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Abstract

The setting is a compact Hausdorff space 2. The notion of a Wells class of subsets of Q is defined
via strange axioms—axioms whose justification rests with examples such as the collection of
regular open sets or the range of a strong lifting. A variant of Rosenthal’s famous lemma which
applies directly to Banach space-valued measures is established, and it is used to obtain, in
elementary fashion, the following two uniform boundedness principles: (1) The Nikodym
Boundedness Theorem. If X is a family of regular Borel vector measures on  which is point-
wise bounded on every set of a fixed Wells class, then X" is uniformly bounded. (2) The Nikodym
Convergence Theorem. If {u,} is a sequence of regular Borel vector measures on Q which is
convergent on every set of a fixed Wells class, then the p, are uniformly countably additive, the
sequence {|,} is convergent on every Borel subset of Q, and the pointwise limit constitutes a
regular Borel measure.

1980 Mathematics subject classification (Amer. Math. Soc.): 28-01, 28 A 33, 28 B 05, 28 C 15.

1. Introduction

The mission of this paper is to liberate the results of Wells (1969) from their
association with the notion of weak convergence of sequences of measures, and
from their consequent dependence upon the scalar values of these measures. In
so doing we achieve general uniform boundedness principles for Banach space-
valued regular Borel measures. The proofs of these results will also be liberated
from any dependence upon the theory of Banach spaces as such. (Not even linear
functionals will be used.) The proofs will not only, therefore, become totally
elementary, but they will also become easily adaptable, so as to yield alternate
proofs of the standard uniform boundedness principles (by which we mean the
Nikodym Boundedness Theorem (Diestel and Uhl (1977), Theorem 1, p. 14) and
what we shall call the Nikodym Convergence Theorem (Diestel and Uhl (1977),
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Theorem 8, p. 23)), as well as alternate proofs of the variants of these results for
fields with the interpolation property (Seever (1968), Theorems C and D, p. 268).
(We draw the reader’s attention to the fact that, from the (elementary) results of
Traynor (1973) (compare with Diestel and Uhl (1977), Corollary 6, p. 29), the
Vitali-Hahn-Saks Theorem can be regarded, under circumstances far more
general than those considered here, as just a variant of the Nikodym Convergence
Theorem. It will consequently receive no further mention in this paper.)

We use the phrase ‘uniform boundedness principle’ in a loose way to refer to
any theorem which asserts a uniformity condition from a ‘pointwise’ condition.
In the measure theoretic setting such theorems normally require a family of
measures to be well behaved (in some sense) on each individual set in their common
domain. Our overall aim in this paper is to investigate the dividends which can be
obtained from the additional assumption that these measures constitute regular
Borel measures on a compact Hausdorff space. Under this assumption it will
suffice to require only that the given family of measures be well behaved on some
of the sets in their common domain, specifically on what we shall call a Wells
class (after Wells (1969), Theorem 3, p. 125).

For the definition below, and for the remainder of the paper, we fix the following
notation: Q denotes a compact Hausdorfl space; ¢¥ denotes the empty set; &
denotes the collection of Borel subsets of Q; and int(4), c1(4) and A4° denote,
respectively, the interior, the closure and the complement of an arbitrary subset
A of Q.

1.1. DEFINITION. A collection # of Borel subsets of Q will be called a Wells

class if it satisfies the following five conditions:

(1.1.1) If E,Fe#", then En Fe#".

(1.1.2) If E,Fe# , and if cl (E) ncl(F) = &, then Eu Fe#".

(1.1.3) If Ee #", and if E is not open, then Ee %",

(1.1.4) If Kis a compact subset of Q, and if U> K is an open subset of , then there
exists a set E€ # such that Kc Ec U.

(1.1.5) If {E,} is an increasing and {F,} a decreasing sequence in %" such that
E,c F, for all n, then there exists a set Ee % such that E,c EcF, for all n,

Property (1.1.5) will be called the interpolation property, and the set E described

therein will be said to interpolate the sequences {E,} and {F,}. //

An interpolating set E serves as a substitute for the union of the E,, and the
arguments of Section 4 (where the interpolation property comes into play) can be
rendered considerably less delicate for any Wells class which is closed under the
formation of countable (increasing) unions. The remaining properties of a Wells
class serve mainly to ensure that the interpolation property can be employed
effectively. While we do not follow Wells in requiring that the sets in a Wells class
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be open, the presence of nonopen sets virtually forces the Wells class to be a field,
so that the list of known (interesting) Wells classes increases only slightly.

1.2. ExampLES. Each collection of subsets of Q listed below is readily shown to
satisfy the Wells class axioms.
(1.2.1) The collection £ of Borel sets.
(1.2.2) The collection of open sets.
(1.2.3) The collection of Baire sets.
(1.2.4) The collection of open F, sets.
(1.2.5) The collection of regular open sets (Wells (1969), Theorem 4, p. 128).
(1.2.6) The range of any strong lifting (Dinculeanu (1967), Definition 3 and
Proposition 4, p. 406; pp. 201-202). //

We shall frequently strengthen assumption (1.1.4) to read as follows:

1.3. LEMMA. Let W be a Wells class, let K= be compact, and let U>o K be open.
Then there exists a set Ee W such that Kcint(E)ccl(E)c U.

ProoF. From the normality of Q we obtain open sets ¥, and ¥V, such that
KcV,cd(V)cV,cc(V,)=U.
Any set Ee % such that cl(V,)c EcV, is clearly as desired. //

The remainder of the paper is organized as follows: Section 2 sets out the basic
notation and terminology; Section 3 presents characterizations of regularity and
uniform regularity which serve to illuminate these concepts and to assist with the
proofs of the uniform boundedness principles; Section 4 is devoted to a variant
of Rosenthal’s famous lemma (Diestel and Uhl (1977), Lemma 1, p. 18) which is
directly applicable to vector measures, and which will play a crucial role in proving
both uniform boundedness principles; finally, Section 5 treats the principles
themselves, along with two immediate applications.

2. Notation and terminology

Some notation has already been set out in the paragraph preceding Definition 1.1.
It remains to explain the generic symbol u, which, with or without subscripts,
will be exclusively reserved to denote a measure. All measures will be either
scalar, by which we mean complex-valued, or vector, by which we mean assuming
values in a fixed but nameless Banach space whose norm is denoted, as usual, by
- II. And except for explicit mention to the contrary, all measures will be (norm)
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countably additive. By the semivariation of a (vector) measure u with domain &/
we shall mean the function || z| on & defined by the identity

Iul(4) =sup{|| W(H) |: He o/ ; H= A}

for all Aeof. The set A is u-null (or just null) if || u||(4) = 0. It should be noted
that this is not the standard definition of semivariation (Diestel and Uhl (1977),
Definition 4, p. 2), but by Proposition 11, p. 4 of Diestel and Uhl (1977), the two
definitions are equivalent in the ‘norm’ sense, and so are interchangeable for all
definitions and results of this paper. We prefer the definition above for this work
because it will simplify a few technical arguments (for example, the proof of
Proposition 3.2), and because it possesses a natural analogue in more abstract
settings (specifically, the ‘h((4))’ concept of Traynor (1973), p. 356), to which
(some of) the results of this paper may eventually be generalized.

A Borel measure is a measure whose domain is the collection # of Borel sets.
A Borel measure u is regular on a set B (in %), if, for every number £>0, there
exists a compact set K< B and an open set U>B such that | u [(U\K)<e. A
family o of Borel measures is uniformly regular on B if the above statement holds
with the phrase ‘for all ue #” placed at the end. If & =4, then p is regular on &
if p is regular on every set Be &, and u is (just plain) regular if it is regular on 4.
Analogous terminology attaches to uniform regularity.

Uniform regularity of the family o turns out to be equivalent to uniform
countable additivity, which means: for every decreasing sequence {B,} in # with
empty intersection, the limit lim,_, ,, 1(B,) =0 is uniform for pe X".

Finally, let us declare that a sequence {4,} of subsets of Q is topologically
disjoint if we have

cl(A,,)ncl(U A,.) =g
i#n

for all n. This concept was treated, but not named, in Wells (1969).

3. The notion of regularity

This section contains a few basic facts about regular Borel vector measures
which will illuminate the concept of regularity and provide a foundation for the
subsequent material.

The standard measure theoretic uniform boundedness principles apply to
finitely additive (albeit ‘strongly’ additive) measures. Let us note first that non-
countably additive measures can never arise in the present setting.

3.1. PROPOSITION. A finitely additive regular Borel vector measure is necessarily
countably additive.
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PROOF. A most elegant proof, but not the statement, of this fact is (essentially)
to be found on pp. 158-159 of Diestel and Uhl (1977) (compare with Dunford
and Schwartz (1958), Theorem 13, p. 138). //

The determination of regularity on & by regularity on a generating set for #
seems not to have been noted in the vector case and follows immediately from the
next result.

3.2. PROPOSITION. The collection of regular sets for a (countably additive) Borel
vector measure | constitutes a o-algebra.

Proor. Closure under the formation of complements is trivial. Closure under
the formation of countable intersections follows via a straightforward (and
standard) ¢/2" argument, once it is observed that we have

Il £ I(B) = lim || p |I(B,)
n—w
for any monotone sequence {B,} in # whose limit is B. This fact, in turn, is
readily deduced from the obvious analogues for countably additive measures of
Criteria (3) and (7), p. 364, in Traynor (1973). //

3.3. QuesTioNs. We have been unable to answer either of the two questions
below.
(3.3.1) In view of Proposition 3.1, is the assumption of countable additivity
necessary in Proposition 3.27
(3.3.2) Does the collection of uniformly regular sets for a family 2 of regular
Borel vector measures constitute a o-algebra? //

The affirmative answer to (3.3.2) when open sets are known to be uniformly
regular makes up part of the next proposition, which is the principal result of
this section.

3.4. PROPOSITION. Let XX~ be a family of regular Borel vector measures. Then the

Jollowing assertions are equivalent.

(3.4.1) There exists a Wells class W such that, for every topologically disjoint
sequence {E,} in #", we have u(E,)—0 uniformly for pe x'.

(3.4.1%) Statement (3.4.1) with ‘| u|(E,)—0 in place of ‘u(E,)—0’.

(3.4.2) There exists a Wells class ‘W such that, for every sequence {E,} in W
satisfying cl(E,)<int(E,,,) for all n, the sequences {u(E,)} converge
uniformly for ye A,

(3.4.2%) Statement (3.4.2) with ‘cI1(E,,)<int(E,) in place of ‘cl(E,)=int(E,. ).

(3.4.3) A is uniformly regular on the collection of open subsets of Q.
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(3.4.3%) A is uniformly regular on the collection of compact subsets of Q.
(3.4.4) A is uniformly regular.
(3.4.5) A is uniformly countably additive.

PrOOF. This result constitutes a generalization and extension of Lemma 13,
p- 157, in Diestel and Uhl (1977), and, provided that two observations are made,
all of the arguments of that lemma may be adapted to this setting. First, one must
replace the total variation of each measure by the semivariation, the countable
subadditivity of which suffices for present purposes. Second, one must perform a
small finesse with Wells classes, a finesse which we shall refer to as the normality-
regularity stunt, and which we illustrate simply and completely by establishing the
implication (3.4.1)=>(3.4.1%).

Suppose that the Wells class #~ of (3.4.1) fails to satisfy (3.4.1%). Then we can
specify a topologically disjoint sequence {E,} in #~, a sequence {4,} in ), and a
number £>0 such that || u, |(E,) = 3¢ for all n. From the normality of Q and the
topological disjointness of the E,, we obtain disjoint open sets U; and ¥ such that
E,cU,, and such that cl({J2, E,)= V. We repeat this procedure within ¥ for
E, in place of E,, and we continue ad infinitum until a sequence {U,} of pairwise
disjoint open sets is produced such that E, < U, for all n. Of course we still have
| s I(U,) = 3¢ for each fixed n; therefore, we may invoke our definition of semi-
variation along with the regularity of p, to produce a compact set K,= U, such
that || u,(K,) | = 2¢. An application of normality and regularity together will now
yield an open set ¥V, such that K, < V,ccl(V,) = U,, and such that | u, |(V,\ K,) <e.
Lastly, we obtain from property (1.1.4) a set F,e#  such that K,cF,cV,. It is
readily verified that the sequence {F,} is topologically disjoint, so that we violate
(3.4.1) by noting the inequalities || p,(F) 1| = || 4.(K) | — || 4 |(Vu\ K,) = &, which
are valid for all n.

When Lemma 13, p. 157, of Diestel and Uhl (1977) is adapted to this setting,
we obtain the equivalence of all the statements in the present proposition except
for (3.4.2) and (3.4.2*), which are essentially new. So we complete the proof by
establishing

(3.4.1)=>(3.4.2)=(3.4.3).
The corresponding implications
(3.4.1)=(3.4.2%)=(3.4.3%

may be established by arguments which are similar in spirit and simpler in
execution. It is perhaps curious that the equivalence of (3.4.2) and (3.4.2*) should
not appear to be as trivial as that of (3.4.3) and (3.4.3%).

Suppose that the Wells class %~ of (3.4.1) fails to satisfy (3.4.2). Then we can
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specify a sequence {£,} in #” and a number ¢>0 such that cl(E,) cint(E,, ) for
all n, and such that, for each r», there exist indices i>j > n and a measure ue X
such that || u(E;\ E;) || = || u(E;)— u(E;) | = e. Now we have only to note that

[u(ENE) | < Il ) Gint(Es 1) \l(E;- )

so that the obvious induction procedure will yield a sequence {U,} of pairwise
disjoint open sets and a sequence {u,} in X such that || u,||(U,) = ¢ for all a.
The usual contradiction is then obtained via the normality-regularity stunt.

Finally, we derive (3.4.3) from (3.4.2). Suppose that i is not uniformly regular
on a fixed open set U. Then we can specify a number ¢>0 such that, for every
compact set K< U, there exists a measure ue. ¥ such that || u [[(U\K) > 5¢. The
heart of the argument consists in finding, for a given set Ee#  satisfying
cl(E)c U, a set Fe#  such that cl(E)cint(F)ccl(F)c U, and a measure ue X
such that || u(F)—p(E)| =|| u(F\E)| = ¢ The obvious induction procedure
based upon this construction will yield a sequence in ¥ which satisfies the
hypotheses but not the conclusion of (3.4.2). So to obtain F and p, we begin by
specifying pue A to satisfy || u||[(U\cl(E)) = Se. Now we must distinguish two
cases, depending upon where the mass of y is concentrated. Suppose first that
| u(cI(EY\ E) || = 2¢. In this case we merely invoke Lemma 1.3 and the regularity
of u to find a set Fe# such that cl(E)cint(F)ccl(F)c U, and such that
| u |(F\cl(E))<e. Then we have

[ HF\NE) | = | i(F\L(E)+p (CLENE) | = || p(L(E)\E) || — || 1 I(F\cI(E))
> 2e—g=¢.

Suppose second that || u(cl(E)\ E) | <2¢. In this case we first specify a compact
set Kc U\cl(E) such that | u(K)|| = 4¢, and we then obtain, as before, a set
Fe# such that

Koucl(E)cint(F)ccl(F)=U,
and such that
[ I(F\(K v cl(E))<e.

The obvious partitioning of F\ E yields the inequalities

TEFNE) | 2 1| plK) || = Il e LB\ E) || = || I (F\ (K © el (ED))
>4de—2e—e=c¢. [

4. Rosenthal’s lemma revisited
This section contains a variant of Rosenthal’s lemma (Diestel and Uhl (1977),

Lemma 1, p. 18) which applies directly to vector measures, but whose conclusions

https://doi.org/10.1017/51446788700021194 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700021194

8] Uniform boundedness principles 213

are slightly weaker than those of the original lemma. (This weakness will create
only a slight inconvenience in the application of the lemma.) The interpolation
property will come into play with a vengeance, and we isolate some technicalities
into a preliminary lemma. This lemma clearly illustrates the role of the first four
properties of a Wells class in making the interpolation property workable.

4.1. LEMMA. Let W be a Wells class, let {E,} be a topologically disjoint sequence
in W, let {D,} be a sequence of nonopen sets in W each of which is disjoint from
U E,, and let {K,} be a sequence of compact sets each of which is disjoint from
cl(U | E,). Then there exists a set Ec W such that, for all n, we have E,cE <D}
and cl(E)c K.

ProoOF. By property (1.1.3), we have D5e %" for all n. By property (1.1.4) (via
Lemma 1.3), there exists, for each n, a set F,,e #~ such that

Cs

E,cF,ccl(F,)<K;.
i=1

¥

Now property (1.1.1) can be used to convert the (countable) family of Dg and F,
into the decreasing sequence required for the interpolation property. The
increasing sequence for the interpolation property will be

{E\,E;VE,,E, UE, UE;,...},

and this is in ¥ by property (1.1.2). The set Fe# which interpolates these
sequences is clearly as desired. [/

Here now is Rosenthal’s lemma for regular Borel vector measures.

4.2. LEMMA. Let W~ be a Wells class, let {E,} be a topologically disjoint sequence
in W, and let {1} be a sequence of regular Borel vector measures. Then, for every
number £>0, there exists a subsequence {E,} and a set E€W such that, for all i,
we have:

(4.2.1) ESE,; and
(4.2.2) | ptn, I(E\Ujj=1 En ) <e.

ProOF. Let n; =1, and momentarily let u =y, . Write X, E, = Ui P
where the sets P, are pairwise disjoint, and where each P, is the union of infinitely
many of the E,. Our immediate aim is to find, for each k, a set G, e #” which will
serve as an adequate substitute for P,. To this end, we use the regularity of u to
obtain a sequence {K,,} of compact sets such that each K,, is disjoint from the set
K =cl(lU~,E,), and such that the set N = K°\|J>, K, is p-null. Also, using
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Zorn’s lemma (if we are tired) or a standard exhaustion argument (if we are not
tired), we obtain a (necessarily countable and possibly empty) maximal family
{D,,} of pairwise disjoint, non-open, nonnull sets in #" such that each D,, is
disjoint from |2, E,. In view of Lemma 4.1, we can now define G, to be any
set in #” such that P, <= G,; such that G, is disjoint from each D,,; and such that
cl(G,) is disjoint from each K, and from each set of the form cl(E,), where
E,nP,={.

We now argue that the sequence {G,} is essentially pairwise disjoint, and to this
end we examine the set G, N G, for distinct indices k and /. This set, which lies in
¥, is disjoint from each E, (since P, n P, = ). If it happens to be open, then it
is also disjoint from cl (| J, E,), and hence a subset of the null set N. If it is not
open; then it must also be null, for otherwise the maximality of {D,,} is violated.
It follows that the standard disjointization procedure will not influence the p-
measure of any G,, so that, simply from the countable additivity of u, we may fix
an index k such that | u (G <e.

Define F; = G,. Then we have:

(4.2.3) cl(F) ncl(E,) =¢;
(4.2.4) || gy, II(F)<e; and
(4.2.5) F; contains infinitely many of the E,.

Let n, be the smallest index such that E,, < F;, and note that n,>n,. We now
repeat the whole argument above with #, in place of n;, and with the union of
those E,<F; such that n # n, in place of the set |J2, E,. The result will be a
set F, € %" which satisfies (4.2.3)-(4.2.5) in place of F, when n, is changed to n,,
and which, by (1.1.1), can be taken to be a subset of F,.

As usual, we repeat the argument yet again, and we continue ad infinitum until
sequences {E, } and {F;} in #" have been produced such that, for each index i,
we have:

(4.2.6) cl(F)ncl(E,)=3;
(4.2.7) |l g, I(F) <e; and
(4.2.8) F,;oE,,, UF,,,.

From here, one final direct application of the interpolation property will yield
the desired set Ec#  (compare with Wells (1969), p. 127). It is readily verified
from properties (1.1.2), (4.2.6), and (4.2.8) that the sequences {{J-E, }i2, and
{Fi v (Uj=1 E,)}, satisfy the hypotheses of the interpolation property, and we
choose Ee#” to be any set which interpolates these sequences. That E satisfies
(4.2.1) is clear. That E satisfies (4.2.2) is clear from (4.2.7) once we observe the
containment E\(Ji_, E,,=F;. //

i+1

The above proof is more general than the lemma itself, and it can be adapted
with considerable simplification to the more abstract setting. Here is the result.
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4.3, LeMMA. Let & be a field (Boolean algebra) with the interpolation property,
let {F,} be a pairwise disjoint sequence in ¥, and let {y,} be a sequence of strongly
(finitely) additive vector measures defined on & (Diestel and Uhl (1977), Definition
14, p. 7). Then, for every number ¢>0, there exists a subsequence {F,} and a set
Fe % such that, for all i, we have:

(4.3.1) FoF,; and
4.3.2) | o |(F\Uimy Frp<e. /]

Of course Lemma 4.3 can be used to obtain uniform boundedness principles in
the abstract setting just as Lemma 4.2 will be used in the present setting. (And
when & is a g-algebra, the set Fis just J2, F,.)

5. The uniform boundedness principles

We shall establish our two main results by direct sliding hump arguments—
arguments which are similar in grand design but which are logically independent
of one another. In this respect our approach differs from the standard approach
in Diestel and Uhl (1977), wherein the Nikodym Boundedness Theorem
(Theorem 1, p. 14) is used to prove the Nikodym Convergence Theorem
(Theorem 8, p. 23). It also differs from the treatment of Wells (1969), who
derives his boundedness theorem as a corollary (on p. 128) of his (unliberated)
convergence theorem (our Corollary 5.3). With the aid of linear functionals,
Wells’ approach generalizes at once to this setting and, provided that one is
prepared to employ a hefty dose of Banach space theory, it provides an attractive
alternative to the present, more elementary approach.

Without further ado, here is our version of the Nikodym Boundedness Theorem.

5.1. THEOREM. Let X~ be a family of regular Borel vector measures on Q. Assume
that there exists a Wells class ‘W~ such that we have

ss=sup{| W(E) |: pe A} <o
for all Ee W. Then X is uniformly bounded, that is
sup{ll p (Q): pe A} <oo.

ProOOF. Assume that the conclusion is false and (with no loss of generality) that
X is countable. We shall obtain a topologically disjoint sequence {E,} in #" and
a sequence {u,} in A" such that, for all n > 2, we have

. n—1
” #n(En) " > n+ i=21 ” l"’n(El) ”'
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An appeal to Lemma 4.2 (with ¢ = 1, say) will produce a set Ec %" on which the
U, are unbounded. The arguments are standard (compare with Diestel and Uhl
(1977), p. 16).

Here is the heart of our main construction: Let K be a compact set with a ‘do
not enter’ sign affixed, let p>0 be a preassigned constant, and assume that ¢ is
unbounded on a set Fe %" whose closure is disjoint from K. Using the finiteness
of sy, we obtain, exactly as in Diestel and Uhl (1977), p. 15, a Borel set B< F and
a measure pue X such that || u(B)|>p, and also such that || u(F\B)||>p. Let
K, =B and K, F\ B be compact sets such that | u(Kp|>p for i=1,2, and
then let V| and ¥, be disjoint open sets such that K;c ¥V, for i =1,2. We should
like to get our hands on a compact set H such that 2 is unbounded on H, and
also such that H is disjoint both from K and also from X for at least one value
of i. To this end, we observe that # must be unbounded on at least one of the
three sets FnV,, FAV, and Fn(V; uV,), so that the desired set H can be
chosen to be of the form cl(F)ncl(V)), or of the form cl(F)n(¥V,uV,)", as
appropriate. Finally, we perform the normality-regularity stunt of Proposition 3.4
to specify an open set U whose closure is disjoint from Ku H, and to specify a
set Ee % such that K,c Eccl(E)< U (for the appropriate value of i), and such
that || W(E) || = p.

We now weave this basic construction into a general induction procedure. Set
U, =, set E,=F, and set U,=U. When n=1, let K= (J, and otherwise let
K =U;iZ!lcl(U;) (where the previous sets U;ocl(E;) have been obtained by
induction). The predetermined constant p will be =1 when » =1, and it will be
=n+)7-1sg, when n>1. Notice that the encasing of cl(E,) in the open set U,
(for all n) will guarantee the topological disjointness of the ultimate sequence {E,}.

We are left with a new compact set K* =K v cl(U,) with its ‘do not enter’
sign affixed, and a compact set H, disjoint from K*, on which 2 is unbounded.
In order to continue the induction, and hence complete the proof, we must
convert H into an F*e#  whose closure is disjoint from K*, and on which X is
unbounded. However, such a set F* is very simply obtained from the compact-
ness of H and from Lemma 1.3. //

Our version of the Nikodym Convergence Theorem follows immediately. Its
proof appears easier only because some of the technicalities have been absorbed
by Proposition 3.4.

5.2. THEOREM. Let {y,} be a sequence of regular Borel vector measures on Q.
Assume that there exists a Wells class W~ such that the sequence {u,(E)} is convergent
for each set Ee W, Then

(5.2.1) the p, are uniformly countably additive; and
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(5.2.2) the limit w(B) =lim,_, , n,(B) exists for every set Be &; moreover, | is a
regular Borel measure.

ProoF. We shall establish (5.2.1) under the assumption that lim,_, , pg(E) =0
for all Eec# . The general case follows exactly as in the proof of the standard
theorem (Diestel and Uhl (1977), p. 24). By Proposition 3.4, it will suffice to verify
criterion (3.4.1). If (3.4.1) fails, then, upon passing to a subsequence of {u,} if
necessary, we may specify a number ¢>0 and a topologically disjoint sequence
{E,} in # such that || u,(E,) || = 3¢ for all n. Since u,(E;)—0 for each fixed i, we
may pass to a further subsequence, if necessary, in order to ensure that, for all
n>2, we have Y721 | u(E) | <e. By Lemma 4.2, we may pass to a yet further
subsequence, if necessary, in order to additionally ensure the existence of a set
Ee¥ such that Eo| )2, E,, and such that, for all n, we have

™ (E\ U Ei)<s-

i=1

A contradiction now results from the inequalities

n—1 n
I EsEY | 2 0 B 1= 30 1 i EY 1 =1 gt | (E\ U Ei) >3e—e—e=¢,
i=1 i=1
which are valid for all n > 2.

The proof of (5.2.2) relies heavily upon the equivalence of uniform countable
additivity and uniform regularity which was established in Proposition 3.4,
Uniform regularity gives us two things: first, the regularity (and hence, by
Proposition 3.1, the countable additivity) of the limit u, once it has been shown to
exist; and second, via a standard &/3 argument, the fact that lim,_, ,, u,(K) exists
for every compact set K. (Of course this /3 argument will invoke the completeness
of our nameless Banach space.) Via a similar ¢/3 argument, uniform countable
additivity gives us the closure, under the formation of monotone limits, of the
collection ¥ of sets Be# for which lim,,  p.(B) exists. That ¥ =% now
follows from the lemma on monotone classes (Halmos (1950), Theorem B, p. 27),
provided that the way is cleared for the application of this lemma by the prior use
of Exercises (2) and (3), pp. 25-26, in Halmos (1950). Alternatively, one may
directly apply a less well-known variant of the lemma on monotone classes
(Neveu (1965), Exercise 1.4.4, p. 19). [/

We shall not attempt to derive a maximal sequence of corollaries of these two
theorems (but compare with Diestel and Uhl (1977), pp. 16ff, for an illustration
of possible sorts of applications). Rather we simply make note of what are perhaps
the most classical applications of this sort of result.

The first corollary generalizes (slightly) Wells’ principal result (Wells (1969),
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Theorem 3, p. 125). For this corollary and the next, let .#(Q) denote the Banach
space of regular Borel scalar measures on Q, equipped with the total variation
norm.

5.3. COROLLARY. A sequence {y,} in M(Q) converges weakly to an element of
M(Q) if and only if there exists a Wells class W such that the sequence {u,(E)} is
convergent for each set EcW'.

ProoF. Theorems 5.1 and 5.2 reduce this to the classical general result (Dunford
and Schwartz (1958), Theorem S, p. 308). //

The original version of the second corollary was due to Grothendieck (1953),
Théoréme 2, p. 146.

5.4. COROLLARY. A4 set K< #(Q) is relatively weakly (sequentially) compact if
and only if there exists a Wells class W~ such that:
(5.4.1) sup{|| w(E) ||: pe A’} <o for all Ee W ; and
(5.4.2) for every topologically disjoint sequence {E,} in # , we have u(E,)—0
uniformly for pe A .

ProOF. Theorem 5.1 and criterion (3.4.1) reduce this to the classical general
result (Dunford and Schwartz (1958), Theorem 1, p. 305). //
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