < 1, it is a standard result in viscosity solution theory that (2.14) has a
unique viscosity solution u ∈ C(Td). We prove in Lemma 4.3 that when ‖Db‖L∞(Td ) ≤ 1

2 (1 − ηγε)
the viscosity solution u is Lipschitz continuous, so u ∈ C0,1(Td). We refer the reader to [18, 10]
for more details on viscosity solutions.

We note that the continuum PDE (2.10) has reaction, advection and diffusion terms. The two
reaction terms, u and ρ−1v, are due to the teleportation step in PageRank. The term div(ρ2bu)
is an advection term, which describes the advection of the quantity ρ2u along the vector field
b, and is due to the directional preference in the definition of the weights in a random directed
geometric graph. Finally, the weighted diffusion term div(ρ2∇u) represents diffusion from the
random walk step of PageRank.

Theorem 2.3 shows that if we scale εn ∼ αn and hn ∼ √
αn, then the directional preference

along the vector field b is balanced with the diffusion terms, and the limiting PDE (2.10) is second
order. If εn � αn, then the directional preference is negligible in the limit, and the first-order
terms in (2.10) disappear in the limit. Theorem 2.5 shows that if hn � √

αn, then the directional
preference term dominates and the diffusion term is negligible, and the continuum PDE reduces
to a first-order equation (2.14). If αn � max{εn, h2

n}, then the first- and second-order terms drop
out of (2.10) and we simply get u = ρ−1v. The intuition is that the teleportation happens too often
and overwhelms the diffusion and directional preferences, yielding a trivial continuum limit.
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Remark 2.7 We can analyse the characteristics of the first-order equation (2.14) to understand
how the PageRank algorithm propagates information on the directed graph. The characteristic
ordinary differential equations [21] are⎧⎪⎪⎨

⎪⎪⎩
ṗ(s) = z(s)∇(divb + 2∇ log ρ · b)

∣∣∣
x(s)

+ Db(x(s))p(s),

ż(s) = b(x(s)) · p(s),

ẋ(s) = b(x(s)),

(2.16)

where x(s) is the projected characteristic curve, z(s) = u(x(s)), and p(s) = ∇u(x(s)). Hence,
information is propagated along the integral curves of the vector field b, which represents the
directional influence in the random directed geometric graph.

Remark 2.8 Theorems 2.3 and 2.5 are stated as finite sample size results, where n, ε, h, α and λ
are fixed. If we consider the continuum limit as n → ∞ and εn, hn, αn, λn → 0, then Theorems 2.3
and 2.5 inform us about how to relatively scale the parameters. We always assume εn ≤ αn and
h2

n ≤ αn, so that γεn , γhn ≤ 1. Thus, provided that

lim
n→∞

nhd+2
n λ2

n

log n
= ∞, (2.17)

we may apply the Borel–Cantelli lemma to conclude that the rates hold almost surely as n → ∞.
This allows us to make a suitable choice for λn. Since the convergence rates scale with λn, we
choose λn → 0 as quickly as possible while ensuring that (2.17) holds. A reasonable choice is

λn = log n√
nhd+2

n

. (2.18)

With this choice of λn, we have the almost sure convergence rate of

O
(

log(n)2√
nhd+2

n

+ εn + hn

)

in Theorem 2.3, provided

lim
n→∞

nhd+2
n

log(n)2
= ∞. (2.19)

The scaling in (2.19) is a standard scaling for pointwise consistency of graph Laplacians.
Another way to phrase these results is to make the choice of

λn = εn + hn

to match the terms in the error estimate in Theorem 2.3. In this case, we have an almost sure
convergence rate of O(εn + hn) provided

lim
n→∞

nhd+2
n (εn + hn)2

log(n)
= ∞. (2.20)

The same observations hold in the context of Theorem 2.5, except the rates are worse by a square
root.
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Remark 2.9 Theorems 2.3 and 2.5 can easily be rewritten in terms of the true PageRank vector
rn(x). Due to Lemma 3.3, we have

max
x∈Xn

|ρ(x)u(x) − rn(x)| ≤ C1(1 − ηγε)
−1(λ+ ε+ h)

in the context of Theorem 2.3, and

max
x∈Xn

|ρ(x)u(x) − rn(x)| ≤ C1

√
λ+ ε+ γh

in the context of Theorem 2.5.
The PageRank vector rn satisfies ∑

x∈Xn

rn(x) =
∑
x∈Xn

v(x),

as can be easily checked by summing both sides of (2.5). This forces rn to be a probability
distribution provided v is as well. The normalised PageRank vector un satisfies∑

x∈Xn

dn(x)

nhd
un(x) =

∑
x∈Xn

v(x).

In the continuum, the solution u of (2.10) or (2.14) satisfies the analogous continuum version∫
Td
ρ2u dx =

∫
Td
ρv dx,

which can be verified by multiplying both sides of (2.10) or (2.14) by ρ2 and integrating by
parts.

Remark 2.10 While the original PageRank problem is an eigenvector problem, the PageRank
vector is an eigenvector of a probability transition matrix and not an eigenvector of a graph
Laplacian. Thus, we cannot use the spectral properties of the graph Laplacian proven, for
example, in [43, 25, 13] to address the eigenvalue problem (1.1). In fact, since the probabil-
ity transition matrix becomes localised as h, ε→ 0, we lose the interpretation of PageRank as
an eigenvector problem in the continuum. The localisation of the probability transition matrix is
exactly what leads to an equation with a Laplacian in the continuum. A very simple analogue is
the averaging operator

Tεu(x) := 1

|B(x, ε)|
∫

B(x,ε)
u(y) dy,

A function u satisfying Tεu = u is an eigenfunction of Tε with eigenvalue λ= 1. In PDE theory,
the equation Tεu = u is called the mean-value property and is satisfied by any harmonic function
u. One can easily check that

1

ε2
(Tεu(x) − u(x)) = C	u(x) + O(ε)

for any smooth function u, where C depends only on d. Hence, as ε→ 0, eigenfunctions of Tε are
expected to converge to harmonic functions, which are solutions of Laplace’s equation 	u = 0.
The operator Tε localises and becomes trivial as ε→ 0, since it reduces to pointwise evaluation
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T0u(x) = u(x). Thus, there is no meaningful way to think of harmonic functions as eigenfunctions
of T0. An analogous, but more complicated, phenomenon occurs with the PageRank problem, as
it also becomes localised in the continuum limit.

As an immediate application of Theorems 2.3 and 2.5, we prove asymptotic Lipschitz reg-
ularity of the PageRank vector, which shows that the ranking does not vary rapidly in feature
space.

Corollary 2.11 (Lipschitz regularity) Under the assumptions of Theorem 2.3, for 0<λ≤ 1 and
with probability at least 1 − C2n exp(−c2nhd+2λ2) − C2n exp

(−c2nhd+2(1 − ηγε)2
)

we have

|un(x) − un(y)| ≤ C|x − y| + C1(1 − ηγε)
−1(λ+ ε+ h) (2.21)

for all x, y ∈ Xn.

Proof By the triangle inequality

|un(x) − un(y)| ≤ |un(x) − u(x)| + |u(x) − u(y)| + |un(y) − u(y)|.
We estimate the first and third term with Theorem 2.3, while the second is estimated by
Lipschitzness of u.

Remark 2.12 Corollary 2.11 proves that un is approximately Lipschitz continuous, with jumps
of size no larger than O(λ+ ε+ h). We note that an analogous result to Corollary 2.11 can be
stated under the assumptions of Theorem 2.5 as well.

We conclude this section by presenting an analogous continuum limit result for the evolu-
tion of the probability distribution of the random surfer rk . Similar to Eq. (1.1), the probability
distribution rk of the random surfer satisfies the evolution equation

rk+1 = ((1 − α)P + αv1T )rk . (2.22)

Since rk is a probability distribution, so 1T rk = 1, we can also write the equation as

rk+1 = (1 − α)Prk + αv. (2.23)

As before, we denote by rn(x, k) the x-component of rk , that is, rn(x, k) is the probability of
finding the random surfer at vertex x after k steps on the random directed geometric graph of size
n. Plugging this into (2.23), we find that rn(x, k) satisfies

rn(x, k + 1) = (1 − α)
∑
y∈Xn

ωn(y, x)

dn(y)
rn(y, k) + αv(x) for all x ∈ Xn, (2.24)

where v(x) is the teleportation probability distribution. As before, we simplify the problem by
defining the normalised distribution un(x, k) := nhd

dn(x) rn(x, k) and find that un(x, k) satisfies

un(x, k + 1) − un(x, k)

α
+ un(x, k) − γLnun(x, k) = nhd

dn(x)
v(x) for all x ∈ Xn, (2.25)

For the initial condition, we take un(x, 0) = g(x) for some given smooth function g. We can think
of (2.25) as a discrete heat equation on the graph, describing the evolution of the normalised
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distribution un of the random surfer. The stationary point of the evolution, as k → ∞, is clearly
the solution of the PageRank problem (2.9).

The continuum version of (2.25) is the reaction–advection–diffusion equation⎧⎨
⎩ ut + u + γερ

−2div(ρ2bu) − 1

2
σ�γhρ

−2div(ρ2∇u) = ρ−1v, in T
d × {t> 0}

u = g, on T
d × {t = 0}.

(2.26)

This is verified by the following continuum limit result.

Theorem 2.13 (Continuum limit for random surfer) Let ρ ∈ C2,ν(Td), b ∈ C2,ν(Td; Rd), v ∈
C1,ν(Td), and g ∈ C3(Td) for some 0< ν < 1. Assume that γε ≤ 1, 0< γh ≤ 1, and η < 1. Let
un(x, k) be the solution of (2.25) satisfying un(x, 0) = g(x), and let u ∈ C3(Td) be the solution to
the PDE (2.26). Then there exists C1, C2, c1, c2 > 0 with C1 depending on γh > 0, such that when
ε+ h ≤ c1(1 − ηγε) and 0<λ≤ 1, the event that

max
x∈Xn

|u(x, αk) − un(x, k)| ≤ C1αk(λ+ ε+ h) (2.27)

holds for all k ≥ 0 has probability at least

1 − C2n exp(−c2nhd+2λ2) − C2n exp
(−c2nhd+2(1 − ηγε)

2
)

.

Theorem 2.13 shows that the distribution of the random surfer can be approximated by the con-
tinuum PDE (2.26). The error estimates depend on λ, ε and h in a similar way as in Theorem 2.3.
The main difference is the appearance of the term kα, which corresponds to the time parameter
in the continuum PDE (2.26), and is due to the accumulation of pointwise consistency errors over
k steps.

Remark 2.14 A first-order version of Theorem 2.13 can be proved, similar to Theorem 2.5.
Since the statement and proof are very similar to Theorem 2.5, we omit the details.

Remark 2.15 We mention that another interesting perspective is the inverse problem of using
graph-based numerical schemes, like the PageRank scheme, to numerically solve the contin-
uum reaction–advection–diffusion equations. Modulo technical details, all of the results in this
paper can be extended to the manifold setting, where T

d is replaced by a smooth compact and
connected manifold M of dimension d embedded in R

D where d <D. Since graph-based numer-
ical schemes learn the geometry of the manifold automatically, they may provide convenient
numerical methods for solving PDEs on manifolds. We mention that ideas along these lines
were mentioned in [8] for approximating the spectrum of the Laplace–Beltrami operator on a
manifold of dimension higher than 2 or 3, where finite-element methods become cumbersome.
This is an interesting direction to explore in future research.

2.3 Outline

The paper will be organised as follows. In Section 3, we prove pointwise consistency with high
probability for the PageRank operator Ln on a random directed geometric graph. This includes
pointwise consistency to both first- and second-order continuum operators. In Section 4, we prove
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our main results, Theorems 2.3, 2.5 and 2.13. Lastly, in Section 5, we present some numerical
results to support our arguments.

3 Consistency for Ln

In this section, we prove pointwise consistency for the operator Ln with both first- and second-
order continuum operators. Throughout this section and the rest of the paper, we write ωxy =
ωn(x, y) and dx = dn(x) for simplicity.

3.1 Concentration of measure and change of variables

We first recall a concentration inequality from [9].

Lemma 3.1 ([9, Remark 7]) Let Y1, Y2, . . . , Yn be a sequence of i.i.d. random variables on R
d

with density f : Rd →R, letψ : Rd →R be bounded and Borel measurable with compact support
in a bounded open set �⊂R

d, and define

Y =
n∑

i=1

ψ(Yi).

Then for any 0 ≤ λ≤ 1,

P

[
|Y −E(Y )|> ‖f ‖∞‖ψ‖∞n|�|λ

]
≤ 2 exp

(
−1

4
‖f ‖∞n|�|λ2

)
, (3.1)

where |�| denotes the Lebesgue measure of �.

When we apply the lemma to the degree dy, we need to compute the expected value of dy,
which is the integral

E(dy) = n

∫
Ey

�

( |x − y − εb(y)|
h

)
ρ(x)dx.

For this computation, and others, we require asymptotic expansions in the change of variables
formulas, which is provided by the following result.

Lemma 3.2 (Change of Variables) Let g : Rd →R be continuous and assume b is C1. Then
using the change of variables z = x−y−εb(y)

h , we have∫
Rd
�

( |x − y − εb(y)|
h

)
g(x)dx = hd

∫
Rd
� (|z|) g(y + hz + εb(y))dz, (3.2)

and ∫
Rd
�

( |x − y − εb(y)|
h

)
g(y)dy (3.3)

= hd
∫
Rd
� (|z|) g(x − hz − εb(x) +O(εh + ε2))

(
1 − εdivb(x) +O(εh + ε2)

)
dz,

for sufficiently small ε > 0.
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Proof The proof is a straightforward change of variables when we integrate over x in (3.2). In
the case where we integrate over y in (3.3), we define the change of variables function G : Rd →
R

d by

G(y) = x − y − εb(y)

h
,

where the vector field b is extended periodically from T
d to R

d . For ε sufficiently small, G is a
C1 diffeomorphism of Rd . Indeed, to see that G is bijective, first note that the problem of solving
G(y) = z for y, given z, is equivalent to the fixed point problem

y =�(y) := x − zh − εb(y).

The mapping � : Rd →R
d is a contraction, provided ε < ‖b‖−1

C0,1 , and so the invertibility of

G follows from Banach’s fixed point theorem. For ε < ‖b‖−1
C0,1 the Jacobian matrix DyG(y) =

−h−1(I + εDyb(y)) is invertible, and so the smoothness of G−1 follows from the inverse function
theorem.

We now use the change of variables z = G(y) in (3.3) to obtain∫
Rd
�

( |x − y − εb(y)|
h

)
g(y)dy =

∫
Rd
� (|z|) g(G−1(z))| det DyG(G−1(z))|−1dz. (3.4)

In the rest of the proof, we write y = G−1(z) for convenience. Then we have

| det DyG(y)|−1 = hd| det(I + εDb(y))|−1. (3.5)

We now use the Taylor expansion

det(I + εA) = 1 + εTr(A) +O(ε2)

for A = Db(y) to obtain

det(I + εDb(y)) = 1 + εTr(Db(y)) +O(ε2) = 1 + εdivb(x) +O(εh + ε2).

Thus, for sufficiently small ε > 0 we have

| det DyG(y)|−1 = hd(1 − εdivb(x) +O(εh + ε2)). (3.6)

Since �(t) = 0 for t> 2 we have that |x − y| ≤ 2h + ε|b(y)| ≤ C(h + ε), and so

G−1(z) = y = x − hz − εb(y) = x − hz − εb(x) +O(εh + ε2). (3.7)

Substituting (3.6) and (3.7) into (3.4) completes the proof.

3.2 Pointwise consistency

We now turn to the main pointwise consistency results. We begin with a standard result for the
degree.

Lemma 3.3 (Asymptotics for the degree) For any 0<λ≤ 1, the degree term satisfies

dy = nhdρ(y) +O(nhd(λ+ ε+ h2))

with probability at least 1 − 2 exp(−cλ2nhd), where c is a constant independent of n.
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Proof We use part (i) in Proposition 3.2 to compute

E(dy) =E

(∑
x

ωyx

)
= n

∫
Ey

�

( |x − y − εb(y)|
h

)
ρ(x)dx

= nhd

∫
B(0,2)

�(|z|)ρ (y + hz + εb(y)) dz

= nhd
(
ρ(y) +O(ε+ h2)

)
.

By Lemma 3.1, we see that

P

[∣∣∣dy −E[dy]
∣∣∣>Cλnhd

]
≤ 2 exp(−1

4
cnhdλ2)

for any 0 ≤ λ≤ 1. Combining the observations above completes the proof.

We now state and prove the consistency result.

Theorem 3.4 (Consistency for the Second-Order PageRank Operator) There exists constants
C, c> 0 such that for any 0<λ≤ 1 the event that

dx

ρ(x)nhd
Lnϕ(x) = −ρ−2div(ρ2bϕ)ε+ σ�

2
ρ−2div(ρ2∇ϕ)h2

∣∣∣
x

(3.8)

+O (
(λh + λh−1ε+ ε2 + h3 + εh)‖ϕ‖C2,1(Td )

)
holds for all ϕ ∈ C2,1(Td) and x ∈ Xn has probability at least 1 − Cn exp(−cnhdλ2).

Proof Fix x ∈T
d , take ϕ ∈ C2,1(Rd) to be a test function and let p = Dϕ(x) and aij = ϕxixj (x).

We apply the operator Ln to ϕ at x and take a second-order Taylor expansion at x of the ϕ(y)
inside the summation, which gives us

dxLnϕ(x) =
∑

y∈Xn\{x}
(ωyxϕ(y) −ωxyϕ(x))

=
∑

y∈Xn\{x}
(ωyx −ωxy)ϕ(x) +

d∑
i=1

pi

∑
y∈Xn\{x}

ωyx(yi − xi)

+ 1

2

d∑
i,j=1

aij

∑
y∈Xn\{x}

ωyx(yi − xi)(yj − xj) +O
⎛
⎝(ε3 + h3)β

∑
y∈Xn\{x}

ωyx

⎞
⎠ ,

where β = ‖ϕ‖C2,1(Td ), and the ε3 + h3 in the remainder term comes from the scaling of |y − x|.
Since ϕ(x) and its derivatives are factored out from the summations, the probability estimates
that follow are independent of ϕ and hold uniformly over all smooth test functions.
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Noting that |ωxy −ωyx| ≤ Ch−1ε, we have by Lemma 3.1 that each of∑
y∈Xn\{x}

ωyx ≤ Cnhd ,

1

n

∑
y∈Xn\{x}

(ωyx −ωxy) =
∫
Td

(ωyx −ωxy)ρ(y)dy +O (
λh−1ε

)
,

1

n

∑
y∈Xn\{x}

ωyx(yi − xi) =
∫
Td
ωyx(yi − xi)ρ(y)dy +O (λ(ε+ h)) , and

1

n

∑
y∈Xn\{x}

ωyx(yi − xi)(yj − xj) =
∫
Td
ωyx(yi − xi)(yj − xj)ρ(y)dy +O (

λ(ε2 + h2)
)

holds with probability at least 1 − 2 exp
(−cnhdλ2

)
for any 0<λ≤ 1. Combining the observa-

tions above we have with probability at least 1 − C exp
(−cnhdλ2

)
that

dx

nhd
Lnϕ(x) = 1

hd

∫
Td

(ωyx −ωxy)ρ(y) dyϕ(x) +
d∑

i=1

pi

hd

∫
Td
ωyx(yi − xi)ρ(y) dy (3.9)

+ 1

2

d∑
i,j=1

aij

hd

∫
Td
ωyx(yi − xi)(yj − xj)ρ(y) dy

+O (
λ(h + h−1ε)β + (ε3 + h3)β

)
.

We now compute asymptotic expansions for all the terms in (3.9). By Lemma 3.2, we have

1

hd

∫
Td
ωyxρ(y) dy

= 1

hd

∫
Td
�

( |x − y − εb(y)|
h

)
ρ(y) dy

=
∫

B(0,2)
�(|z|)ρ(x − hz − εb(x) +O(εh + ε2)) dz︸ ︷︷ ︸

A

(1 − εdivb(x) +O(εh + ε2)).

We now compute

A =
∫

B(0,2)
�(|z|)

(
ρ(x) − ∇ρ(x) · (hz + εb(x)) + h2

2
zT∇2ρ(x)z +O(εh + ε2)

)
dz

= ρ(x) − ∇ρ(x) · b(x)ε+ σ�

2
	ρ(x)h2 +O(εh + ε2).

Therefore,

1

hd

∫
Td
ωyxρ(y) dy

=
(
ρ(x) − ∇ρ(x) · b(x)ε+ σ�

2
	ρ(x)h2 +O(εh + ε2)

)
(1 − εdivb(x) +O(εh + ε2))

= ρ(x) − ∇ρ(x) · b(x)ε+ σ�

2
	ρ(x)h2 − ρ(x)divb(x)ε+O(εh + ε2).
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By Lemma 3.2, we have

1

hd

∫
Td
ωxyρ(y) dy

= 1

hd

∫
Td
�

( |y − x − εb(x)|
h

)
ρ(y) dy

=
∫

B(0,2)
�(|z|)ρ(x + hz + εb(x)) dz

=
∫

B(0,2)
�(|z|)

(
ρ(x) + ∇ρ(x) · (hz + εb(x)) + h2

2
zT∇2ρ(x)z +O(εh + ε2)

)
dz

= ρ(x) + ∇ρ(x) · b(x)ε+ σ�

2
	ρ(x)h2 +O(εh + ε2).

Therefore,

1

hd

∫
Td

(ωyx −ωxy)ρ(y) dy = −2∇ρ(x) · b(x)ε− ρ(x)divb(x)ε+O(εh + ε2). (3.10)

By Lemma 3.2 again, we have

1

hd

∫
Td
ωyx(yi − xi)ρ(y) dy (3.11)

= 1

hd

∫
Td
�

( |x − y − εb(y)|
h

)
(yi − xi)ρ(y) dy

= −
∫

B(0,2)
�(|z|)ρ(x − hz +O(ε))(zih + bi(x)ε+ O(εh + ε2)) dz (1 +O(ε))

= −
∫

B(0,2)
�(|z|) (ρ(x) − ∇ρ(x) · zh +O(ε+ h2)

)
(zih + bi(x)ε+ O(εh + ε2)) dz

= −
∫

B(0,2)
�(|z|) (ρ(x)zih + ρ(x)bi(x)ε− (∇ρ(x) · z)zih

2 +O(εh + h3 + ε2)
)

dz

= −ρ(x)bi(x)ε+ σ�ρxi (x)h2 +O(εh + h3 + ε2).

Finally, another application of Lemma 3.2 yields

1

hd

∫
Td
ωyx(yi − xi)(yj − xj)ρ(y) dy (3.12)

= 1

hd

∫
Td
�

( |x − y − εb(y)|
h

)
(yi − xi)(yj − xj)ρ(y) dy

=
∫

B(0,2)
�(|z|)(ρ(x) + O(h + ε))(zizjh

2 + O(εh + ε2)) dz

= σ�ρ(x)δijh
2 +O(h3 + εh + ε2),
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where δij = 1 if i = j and δij = 0 otherwise. Combining (3.10), (3.11) and (3.12) with (3.9), we
have

dx

nhd
Lnϕ(x) = −(2∇ρ(x) · b(x) + ρ(x)divb(x))ϕ(x)ε (3.13)

+ ∇ϕ(x) · (σ�∇ρ(x)h2 − ρ(x)b(x)ε) + σ�

2
ρ(x)	ϕ(x)h2

+O (
λ(h + h−1ε)β + (ε2 + h3 + εh)β

)
.

We now divide both sides of (3.13) by ρ(x) and use the identities

ρ−2div(ρ2bϕ) = ϕ(divb + 2∇ log ρ · b) + ∇ϕ · b,

and

1

2
ρ−2div(ρ2∇ϕ) = 1

2
	ϕ + ∇ log ρ · ∇ϕ.

to establish that the event that (3.8) holds for all ϕ ∈ C2,1(Td) and a fixed x ∈T
d has probability

at least 1 − C exp
(−cnhdλ2

)
.

To establish that (3.8) holds for all x ∈ Xn, we first condition on the random variable x1. The
remaining points Xn \ {x1} = {x2, x3, . . . , xn−1} are an independent i.i.d. sample of size n − 1, and
we can write, as at the start of the proof, that

dx1Lnϕ(x1) =
∑

y∈Xn\{x1}
(ωyx1ϕ(y) −ωx1yϕ(x1)).

Since the sum on the right is over n − 1 i.i.d. random variables, we can apply the same argument
as above, and the law of conditional probability, to establish that the event that (3.8) holds for x =
x1 and all ϕ ∈ C2,1(Td) has probability at least 1 − C exp

(−c(n − 1)hdλ2
)
. We then repeat the

argument, conditioning on each of x2, x3, . . . , xn, and union bound over all n points to obtain that
(3.8) holds for all x ∈ Xn and ϕ ∈ C2,1(Td) with probability at least 1 − Cn exp

(−c(n − 1)hdλ2
)
.

The proof is completed by using that n − 1 ≥ n/2 for n ≥ 2 to simplify the probability.

We also have a corresponding consistency result when the continuum PDE is first order.

Theorem 3.5 (Consistency for the First-Order PageRank Operator) There exists constants C,
c> 0 such that for any 0<λ≤ 1 the event that

dx

ρ(x)nhd
Lnϕ(x) = −ρ−2div(ρ2bϕ)ε+O (

(λh + λh−1ε+ ε2 + h2)‖ϕ‖C1,1(Td )

)
(3.14)

holds for all ϕ ∈ C1,1(Td) and x ∈ Xn has probability at least 1 − Cn exp(−cnhdλ2).

Proof The proof follows closely to that of Theorem 3.4, so we sketch it here. Fix x ∈T
d , take

ϕ ∈ C1,1(Rd) to be a test function and let p = Dϕ(x). We have

dxLnϕ(x) =
∑
y∈Xn

ωyxϕ(y) − dxϕ(x)

=
∑
y∈Xn

(ωyx −ωxy)ϕ(x) +
d∑

i=1

pi

∑
y∈Xn

ωyx(yi − xi) +O
(

(ε2 + h2)β
∑

y

ωyx

)
,
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where β = ‖ϕ‖C1,1(Td ). Thus, with probability at least 1 − C exp
(−cnhdλ2

)
we have that

dx

nhd
Lnϕ(x) = 1

hd

∫
Td

(ωyx −ωxy)ρ(y) dyϕ(x) +
d∑

i=1

pi

hd

∫
Td
ωyx(yi − xi)ρ(y) dy (3.15)

+O (
λ(h + h−1ε)β + (ε2 + h2)β

)
.

By (3.10) and (3.11), we have

dx

nhd
Lnϕ(x) = −(2∇ρ(x) · b(x) + ρ(x)divb(x))ϕ(x)ε− ∇ϕ(x) · ρ(x)b(x)ε

+O (
λ(h + h−1ε)β + (ε2 + h2)β

)
.

Divide both sides by ρ(x) and use the identity

ρ−2div(ρ2bϕ) = ϕ(divb + 2∇ log ρ · b) + ∇ϕ · b

to complete the proof.

4 Convergence proofs

We now prove our main results. We first need a stability estimate for the PageRank
problem (2.9).

Lemma 4.1 (�∞ Stability for the PageRank Operator) Assume that γε, γh ≤ 1 and η < 1, where
η is defined in (2.12) and γε, γh in (2.11). There exists C, K, c> 0 such that with probability at
least 1 − Cn exp

(−cnhd+2(1 − ηγε)2
)
, if ε+ h ≤ K(1 − ηγε) and u, v : Xn →R satisfy

u(x) − γLnu(x) = nhd

dx
v(x) for all x ∈ Xn (4.1)

with γ = (1 − α)/α, then it holds that

max
x∈Xn

|u(x)| ≤ 2(1 − ηγε)
−1 max

x∈Xn
|ρ(x)−1v(x)|. (4.2)

Proof We use a maximum principle argument. Let x0 ∈ Xn be a point where u attains its
maximum value. Setting ϕ ≡ 1, we have

Lnu(x0) = 1

dx0

∑
y∈Xn

ωyx0 u(y) − u(x0) ≤ 1

dx0

∑
y∈Xn

ωyx0 u(x0) − u(x0) = u(x0)Lnϕ(x0).

It follows that

dx0

nhd
(1 − γLnϕ(x0))u(x0) ≤ v(x0). (4.3)

By Theorem 3.4, we have

dx0

ρ(x)nhd
Lnϕ(x0) = −ρ−2div(ρ2b)ε+O(λh + λh−1ε+ ε2 + h3 + εh),

with probability at least 1 − Cn exp(−cnhdλ2). In particular, observe that div(ρ2∇ϕ) = 0 in
Theorem 3.4, since ϕ ≡ 1 is constant. Setting λ= δh for 0< δ ≤ h−1 and recalling (2.12), we
have
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dx0

ρ(x)nhd
γ |Lnϕ(x)| ≤ ηγε + C(γh + γε)(δ + h + ε) ≤ ηγε + C(δ + h + ε),

with probability at least 1 − Cn exp(−cnhd+2δ2). By Lemma 3.3, we have

dx0

ρ(x)nhd
= 1 +O(ε+ h)

with probability at least 1 − 2n exp(−cnhd+2). Inserting these observations into (4.3), we have

ρ(x0)(1 − ηγε − C(δ + h + ε))u(x0) ≤ v(x0),

for a constant C> 0. Hence, selecting δ = (1 − ηγε)/(4C) and restricting h + ε≤
(1 − ηγε)/(4C), we have

1

2
ρ(x0)(1 − ηγε)u(x0) ≤ v(x0),

with probability at least 1 − Cn exp(−cnhd+2(1 − ηγε)2). Therefore,

max
x∈Xn

u(x) ≤ 2(1 − ηγε)
−1 max

x∈Xn
|ρ(x)−1v(x)|

holds with probability at least 1 − Cn exp(−cnhd+2(1 − ηγε)2) provided ε+ h ≤ K(1 − ηγε).

For the proof of the other direction, we set ū(x) = −u(x), and note that ū satisfies

ū(x) − γLnū(x) = −nhd

dx
v(x) for all x ∈ Xn.

The argument in the first part of the proof yields

max
x∈Xn

ū(x) ≤ 2(1 − ηγε)
−1 max

x∈Xn
|ρ(x)−1v(x)|,

which completes the proof.

Given the stability estimate from Lemma 4.1, we can now prove Theorem 2.3.

Proof of Theorem 2.3 Given the assumptions on ρ, b and v, the solution u of the continuum
PDE (2.10) belongs to C3(Td), and ‖u‖C3(Td ) depends on the ellipticity constant of the equation
σ�γh [29, 21]. Thus, applying Lemma 3.3, and Theorem 3.4 with λ= δh yields

dx

ρ(x)nhd
u(x) − dx

ρ(x)nhd
γLnu(x)

= u(x) + γερ
−2div(ρ2bu) − 1

2
σ�γhρ

−2div(ρ2∇u) +O (δ + ε+ h)

= v(x)

ρ(x)
+O (δ+ ε+ h)

for all x ∈ Xn with probability at least 1 − Cn exp
(−cnhd+2δ2

)
for any 0< δ ≤ h−1, where we

used that γε, γh ≤ 1. Therefore,

u(x) − γLnu(x) = nhd

dx
(v(x) +O(δ + ε+ h))
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for all x ∈ Xn with probability at least 1 − Cn exp
(−cnhd+2δ2)

)
.

Consider now the difference wn(x) = u(x) − un(x), where un solves the PageRank problem
(2.9). Then wn satisfies

wn(x) − γLnwn(x) = nhd

dx
O(δ + ε+ h)

for all x ∈ Xn with probability at least 1 − Cn exp
(−cnhd+2δ2

)
. Applying Lemma 4.1 completes

the proof.

We now give the proof of Theorem 2.13.

Proof of Theorem 2.13 The proof is similar to the proof of Theorem 2.3, so we sketch the
outline, omitting some details.

First, note that

u(x, αk + α) − u(x, αk)

α
= ut(x, αk) +O(α).

Proceeding now as in the proof of Theorem 2.3, we use Theorem 3.4, Lemma 3.3, and the
observation above to deduce that

u(x, αk + α) − u(x, αk)

α
+ u(x, αk) − γLnu(x, αk) = nhd

dn(x)
v(x) + O(λ+ ε+ h), (4.4)

with probability at least 1 − Cn exp(−cnhd+2λ2) for 0<λ≤ 1, where we also used that γε ≤ 1.
Let ϕ(x) = 1 for all x ∈ Xn. As in the proof of Lemma 4.1 we have that

(1 − α)|Lnϕ(x)| ≤ αηγε + Cα(δ + h + ε) (4.5)

with probability at least 1 − Cn exp(−cnhd+2δ2), where 0< δ ≤ 1 will be chosen later. For the
rest of the proof, we assume the events above hold true.

Define wn(x, k) = u(x, αk) − un(x, k). We claim that

wn(x, k) ≤ Ckα(λ+ ε+ h) =: Mk . (4.6)

The proof of the other direction is similar, and this will complete the proof. To prove (4.6), we
use a comparison principle argument that proceeds by induction. The base case k = 0 is trivial,
since wn(x, 0) = 0. Assume that (4.6) is true for some k ≥ 0. Then subtracting (4.4) and (2.25),
we find that wn satisfies

wn(x, k + 1) − wn(x, k)

α
+ wn(x, k) − γLnwn(x, k) ≤ C(λ+ ε+ h)

for all x ∈ Xn and k ≥ 0. Rearranging this, we obtain

wn(x, k + 1) ≤ (1 − α) (wn(x, k) +Lnwn(x, k))+ Cα(λ+ ε+ h)

= (1 − α)
1

dx

∑
y∈Xn

wyxwn(y, k) + Cα(λ+ ε+ h)

≤ (1 − α)
Mk

dx

∑
y∈Xn

wyx + Cα(λ+ ε+ h)

= Mk(1 − α) (1 +Lnϕ(x))+ Cα(λ+ ε+ h),
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since wn(x, k) ≤ Mk for all x ∈ Xn. Applying (4.5), we have

wn(x, k + 1) ≤ Mk (1 − (1 − ηγε)α+ Cα(δ + h + ε))+ Cα(λ+ ε+ h).

Hence, choosing δ = (1 − ηγε)/(4C) and restricting h + ε≤ (1 − ηγε)/(4C), we have

wn(x, k + 1) ≤ Mk + Cα(λ+ ε+ h) = Mk+1.

The claim (4.6) is thus established by induction, and this completes the proof.

We now turn our attention to proving the first-order rate, which hinges on the following
observation that our scheme is monotone.

Proposition 4.2 (Monotonicity) Let u, v : Xn →R and x0 ∈ Xn such that u(x0) = v(x0) and u ≤ v.
Then Lnu(x0) ≤Lnv(x0).

Proof The proof is immediate, since

Lnu(x0) = 1

dx

∑
y∈Xn

ωyxu(y) − u(x0) ≤ 1

dx

∑
y∈Xn

ωyxv(y) − v(x0) =Lnv(x0).

In order to prove a convergence rate for the first-order continuum limit, we require a Lipschitz
estimate on the viscosity solution u of (2.14). The result follows a standard maximum principle
argument, which we include for completeness.

Lemma 4.3 Let ρ ∈ C1,1(Td), b ∈ C1,1(Td; Rd) and v ∈ C0,1(Td). Assume that γε ≤ 1, and η < 1.
Let u ∈ C(Td) be the viscosity solution of the PDE (2.14). If ‖Db‖L∞(Td ) ≤ 1

2 (1 − ηγε), then u ∈
C0,1(Td) and ‖u‖C0,1(Td ) depends only on 1 − ηγε, ‖ρ‖C0,1 , ‖b‖C1,1 , and ‖v‖C0,1 .

Proof Let δ > 0 and consider the viscosity regularised version of (2.14)

uδ + γερ
−2div(ρ2buδ) − δ	uδ = ρ−1v on T

d . (4.7)

By standard elliptic PDE theory [29], (4.7) has a unique solution uδ ∈ C2,ν(Td). It is a standard
result in viscosity solution theory (see, e.g. , [18, 10]) that uδ → u uniformly as δ→ 0, provided
ηγε < 1.

We now prove that the Lipschitz constant of uδ is controlled independently of δ > 0. The
argument is standard in elliptic PDEs, and we include it for completeness. We write c(x) = 1 +
ρ−2div(ρ2b) for convenience, and note we have c(x) ≥ 1 − ηγε. By the maximum principle, we
have

‖uδ‖L∞(Td ) ≤ (1 − ηγε)
−1‖ρ−1v‖L∞(Td ). (4.8)

To bound the gradient, we differentiate both sides of (4.7) in xi, then multiply both sides by uxi ,
and sum over i to obtain

c|∇uδ|2 + uδ∇uδ · ∇c + ∇uT
δ Db∇uδ + b · ∇|∇uδ|2 −

d∑
i=1

uδ,xi	uδ,xi = ∇uδ · ∇(ρ−1v).
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We use the identity

w	w = 1

2
	w2 − |∇w|2 ≤ 1

2
	w2

with w = uδ,xi to obtain

c|∇uδ|2 + uδ∇uδ · ∇c + ∇uT
δ Db∇uδ + b · ∇|∇uδ|2 − δ

2
	|∇uδ|2 ≤ ∇uδ · ∇(ρ−1v)

on the torus Td . Now, let x0 ∈T
d be a point where |∇uδ|2 attains its maximum value on T

d . Then
we have ∇|∇uδ(x0)|2 = 0 and 	|∇uδ(x0)|2 ≤ 0, which yields

(1 − ηγε)|∇uδ(x0)|2 ≤ c(x0)|∇uδ(x0)|2
≤ −uδ∇uδ · ∇c − ∇uT

δ Db∇uδ + ∇uδ · ∇(ρ−1v)|x0

≤ C(‖uδ‖L∞(Td ) + 1)|∇uδ(x0)| + ‖Db‖L∞(Td )|∇u(x0)|2,

where C depends on ρ, c and v. Since ‖Db‖L∞(Td ) ≤ (1 − ηγε)/2, we can apply Cauchy’s
inequality with ε to obtain

|∇uδ(x0)|2 ≤ C(1 − ηγε)
−2(‖uδ‖L∞(Td ) + 1)2,

which completes the proof.

We now give the proof of Theorem 2.5. The proof follows the method of doubling the
variables, which is used in viscosity solution theory for proving the comparison principle and
establishing error estimates [18, 10]. For the reader’s convenience, we review the definition of
viscosity solution in Section .

Proof of Theorem 2.5 First, by Lemma 4.1 we have that un is uniformly bounded, indepen-
dent of n, with probability at least 1 − Cn exp

(−cnhd+2(1 − ηγε)2
)

provided ε+ h is sufficiently
small. We assume these conditions throughout the rest of the proof.

Define the doubling-of-variables function

�(x, y) := un(x) − u(y) − θ

2
|x − y|2 on Xn ×T

d ,

which has a maximum at (xn, yn) ∈ Xn ×T
d . Since �(xn, yn) ≥�(xn, xn), we have

un(xn) − u(yn) − θ

2
|xn − yn|2 ≥ un(xn) − u(xn).

By Lemma 4.3, u is Lipschitz and so

θ

2
|xn − yn|2 ≤ u(xn) − u(yn) ≤ C|xn − yn|.

Hence, we have the bound |xn − yn| ≤ C

θ
.

Define ψ(x) = θ
2 |x − yn|2 and ξn = un(xn) − θ

2 |xn − yn|2. By the definition of (xn, yn), un −ψ

has a maximum at xn relative to Xn. Since we have un(xn) =ψ(xn) + ξn we see that un ≤ψ + ξn

on Xn and so by Proposition 4.2 we have Lnun(xn) ≤Ln(ψ + ξn)(xn). It follows that
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nhd

dxn

v(xxn ) = un(xn) − γLnun(xn)

≥ un(xn) − γLn(ψ + ξn)(xn).

By Theorem 3.5, Lemma 3.3 we have

ρ(xn)−1v(xn) ≥ un(xn) + γε(ρ
−2div(ρ2b)un + ∇ψ · b)

∣∣
xn

− Cθ (δ + ε+ γh), (4.9)

with probability at least 1 − Cn exp
(−cnhd+2δ2

)
.

We now define ϕ(y) = − θ
2 |xn − y|2. Then u − ϕ attains its minimum over Td at yn, and so by

the definition of viscosity supersolution we have

ρ(yn)−1v(yn) ≤ u(yn) + γε(ρ
−2div(ρ2b)u + ∇ϕ · b)

∣∣
yn

. (4.10)

Write c(x) = 1 + γερ
−1div(ρ2b) and note that ∇ψ(xn) = ∇ϕ(yn) = θ (xn − yn) is bounded. Now

subtract (4.9) from (4.10) to find that

c(xn)un(xn) − c(yn)u(yn) ≤ C|xn − yn| + Cθ (δ + ε+ γh),

where C> 0 depends on the Lipschitz constants of ρ, v and b, and the positive lower bound for
ρ. We now write

c(xn)un(xn) − c(yn)u(yn) = c(xn)(un(xn) − u(yn)) + (c(xn) − c(yn))u(yn)

to obtain

c(xn)(un(xn) − u(yn)) ≤ C|xn − yn| + Cθ (δ + ε+ γh),

where C depends additionally on ‖u‖∞. Since c(xn) ≥ 1 − ηγε > 0 and |xn − yn| ≤ C/θ we have

max
x∈Xn

(un(x) − u(x)) ≤ un(xn) − u(yn) ≤ C

θ
+ Cθ (δ + ε+ γh).

Optimising over θ > 0 yields

max
x∈Xn

(un(x) − u(x)) ≤ C
√
δ + ε+ γh.

The proof of the bound in the other direction on u − un is analogous, except we use the
auxiliary function

�(x, y) = u(x) − un(y) − θ

2
|x − y|2.

5 Numerical experiments

We now turn to some brief numerical experiments to illustrate our main results. We present
numerical experiments confirming the convergence rates and parameter scalings from Theorems
2.3 and 2.5 in Sections 5.1 and 5.2, and we give an application of PageRank to data depth and
high dimensional medians. The code for the numerical experiments was implemented in Python
3.7.9 and is available on GitHub: https://github.com/jwcalder/ContinuumPageRank.
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(a) (b)

FIGURE 2. Left: For an explicit solution to the continuum limit PDE (2.10), we plot the connectivity radius
h vs. the L∞ norm of the solution error as the number of nodes increases for the three different dependencies
h = h(n) noted in the legend. The experiment demonstrates the linear convergence rate in our main result
Theorem 2.3. Right: A computational experiment on MNIST data illustrating, for different numbers of
neighbours k, how the L∞ norm to the uniform teleportation distribution depends on the transportation
probability α.

5.1 Convergence rates and parameter scalings

To test the linear convergence rates in our main result Theorem 2.3, we work with an explicit
solution of the continuum PDE (2.10). We take the two-dimensional torus T2 and set

u(x) = 2 − (cos(2πx1) + cos(2πx2)),

and

v(x) = 2 − (
1 + 1

2γhπ
2
)

(cos(2πx1) + cos(2πx2)),

where γh is given in (2.11). This pair of functions satisfies the PDE (2.10) with b = 0, σ� =
1
4 and ρ = 1. The corresponding discrete PageRank problem is to take the points Xn to be an
i.i.d. sample of size n uniformly distributed on the torus T2 and construct a geometric graph over
the data with edge weights given by (2.3) with b(x) = 0, ϕ(t) = 1

π
for 0 ≤ t ≤ 1, and �(t) = 0

otherwise.
We ran experiments with n = 104, 2 × 104, 4 × 104 and n = 8 × 104, and three different

choices for the connectivity length scale h: h = log(n)n− 1
2 , h = 2n− 1

3 and h = n− 1
4 . To keep γh

roughly constant, we set α = Ch2 in each case, with C = 30, 20 and 10, respectively. We ran 100
trials for each combination of n, h and α and computed the average L∞ error over all trials. The
experiments were conducted on a 24-core machine with 3.8 Gz processors and 256 GB of RAM.
For the largest number of vertices, n = 8 × 104, each trial took approximately 6 min on a single
core and used 8 GB of RAM.

Theorem 2.3 guarantees a linear O(h) convergence rate for a much larger length scale

h � log(n)
1
6 n− 1

6 (due to (2.20)), but the graphs are too dense at this length scale to perform
experiments with large n. Nevertheless, we observe linear O(h) convergence rates at all three
smaller length scales, as is shown in the plot in Figure 2(a). It would be an interesting problem
for future work to prove the linear rate from Theorem 2.3 at these smaller length scales.
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To test how the parameter scalings suggested by our main results transfer to real data, we ran
an experiment with the MNIST dataset [39] to compare how the distance between the PageRank
vector and the teleportation distribution depends on α. The MNIST dataset contains 70,000 28 ×
28 pixel greyscale images of handwritten digits 0–9 (see Figure 3 for an example of some MNIST
images). We used all 70, 000 images to construct the graph and flattened the images into vectors
in R

784. We used a k-nearest neighbour graph with edge weight between images i, j is given by

wi,j = exp

(−4|xi − xj|2
dk(xi)2

)
,

where dk(xi) is the Euclidean distance between image xi and its kth nearest neighbour. A k-nearest
neighbour graph is naturally directed (i.e., asymmetric), since the k-nearest neighbour relation is
not symmetric. We use the uniform teleportation probability distribution v.

The continuum PDE (2.10) suggests that the difference between the PageRank vector u and
the teleportation distribution v is proportional to γn = (α−1 − 1)h2. In Figure 2(b), we show the
L∞ distance between the teleportation distribution and PageRank vector as a function of α for
k-nearest neighbour graphs with k = 10, 20, 30. The relationship between the error and α is well-
approximated by the predicted scaling of α−1 (a regression yields a power law α−p with p =
1.21, 1.27 and p = 1.05 for k = 10, 20 and k = 30, respectively). We also see that the error is
increasing with k, as expected, since h grows with k. In practice, it is important to choose α
small enough so that the PageRank vector does not simply copy the teleportation distribution
and instead explores the geometry of the graph, while not choosing α so small that the PageRank
iterations are slow to converge.

We also mention that we ran the same experiment on the Fashion MNIST dataset [53], and
obtained very similar results. The Fashion MNIST dataset is a drop-in replacement for MNIST,
where the classes are types of clothing, and each data point is a 28 × 28 pixel greyscale image
of a clothing item from a fashion catalog (see Figure 4 for an example of some Fashion MNIST
images).

5.2 PageRank for data depth

In this section, we present an application of using PageRank for computing a notion of data
depth and high dimensional medians. We ran experiments on the MNIST and Fashion MNIST
datasets, using the same graph construction as described in Section 5.1, with k = 10 Euclidean
nearest neighbours. We used the localised PageRank algorithm, focused on each class separately,
with α= 0.05. That is, we ran one experiment for each class with the teleportation distribution
taken as the characteristic function of that class. This generates a ranking of all images relative
to each class, which can be interpreted as a notion of in-class data depth, with the highest ranked
images corresponding to a generalisation of median images.

In Figures 3 and 4, we show the top 11 ranked images for each class (on the right), alongside
a random selection of images (on the left). We note that the highest ranked images are the most
‘typical’ for each class, which can be interpreted as median images. There is very little variation
amongst the highest ranked digits, as compared to random digits. The same is observed for
Fashion MNIST; the ranked images display less variation, have fewer patterns and are more
solid-coloured.
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FIGURE 3. Left: A selection of 11 random samples per each digit from the MNIST dataset. Right: The
highest ranked images per digit, using localised PageRank with α= 0.05.

FIGURE 4. Left: A selection of 11 random images per class from the Fashion MNIST dataset, separated
by type (i.e., handbag, shirt, pants, etc.). Right: The highest ranked images per type of item, using localised
PageRank with α= 0.05. Notice that the highest ranked images are more pattern-free when compared to
the random images.

6 Conclusion

In this paper, we established a new framework for rigorously studying continuum limits for
discrete learning problems on directed graphs. We introduced the random directed geometric
graph and showed how to prove a continuum limit with this graph model for the PageRank
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algorithm. Depending on parameter scalings, the continuum limit is either a second-order
reaction–diffusion–advection equation or a first-order reaction–advection equation, whose solu-
tion can be interpreted in the viscosity sense. We also presented some numerical experiments
confirming our theoretical results and exploring applications of the PageRank algorithm to
multi-variate data depth.
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[14] CALDER, J. & SLEPČEV, D. (2019) Properly-weighted graph Laplacian for semi-supervised learning.
Appl. Math. Optim. Spec. Issue Optim. Data Sci. 82, 1111–1159.
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Appendix A A more general operator

In this section, we consider the more general case where the matrix B in the definition of the
weights for a random directed geometric graph (see Section 2.1 for definitions) is not the identity
matrix. This case turns out to be difficult to interpret, and so we omit the details of extending our
main results to this setting, but include the discussion below for completeness.

Assume that B(x) ∈R
d×d has bounded, Lipschitz continuous entries and has full rank for all

x ∈T
d . Then, following the arguments of the previous subsection, the continuum limit operator is

LBu(x) := −γh

⎛
⎝σ�Tr

(
B(x)−1B(x)−1∇2u(x)

)+∑
i,j

uxixj (x)
∫
�(|z|)f (x, z)if (x, z)jdz

⎞
⎠

+
∑

i

bi(x)uxi(x) + c(x)u(x),

where the first-order term is

∑
i

bi(x)uxi (x)

= γε∇u(x) · ∇b(x) − γh

(
σ�
(
B(x)−1

)2 ∇ log ρ(x) − F
)

· ∇u(x)

− γh

∫
�(|z|) (∇u(x) · f (x, z)) (∇ log ρ(x) · f (x, z)) dz

+ 2γh

∑
i

uxi (x)
∫
�(|z|) ((B(x)−1z

)
i
+ f (x, z)i

)
Tr
(
B(x)−1DB(x)B(x)−1z

)
dz,

and the zeroth order term is

c(x)u(x) =
(

1 + γε
(
ρ(x)−2div(ρ(x)2b(x)) − Tr

(
B(x)−1DB(x)b(x)

))
+ γh (∇ log ρ(x) · F − H�)

)
u(x).

We use f (x, z) to represent the vector

(
B(x)−1DB(x)B(x)−1z

)
x

and F to represent the vector

B(x)−1DB(x)B(x)−1zB(x)−1DB(x)xB(x)−1z − (
B(x)−1DB(x)B(x)−1z

)2
x.

To clarify the notation, we use DB(x) to represent the tensor where the ijth term is ∇Bij(x). For
instance, the ijth component of the term DB(x)B(x)−1z is the dot product of the gradient of the
ijth component of B with the vector B(x)−1z, i.e.,

∇Bij(x) · B(x)−1z.
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In the zeroth order term, we use H� to represent the integral∫
�(|z|)

(
2Tr2

(
B(x)−1DB(x)B(x)−1z

)− Tr
((

B(x)−1DB(x)B(x)−1z
)2
)

− 1

2
Tr
(
B(x)−1(B(x)−1zD2B(x)B(x)−1z)

)+ B(x)−1DB(x)B(x)−1zB(x)−1z

+ B(x)−1D2B(x)zB(x)−1z − B(x)−1DB(x)B(x)−1DB(x)B(x)−1zB(x)−1z

− 2∇ log ρ(x) · f (x, z)Tr
(
B(x)−1DB(x)B(x)−1z

) )
dz.

Due to the presence of DB(x), the terms in F, f and H� will vanish when B is a constant matrix,
such as the identity.

Appendix B Definition of viscosity solution

Viscosity solutions are a notion of weak solution for PDEs based on the maximum principle.
Viscosity solutions enjoy very strong stability and uniqueness properties, and the theory is espe-
cially useful for passing from discrete to continuum limits (see, e.g. ,[10, 16, 12]). We review
here the basic definitions of viscosity solutions of the first-order equation

H(x, u, ∇u) = 0 in �, (.1)

where�⊂R
d is open. For viscosity solution on the torus Td , we take�=R

n and treat functions
on T

d as Zd-periodic functions on R
d for defining viscosity solutions.

Definition .1 We say u ∈ C(�̄) is a viscosity subsolution of (.1) if for all x ∈� and every ϕ ∈
C∞(Rn) such that u − ϕ has a local maximum at x we have

H(x, u(x), ∇ϕ(x)) ≤ 0.

Likewise, we say that u ∈ C(Ū) is a viscosity supersolution of (.1) if for all x ∈� and every
ϕ ∈ C∞(Rn) such that u − ϕ has a local minimum at x we have

H(x, u(x), ∇ϕ(x)) ≥ 0.

Finally, we say that u is a viscosity solution of (.1) if u is both a viscosity sub- and
supersolution.
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