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FORMULAS FOR THE NEHARI COEFFICIENTS
OF BOUNDED UNIVALENT FUNCTIONS

DUANE W. DE TEMPLE AND DAVID B. OULTON

1. Introduction. The Grunsky inequalities [6] and their generalizations
(e.g., [5; 14; 17]) have become an increasingly important tool for the study of
the coefficients of normalized univalent functions defined on the unit disc.
In particular, proofs based upon the Grunsky inequalities have now settled
the Bieberbach conjecture for the fifth [15] and sixth [13] coefficients. For
bounded univalent functions the situation is similar, although the Grunsky
inequalities go over to those of Nehari [11]. These inequalities and their
generalizations [1;2;3; 4; 12; 18] provide a fruitful approach to the study of
coefficient problems for various subclasses of bounded univalent functions.

One difficulty in applying the conditions is the actual determination of the
required Grunsky-Nehari coefficients. To overcome this in the case of the
Grunsky coefficients, Hummel [8] has derived some formulas which greatly
ease their calculation, and moreover machine computed tables of these coeffi-
cients are now available (Miller [10], Ross [16]). Corresponding formulas
would be useful in working with inequalities of the Nehari type, and it is our
purpose here to develop such formulas. While our main attention will be to
the classes .Sy and D; which are defined below, we indicate in the concluding
section how our techniques and formulas apply to other function classes as
well, including the Bieberbach-Eilenberg functions as one important example.

Class S;. The functions f(z) which are regular analytic and univalent in
U = {z: |z] < 1}, have a Taylor series expansion about the origin of the form

1) fl&)=biz+bz?+...Fb2"+..., b >0,
and satisfy |f(z)| < 1in U.

Class Dy. The functions F(z) which are regular analytic and univalent in U,
have a Taylor series expansion about the origin of the form

(2) FR =B+Bz+Be+...+Bs"+..., 8>0,

and satisfy the conditions |F(z)| < 1 and F(z) + F({) # 0 for all z, ¢ € U.
For both these classes the Nehari inequalities can be written in the form

N N 2
(3) Re X [awhh + 0Ll < 2 D:—i N=12...,
p=1

p,v=0
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where Ay is an arbitrary real number and \;, N, ... are arbitrary complex
numbers. The Nehari coefficients a,, and b,, are defined differently in the
two classes, however.

For a function f of the form (1) the symmetric Nehari coefficients a,,(f)
are obtained from the series expansion

@ 10gl2=LO S e,

z—¢ sy y=0

convergent near the origin. Likewise the function has hermitean Nehari
coefficients b,,(f) which are obtained from

G)  =log [l — f@F©)] = Z bun ()"

o=
Then a regular analytic function f of the form (1) will be in .S; if and only if
(3) holds, where ay, = a,,(f) and b,, = b,,(f) (Nehari [11], Schiffer and
Tammi [18]).

For a function F of the form (2) the symmetric Nehari coefficients 4,,(F)
are defined by

F(Z) - F(() - = N o Hh ¥
© g G T D6 =) - A (T

and the hermitean Nehari coefficients B,,(F) are defined by

1+ F@FQ) _ < N BV
(@) logy— FOFQ ~ Z; B, (P27,
these series being convergent in some neighborhood of the origin. Then a
regular function F of the form (2) will belong to D, if and only if (3) holds for
auy = A, (F) and b,, = B, (F) (DeTemple [2]).

In all cases then, the Nehari coefficients can be defined implicitly by means
of the relations (4), (5), (6), (7). For applications, however, the coefficients
must be computed explicitly, and it is our goal to simplify these otherwise
tedious calculations.

2. Preliminaries. Let » be any real number and let s, s, . .., s; be non-
negative integers, not all zero. If s = s; 4+ ... 4+ s, then the multinomial
coefficients are defined

o (1 )rmbeissn
Sty e vy Sy

sib.o ..ol

In the case that 7 is a positive integer and s < 7 we note the identity

©) ( r+s ):( r+s )
S1y e ..y Sk ¥, Sty ey S6)

Now if f(z) = co + 1z + ¢.22 + . .. is convergent in some disc about the
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origin, then for non-negative integers r we have in that same disc the expan-
sion (multinomial theorem)

10) JET = i &

where ¢¢(” = ¢" and for &k = 1,

2 ...
(n r —
an &= > ( )co’ e’ e,
Sy« « o 3 Sk

(syme )
€Sk

and where
12) =G, .., 56) 15, 20,81+ 250+ ....+ ks, = k}.

Moreover, in the case ¢ > 0, the expansion remains valid near the origin
even when r is a rational number, positive or negative. Note that ¢{® = 1,
G® =0and 'V = ¢ fork=1,2,....

It will also be convenient to introduce the sets of k-tuples

(13) Fr=1{(y...,50):520,s=k+1—ns1+2s5-+...+ ks; = n},

wherek =1,2,...,0=n = k,and s = s; + ... + 5. In particular ¥,0 =
{£(0,...,0)}and 7* = {(0,...,0, D)}.

Suppose a map 7 is defined as follows: for {s1,...,s:) € L let7(s1,...,8) =
(+1—n—s8s,...,8%).Nwk+1l—n—s=z0and +1—2n—y5)
+ 25+ ...+ B+ s, = k4 1507 maps Uk_g %" into ¥ y1. Moreover,
the mapping can be uniquely inverted. If (sq, s1, ..., ;) € Py and if n is
defined by n =k +1—sp—s1—...— s, then 0 = n =kand n+4+s =
B+ 1, where s =s;+ ...+ s But s +2s;+...+ (k+1)s, =k +1
SO S1+ 259+ ...+ ksg =k +1—5—s¢=mn Thatis, (s1, ..., 5) €.
and 7(s1, ..., ) = {(So, S1, - - ., 5x). Thus 7 defines an isomorphism between
Uk % and Y r+1. From this fact we obtain the following lemma.

LEMMA. For any funcltions ¢p (1, ..., S3), 0=n =k k=1, 2, ...,

we have
k
Z <Pk.n(51y ey Sk) = Z Ok k4 1—5—s0 (51, cee s Sk)
a=0 (5pnsy) (54,8 om0 Sg)
€Sk [ 381
wheres = sy + ...+ s

In a more compact notation we will write this in the form

(14) Z <Pk,n(31, ey Sk) = Z (Pk,k-!—l—q(q% e vqk+1);

k
U n0& &7 Qk+1
where

Qz={(Qlyn-ygl)39;'_2_0,91**—292“*"---—*'[(]1:Z}
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and
Q=Q1+~~-+Qb

Of course Q, =.%,, the only change being in the generic letter used to
describe the set. This notational convention will be used numerous times in
our development.

3. Nehari coefficient formulas for Class S;. It is well-known that if
f(z) € Sy, then so is [ f(z?)11? = by'Pz 4+ ... foreach p = 1,2, .... Due to
the additional utility of the Nehari inequalities when p is greater than 1, we
shall derive Nehari coefficient formulas for the function [ f(z7)]'/?, for which

we define
P (f) = au(fE)'7) and 0,2 (f) = bu(f(z7)17).
Since b; # 0, we may write f(z) = bi(z + @22 4+ ...) = big(z), where

ay = bi~,. Then according to (4) we have

®© p\1L/p 2\1L/p
, b4

Z aw(p)(f)zug. — [f( )] — [f(g‘ )]

a3 = ol @) = [
=;Iogb1+log P .

Thus, for p, v # 0, a,,P(f) = ¢, (g), where ¢,,?(g) are the Grunsky
coefficients for the normalized univalent function g. Hummel [8] has derived
formulas for these coefficients in the case u, v = 1. It remains to derive formulas
for the coefficients a,® (f) for u = 0. Setting { = 0 in (15), we obtain

© 1l/p
“Z_O ayo(p)(f)zﬂ - log[;(zz;)]

P
1 1 ,,
= >logbs + ~log (1 + a2” +...).
P P
For z sufficiently small we can write this as a power series in (as2” + ...) and

then apply the multinomial theorem (10), where we set ¢, = tpp2, M =

0,1,2,....Wefind

n+1
(16) Z 4 ” (f) = ;;Iog by + ;; Z = ,1;)‘— (@ + ag” + ...
n+1
—;Iogbl—f—-;-z (=7 1) 2%(co + 1" +...)"

o ) n+-1
— Liogo 41 Z Z 1) o mimn,
p P n=1 m=0

Nowsetk=m+n.Thenkgland1§n=k—msoO§m§k—1.
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Thus (16) takes the form

© k- k—m+1
> aﬂo(p) Vg = - log by + - Z Z ———( . ) e F Mg,
u=0 P k=1 m=0
Clearly a,0®(f) = 0 unless u is an integral multiple of p. In the case u = kp
for some integer £ = 1, 2, ..., we have by (9), (11) and (14) and recalling
Cn = Am42y
E—1 k—m+1
oy - L5 (DT ( k—m ) bmms S .
g0 (,f)—p";) F—m 2 \su....s as az'...Qne2
1 = (_1)k_m+l ( k—m ) k—m—s_ S1 Sk~1
TP m2=0 k—m o Sy e v sy Spe1 2 @ » e

Fr—1

>
|

1 k-m+1
-‘] k —m k—m— $ N
Z ( ) (Izmsagl...ak+1k+l
$1,

6 E—m Cy Ske
Fr1 y Yk—1

=
3

1

g¢+1
T p ; = glz) (q1 ! qk)azqqu L
& vy

Summarizing, we obtain the following theorem:

THEOREM 1. Let f(z) = bi(z + az? + ...) € S1. Then @@ (f) = 0 of p is
not divisibleby p. If p = kp, kb = 0,1,2,. .., then

aoo(p)(f) = %l;log by

W (g :

Qipo " = as' ... a1 E> 1,

kp,0 (f) P% q Qi s G 2 k+1 Z
where Qv = {(qv, -.., @):¢; 20, ¢1+2¢+ ... +kg =k} and ¢ =
@G+ ...+ G

COROLLARY 1. For a«ll N =1,2,...,and all u,v =0, 1, 2, ..., the sym-
metric Nehari coefficients satisfy the formula
1
aNu.Nv(Np) — N(lw(p).

Proof. The case for u, v =2 1 follows from the similar result for the Grunsky
coefficients [8, Theorem 5]. It is obvious for u = 0, v = 0 by examination of
17).

The symmetric Nehari coefficients for Class .Sy, as given by equation (17)
are listed in Table I for the cases p = kp, &k = 0,1, 2, 3,4, 5 and » = 0. This
table complements the table of Hummel [8, p. 149].

In order to determine the formula for the hermitean Nehari coefficients, we
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TABLE 1. Symmetric Nehari coefficients a,® (f), for Class S,
w=Fkp, k=012 34,5

(p)(f) — iaz
1 1
az0®(f) = 5 \¢ ( ) ‘122)
3p,0 (p)(f) i ( — axas + 3 )
Lap,0 (p)(]c — ;15_ (a — @y — %(132 + 02203 - 711a24)

) 1 2 2 3 |
s (f) = » (as — Qall; — A3y F+ as'ay + asas — as’ay + :)af)

where f(2) = bz + bas® + ... € S, and  a, = by b,

Note: for a2’ (f), u, v = 1 (see Hummel [8]).

use essentially the same techniques as before, this time beginning with equa-
tion (5):

Zlbw(")(f)Z"f” = —log {1 — [f)f C")I'"}

pov=

For z and ¢ small, and now taking ¢, = b;;, in the multinomial theorem (10),
we then have

> b2 =

u,v=1

&

ne
b4

- (bl + b2Z -+ . )n/p(bl -+ 1_)25:27 + .. -)n/p

R |
S

Me IDMs

3
i
A

[Ms

n
= 1_ (n/p) . (n/p) _ntpkgntpl
‘ 'Z:Onl:k C Z g' .

Now let ¢ = n + pk and j = #n + pl. Then » = 1 implies kb < (1 — 1)/p
and I £ (j — 1)/p. But i — j = p(k — ) so unless u — » is divisible by p
we must have b,,”(f) = 0. In the case p = v +mp, m =0, 1, 2, ..., we
have B = | + m and

3
I

) o) e L, 1D [ipD
v/p— v/p—
Botmp,v ? (f) = bV.V+mpp (f) = ;} pl Ve’

forr =1,2,...andm = 0,1,2,....Using (11), and recalling ¢;, = b,,, this
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formula becomes

» [(»=1) /p] 1
e
—1 v Ip—l—s; S Siem
(5 (i)
18 —1 V=t T A
1) (;(r:/p r,)bl/plb?l"'bl“l)

CEE g ()

=0 v — Pl A G O\NSu o, S/ \ry o7y
X (0281 . az+m+1sl+m>((l2r1 ceeapd’h)
when «a, = b;:7%,. Due to the dependence of b, (f) on both a,; and d,, this
formula cannot be reduced further. Thus we have obtained the following

theorem:

THEOREM 2. Let f be a function in Class S1. Then whenever u — v is not

divisible by p, 0, (f) = 0. If u=v +mp, v =1,2, ..., and m =0, 1, 2,
..., then
[(»=1) /p] b 2)V/17—l V/p —1 V/p —1
by . p(D) - ( 1 (
(19) tme, (f) ;) V'—pl y% ;, Sly « v oy St4m i, .« ., 7
cat A Y @A)
where a, = b=, n =1,2,....
COROLLARY 2. For all N = 1,2, ...,and all p,v = 1,2, ..., the hermitean

Nehari coefficients satisfy the formula

bNﬂ.NV(Np)(f) = %bn,v(p)(f)-

Proof. w —v = mp if and only if N, — N, = m(Np). Also the interval
(v — 1,» — 1/N) contains no integer so neither does the interval ((» — 1)/p,
(Nv — 1)/Np); that is, [(v — 1)/p] = [(Nv — 1)/Np]. But then (19) is
identical in the two cases except for the denominator terms » — pl and

N — pl).
In order to tabulate the hermitean Nehari coefficients, it is convenient to
define the following quantitics. For », p = 1, 2, ... let x = »/p. Then define
Qo(x> = l/x

andfor0 sl =[x —-1/pland! +m=1,2,...,

(z—1) 1 x -1 H st
(20) Qum = 7 > ( as’ oA
X — L @im Sy oy Sitm

Then we can write (19) in the form

el /ol x — 1 2\2— 1, (=D (a1
(21) bv+mrm*(f) = ZO b (bl )x Qiim le
1=
forv =1,2,...andm = 0,1, 2,....The quantities (20) and coefficients (21)

are listed in Table 2. In order to use this table it is first necessary to determine
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12 19 1 £r3; 19 — 0 ey 19 L

aléadals Galsm q g — X a—- Gzlé dalsm q 1 — % €3] QAS GNN q x

q q 4 q

3 4 19—~ T z 10— 0 T8 19 ..

alavmdaleqdaléws ¢ —x @—2) Galav dalavu q g — X a—r) czlé G:lem q 1 —x €3] GAS GS q X

4 4 q d 4
€ g 10 — 4 14 10 1 1 | 7 J A 0 o7y Ig
Clévd@lavqcslavug y— X (g—%) G@Isv G@lavm 9 ¢ —x (3—%) Gainv Galém q g — X (- Gaié G:LJN q T —% (*) GAS Gam q X

¢ ¢ _[¢ _[¢_ ~[¢-
S I o R IS S BN Lo
(s — 0@ - 90— ) Bt -1 -4 o -9 Epro — 9+ = o

(5 = A =9 T4 (1 = 4) £ =

G
%@Q — 4) w 4D = SNQ
D = Cvﬁa
4T = 4,0

“I¢ SSBY) 10} STUSDLYI0D LIBYDN UBIIWISH ‘g TTY |,
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m = {g—v)/p, x = v/pand [x — 1/p]. The desired coefficient is then found
by adding terms in the row corresponding to m (indicated in the left hand
column) through the column headed by the value of [x — 1/p]. Table 2 has
been constructed so it can be used for values of » and m for which » + m = 5.
For example, in order to determine 57 ;¥ (f), we find that m = 1, x = 4/3 and
{x — 1/p] = 1. Thus,

4 ey B e 179
b P (f) = §b18/391(4/3)90(4/3) + §b12/3g2<1/z)91< 73

1 1 1 _
= §b18/3(12 + § b12/3(d3 — gazz)az.

4. Nehari coefficient formulas for Class D;. In order to determine the
symmetric Nehari coefficients it is convenient to write F(z) = B8(1 + 2f(z))
where

S =z + a4 ..., a; = B/28.

According to (6), we have

: o _ F&) = F@)
2o, A D = 108 ey e =
=10 T L0 _1og (14 1) + 1)
= 3 an(IF — log (1 + () + 16))

where a,,(f) is the symmetric Nehari coefficient whose formula (in the case
p = 1) wasderived in Section 3.

For sufficiently small z and ¢ we may expand the logarithm as a power series
in[f(z) + f{¢)] and can then apply the binomial theorem. Defining

(22) A W(F) = Aw(F) — au(f)

we obtain

5 stz = 5 CU S (1 ey

= ¥/

We now apply the multinomial theorem (10) to obtain a power series in z and
¢, taking ¢, = a1

(23) Z L%/W(F)Zufv - Z Z Z Z (;14)_( n )Cl<n—m)ck(m)zl+m—n§_k+m‘
1, r=0 n=1 m=0 1[=0 k=0 n m

Nowletpu=I14+n—mandy =k +m. Thenpy =2 n — mand v = m. Itis
convenient to deal separately with two cases: u or » zero and g, » = 1. If both
w, v = 0, we have

A o(F) = 0.
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For u =2 1 and » = 0 we must have & = m = 0. Hence, from (23),

(24)

where formulas (9

L (=D w o
o n
VQ/A‘O(]') = Z T Gen Co

n=1 n
-1 —1

_ S ( ,U—l )_(—1)“_ p—I—s sl st

= ol (<3 N ¥ AN ]
=0 ¥ Sty e ooy Sy w1
= — 1 — 1)+

= ( M ) ‘(—‘—') al"_ Z—S(Xzsl e Oz#S“—l
=0 V;l;—l Sty ey St/ ow—1

—1)¢

_ ( q ) ( ) % .. .a,,q"

Q@ M2 -5 G q

( q ) (—1)qalql L
g1y, -+ oy Gy q .

, (11) and (14) have been used.

I
~— QM
=

Next consider the case u, » = 1. Since ;' = 0if k>0, m =0o0orm =n
respectively imply that 2 and / in (23) are zero and hence » = Q or p = 0. But
this is not the case and so when the order of summation on # and m is inter-
changed we must havey =2 m = landu 4+ m = n = m + 1. Then (23) yields

- = —1 " n n-—-m m
MMV(F) = Z Z _(h—)- Cu—(n—m)( )CVA—m( )

m=1 n=m+1 n m

y~1  pe1 (_1)/.L+V—k—l (# _|_. y — k —_ Z) (u—1) _ (v—k)
A o) Ck
= utv—Fk—1 w—l

.
I
=Y

Er s )

k=0 Ar =0 7, w—1 BRI
X Cbi—— a7 @™ e (@)
ut+v—1—*k +1 : ktl
_il Z = Z(M’*‘V—-k—l)( p,—-[ )
] Ay =g w—1 Sty e ey Su1

_k _1 pty—I—k e )
X (r 14 ) _( ) . _alu+v k—1l—r ‘\(a251 . .a#S“_l)
1y

utv—101—%

N |

71 Troly s+ N r
Xl )»_g}z,: ;( r )(5‘2,...,.?“)(7’2,...,7’;,)

(_ 1)s+r
X AT a1s1+71(a2m . .aus,,) (az” . .Ol,,”)

s+
=2 E(:Jli(slw ST m)(al‘“...a;»)

i I S o Suy Py -

X (er™ ..
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In this form the symmetry is obvious, but further simplification is possible
if we assume » < u and then let 2 = p 4+ v». Further, we set s; = 0 for 7 > u
and 7; = 0 for ¢ > v, and define ¢, = s; + r;fori =1, 2, ... h Then

91+292+---+h9n= (31+252+'--+h%)
+ i+ 24 ... Fr,)=pt+v="0

whenever (s1,...,s,) € %,and (r1,...,r,) € #,,andso (g1, ..., qs) € QO
Not all of Q) can be generated in this manner since ¢,41, . . . , g5 are all auto-
matically zero. However, we claim (25) can be replaced by sums over @, and
R, that is,

6) A=Y 3 ¢ r)tl—ua

Qn  An’ (ql-—h,...,qh—rh,h,... q

To check this we first note that under the mapping (71, ..., 7.,) — (r1, . . .,
7,, 0, ..., 0), recalling » £ u, there is a natural identification between &%,
and #,*. Moreover, if for some 7, we have g, — r;, < 0, then the correspond-
ing multinomial coefficient in (26) will vanish and thus make no contribution.
We need only show, then, that in the case (g1, . - ., gn) € Qn, (r1, ..., 74) €
Hyyand g —ri 20,...,q — r, = 0, the contribution made in (26) has a
corresponding term in (25) which makes an equal contribution. But this is
clear;justlets; = ¢; — 7., Thens, = Oand s; + 252 + ... + &s, = (q1 — 71)
+ ...+ higy— 1) =h —v = p;thatis, (s, ..., s,) € .%,. Although (26)
was derived under the assumption » = 1, we notice that if we formally set
v = 0,50 b = g, then the same formula as (24) for.%7,; obtains.

THEOREM 3. Let F be a function in Class Di. If F(z) = 8(1 + 2f(z)), where
f(2) = ez + a2 + ... and oy = (28)7'8y, then the symmetric Nehart coeffi-
clents are given by

(27) Auv(F) = aw‘(f) +MMV(F)

where a,,(f) 15 the symmetric S1 Nehart coefficient and

Moo(F)=0
28) Z,,(F) = { ( 9 )}
( ) “() % g‘ Ql—7’1,---,97;_7’)”7‘1,---»7’71
_1\¢
X( 19) ..t
q
whereh = p + v, v S uy v =1,2,..., (g ) # (0,0).

The &7 ,,(F) components of the Nehari coefficients for Class D, (28), are
listed in Table 3.
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TABLE 3. The .7, (F) components of the symmetric Nehari
coefficients for Class D1, 0 = v < pu < 3.

Moo(F) =0
JZ/lo(F) = —

1

A 50 (F) = §a12 — ay
1

A w0 (F) = — gaxs + s — ay
Mu(F) = 0112
MQI(F) = 1069 — C(13
A 1(F) = aney — 201’az +
o 22(F) = as® — 2o’y + 2“14
A 32 (F) = asay — ar’as — 2o + da’as — af

~ 2 3 2 2
Mgz([’) = oy — 4a1a2a3 4+ 201 ay + 60[1 oy — 86(14012 — a3

We now turn to the hermitean Nehari coefficients B,,(F), defined by

S — 1+ F)FE)
22, B (DL = log (1 - F(Z)F—(s“3> '

Since |F(z)| < 1 we may expand this logarithm as a power series in F(z) F(¢)
and then apply the multinomial theorem to obtain

) -, oo [I;(Z)PT(?)]%HJ
g = e
2z, DD =2 2
= 3 '__“1"“_ 3 2n+1 ) 2n4-1—s 5 51 S b
_2; n+1f§;(51,...,s“ﬂ By ... B
3 2 1 nt+l-ra T1 g Tr.¥
X 2 Z( Tt )BHI BB
=0 Ay L.y Ty

Thus in terms of the a; = £:/28 we have

© 4n4-2 s 9 1 9 1
in=af 2y p () ()

Sty ey Sy/ NPy, Ty

X (@™ . e, L),

Noting that

(2n+1)_(2n—|—1)( s )
S1y 000y Sy N N Sty o o vy S
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we can then write

_ a1 g2 S r
(29) B (F) = ;,; ;4; 2 b 0”(51, R su)(n, ce, ry)

X (05181 .. .a,l“) (hol e a,,”)

where

2 2n+1(2n+1)if_
(30) ””_Es( s ) r o1

We now wish to express the g, as finite sums. Considering them as power
series in the parameter y = §2%, a short computation shows

(31) (7’ + I)UT+1,S = i (yars) — YO, ¥, 8§ = Oy 1) 21 LR

dy

An induction argument from (31) then shows

r—1
(32) rlo,, = r—1i_T01 s=0,1,2 r=1,2,....

rs dyr— sy s Ly Ly e ey y Ly o .

Now g, = ¢, and so if in (32) we first set s = 0 and then replace r with s,
we find

s—1
(33) sloo, = y1 2

Wo’lo, s=1,2,....

But from (31) we see
(34) = i( ), s=0,12
< U'ls"‘dy Yoos)y S=U,4,2,....

and so combining (32), (33), (34) we get

l 7—1 dr sds—l ¢
«rm=my @737 d—yS:UIO’ rs=1,2,...

Applying Leibniz’s formula for the rth derivative of a product we obtain the
symmetric form

) 1 min{r,s) N dr+x-k—1
(85) on==5 2 (}:)( Z )kb’ Pk IWT T10-

ris! &4

From (30) we see

_ 11 1)
010_1—y2_2(1——y+1—}—y
and hence

ST =5 (= DI =)™ = (=1 +3)7]

N ((f——ylg))_!" ]; (2]'1 1) U
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This allows (35) to be written as
oy = RIS ( v ) ( >k|y7+? et r s — B — DTS (r +s5— k)
m 7’!5! k=0 k R (1 )7+s —* =0 Z] + 1
vi1 r4-s—1 (
T+s—k—2j~-1 __
(36) Xy - r‘V'(l ) = ( ) k)
&S r+s— k) 2(r45— I—§—1)
» (05 -

X kl(r +5 —k — 1)! Z
Next suppose we change the summation indices according to

=r4s—1—7—1,

p=r—+s—k,
g=7r—+s—1L
r+s—kandl Zksoj=r+s—1—j—1=m; we thus

(37)
; <
have the limits 0 < m < r + 5 — 1. Making these substitutions into (36) and

Now 27 41 =
simplilying we get the final form
T+s—1
T+¢ Z y
P Moyt
29 —2m — 1/ )’

)p+(1

(38)
J+ T+s
lz:: Z:: Z_#(p—s,p—

Although (38) was derived under the assumption 7, s
alid even il one of r or s is zero, as may be checked using equation (33). Intro-

Ors = (l _

rrt+s—q,qg—p

= 1, it nevertheless is

2751182 we have derived the following result

..) € Dy. Then the hermi-

Ve
ducing the functions x
THEOREM 4. Let F(z) = 8(1 + 2013 + 20022

tean Nehari coefficients B, (F) are given by

62
(39) Bo(F) = log i —“B"Z
and, forp 4+ v = 1, by
(40) B”y(r) ; ;V XT\\.(Sl, L] Sﬂl) (71y ] rv)
X (™. e e )
where
r)r+s+1 r4+5—1
X = T — g ?’“ 2, 8"
(41) { T+s  T+s (—_1)77-}-4( P )( p )}
X 227_1’__ p—=S8,p—rr+s—q,q9g—p/\2¢g—2m—1 )
< 3 and B,,(F) for

p=1 ¢=p
y list respectively x,, for 0 £ 5 = r

Tables 4 and 5
0=ryr=p=s3
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TaBLE 4. x,,, 0 s =r =<3, 1

lIA

r.

xi0 = 48°(1 — 89~
x20 = 88°1 — g4~%8"

1061 — 5y (L5 + o)

X30 =

xu = 88°(1 — Y71 + 8

xa = 168°(1 — gH7°(38* + 8°%)

xa = 3268°(1L — Y8 + 68° + 8™

xa2 = 3268°(1 — 736" + 86" + ')
646°(1 — 872 (8" + 158° + 158" + ')

>
e
Il

xus = 1286°(1 — 64)“6(% 6+ 176° + 608" + 2 g + 520)

TABLE 5. Hermitean Nehari coefficients B,,(F) for
Class D10 2v 2 u=3ml £ p.

B1o(F) = Xy

Byo(F) = Xyoes + Xooas

Bso(F) = Xpoas + 2Xs0c109 + Xsors®

Bu(F) = Xueu|*

Boy(F) = Xpasd; + Xerar an

By (F) = Xnosdy =+ 2Xsjonaely + X0’

Baa(F) = Xailas|” 4 2Xo1 Re (ar’@s) + Xosloa|*

B3 (F) = xXnasas + Xgl(a3a12 + 20100082)
4 Wgsmiands” + Xpiar @ + Xgoor'dn”

Bys(F) = Xulas|® 4+ 4Xo1 Re (onasds) + 2X31 Re (or’as)
+ 4Xos|osas|” + 4Xgs]an]|” Re (ar@)

+ X:«;3|Olll6
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5. Modification of the formulas for application to other function
classes. While the formulas that have been derived apply to the Nehari
coefficients appropriate to the classes S; and D,, with suitable modification
they also yield the Nehari (or Grunsky) coefficients relevant to many other
function classes as well. In this section we briefly illustrate such modifications
for some of these classes.

Class S1%. This consists of the function f(z) = bz + bez®> + ... € S; with
real coefficents b,. As before the Nehari inequalities (3) apply, with the Nehari
coefficients a,,(f) and b,,(f) defined by (4) and (5). The formulas of Hummel
[8) and Theorem 1 for the symmetric coefficients is unchanged, but simplifica-
tions are now possible for the b,,(f) formulas. Letting p = » + m, m = 0, and
taking the case p = 1, then the first equality of (18) is now

y—1
1 . v — | v — |/
e )00
(42) +<f) ;)V_ly;mﬂzl S, v v ey Stim Yiy o« oy Ty
X @177 bt ) - (00T b,

where we recall s = s; + 5o+ ... 4 Spym, ¥ =714 7.+ ...+ 7, Setting
s;=0forl+m+1=2j<p—landr,=0forl+1=k=pu-—1, then
the integers vy, . .., 0, @y, ..., W, can be defined by

1 =20 —0) — (1+s2+...)—(ri+re+...)

vy = S1 + 1

(43) v, = suy F 1y
wy=v— 1 — (ri+ra+...)

We = ¥

Wy = Fu—1.

Now the multinomial coefficients which appear in (42) will be zero unless

st +se+ ... 2v—landri+re+ ... = v — [ Thus for the terms in (42)
which give rise to a non-zero contribution we have (vy, ..., 2,) € V,., and
(wy, ..., w,) € W,_, where we define
(44) Vi={{vr,...,v):2; 20,00+ 200+ ...+ uv, = b,

o1+ + ...+ o, = 2k}
45) Wy = {(wy, ..., w,):0=w, v;,w + 2w + ...+ uw, = »,

wy + ws + ...+ w, = k.

Because the transformation in (43) is invertible, the following theorem follows
by a short computation from equation {42).
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THEOREM 5. Let f = bz + bez2 + ... € Si%. Then

CONMNUED D vl L | IS LUp

Vi Wi
where Vi, and W, are given by (44) and (45).

Class E (Bieberbach-Eilenberg). An analytic function f(z) = bz + bs2® +

.isin Class E if f(2)f(¢) 5 1 for all pairs z, { € U. Hummel and Schiffer [9]
have shown that the univalent Bieberbach-Eilenberg functions are character-
ized by the Grunsky-type inequalities

@) Re 3 puia = 3

=1,2,3,
#,v=0
where )y is real and Ay, Ao, . .. are arbitrary. The Grunsky coefficients v,,(f)
are defined by
fz) = f&)
48) 1 ()2
48 lox T gy = 22 S

Comparing (48) with (4) and (5) the following result is immediate.
THEOREM 6. For f = biz -+ be2® 4+ ... € Elet v,.,(f) be defined by (48). Then
Yoo(f) = log by;
molf) = X (=L I)M (gh 4 qu)b;%g cben®™, wZ

h—1 __1\et+! — —
(49) ()= 2 2 Z"—(——l)—_(a,.. PR S,qh—s;z)

o =0 v h—k+q—s y She g1 — S1y ..

X b . br®

2F S0 > RN [ LA
+,;k;k ;k Wiy ovny We/ \UL — Wy, o o0, Uy — Wy

X b, b, wzvz 1
here h = p + v, O, Vi, Wi are given respectively by (12), (44), (45), and
L =Gy, ) 0 s, S qp 504 250+ ...+ ks, = R,
S =351+ 2+ ...+ S
g=qa+ ¢+ ...+ aq.

Class T'. An analytic function f = b1z + bs2® 4. . .isinclass ' if f2)f() =
—1 for all pairs z, ¢ € U. Sladkowska [19] has recently shown that the in-
equality (3) holds when a,, = a,,(f) as given by (4) and b,, = b,,(f) where

(50) —log [1 + @I = > bu(NFE.

u,v=
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Comparison of (5) and (50) shows that the derivation of formula (19) need
only be modified by the insertion of a factor (—1)*=% That is (in the case

p

sy e ) = ;Z: (;éf_)zy:‘l 2 2 (sl, .V._l )<rl,y..—l )

=1,

v L i4m cy Sitm 7

X (@™ .. @y ) (@)

where as usual a¢; = b7,

Class D. (Guelfer [7]). An analytic function F(z) = 1 4+ 2012 + 20922 + . ..

is a Guelfer function if F(z) + F(¢) # 0 for all pairs z, { € U. De Temple {2]
has shown that the univalent Guelfer functions satisfy the Grunsky-type
inequalities (47), where v,,(f) is replaced by A4,,(F) as defined by (6). Hence
formulas for 4,,(F) are obtained directly from Theorem 3 upon setting 8 = 1.
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