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Abstract

A lattice formation is a class of groups whose elements are the direct product of Hall subgroups corre-
sponding to pairwise disjoint sets of primes. In this paper Fitting classes with stronger closure properties
involving % -subnormal subgroups, for a lattice formation .# of full characteristic, are studied. For a
subgroup-closed saturated formation ¥, a characterisation of the &-projectors of finite soluble groups
is also obtained. It is inspired by the characterisation of the Carter subgroups as the 4 -projectors, A
being the class of nilpotent groups.

2000 Mathematics subject classification: primary 20D10.

1. Introduction

All groups considered are finite and soluble.

In this paper # -Fitting classes, for a lattice formation .#, are defined in a natural
way by closure properties involving # -subnormal subgroups. A lattice formation is a
class of groups whose elements are the direct product of Hall subgroups corresponding
to fixed pairwise disjoint sets of primes. When & = .4/, the class of nilpotent groups,
we recover the classical Fitting classes.

This study is motivated by the following concepts and facts:

In [3] an extension of normality for subgroups, called # -Dnormality, for a saturated
formation .#, was introduced (see Definition 2.2 (b) below). It is associated naturally
with & -subnormality in an obvious way. If & is a lattice formation, the set of all
& -subnormal subgroups is a lattice in every group. This lattice contains the set of all
&% -Dnormal subgroups as a sublattice.
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In fact, the lattice properties of % -subnormal subgroups, and also the lattice prop-
erties of #-Dnormal subgroups, characterize the lattice formations among all the
subgroup-closed saturated formations #. (See Theorem 2.7.)

Then, given a lattice formation # containing .4/, we define & -Fitting classes in
a natural way by closure operations involving & -subnormal subgroups. We also see
that #-Dnormality can substitute for #-subnormality in this definition, exactly as
normality substitutes for subnormality in Fitting classes.

Theorem 2.8 states that every lattice formation & containing .4 is an # -Fitting
class. (In fact, this property provides a characterisation for lattice formations; see
[7].) We construct a large family of Fitting formations ¢ which are #-Fitting classes,
for some related lattice formations &, in particular, whenever & C 4. This family
contains, in particular, lattice formations and the class of p-nilpotent groups, for every
prime p. Other examples of #-Fitting classes of a different nature are also given.

We complete the paper by providing a characterisation of the J#-projectors, for
a subgroup-closed saturated formation ¢, which involves the concepts of J#-
subnormality and J#-Dnormality. This result generalises the characterisation of
the A4 -projectors as the Carter subgroups in every group. Other generalisations of
this result for J#-projectors were proposed by Carter and Hawkes (see Theorem 2.14)
and by Graddon in [14, Theorem 2.15].

Our characterisation of 5#’-projectors has interest in its own right but also finds
application in the study of the injectors associated to Z-Fitting classes. In this
manner, notice that an . -Fitting class is also a Fitting class, as the lattice formation
& contains /. In a forthcoming paper [2], the desired behaviour of the associated
injectors, with respect to % -subnormal (and #-Dnormal) subgroups, is obtained. In
fact, this property characterizes #-Fitting classes. This is the natural extension of
the known characterisation of the Fitting classes as the injective classes of groups. A
previous result is Theorem 2.8 (3).

2. Notation and preliminaries

We use standard notation and terminology taken mainly from [12]. The reader is
also referred to this book for the results on saturated formations, projectors and Fitting
classes.

In particular, if 2" is a class of groups, the characteristic of 2" is char(Z") = {p €
P: Z, € £}, where P denotes the set of all prime numbers and Z, the cyclic group
of order p.

If 7 is a set of primes, . and ., denote the class of all soluble groups and the
class of all soluble 7-groups, respectively. ' = P \ m is the complementary set of
7 in P. If H is a subgroup of a group G, o (]G : H|) denotes the set of all prime
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numbers dividing |G : H|. .4 denotes the class of all nilpotent groups. For a group
G and a prime g € P, V, denotes a G-module over [, the finite field of g elements,
and the group [ V,]G is always the semidirect product with respect to the action of G
on V,.

It is well known that a formation ¢ is saturated if and only if

Y=LF(@g) =N mypr.ﬁ,g(p)) , 1 = char(¥),

en

that is, if & is a local formation defined by a formation function g. In this case, &
has a uniquely determined full and integrated formation function defining ¢, which is
called the canonical local definition of 4 and will be identified by G. We write g to
denote the smallest local definition of ¢4. (See [12, IV, Definitions 3.9].) B

A lattice formation & of characteristic 7 is a saturated formation locally defined
by a formation function f given by: f (p) = S, if p € m; € 7, where {n;}ic; is a
partition of 7, and f (g) = @, the empty formation, if g & 7.

In this case, for a prime p € m, the set of primes m; such that p € n;, will be also
identified by m(p).

LEMMA 2.1 ([6, Remark 3.6], [5, Lemma 3.2]). Let & be a lattice formation and
p € w = char(F). Then:

(@) The canonical local definition F and the smallest local definition f of &F are
given by setting:
() flmxp)l =1, then F(p) = S, and f (p) = (1).
() Iflm(p)l = 2, then F(p) = f (p) = ). In particular, for a group G,
GF® = GLP = 0@ (G). -

(b) A group G belongs to & if and only if G is a soluble m-group with a normal
Hall t;-subgroup, for every i € 1.

Henceforth & will denote a lattice formation and the above notation will be as-
sumed. ¢ will always denote a saturated formation with char(¥) = 7.
The key concepts and results needed in the paper are the following:

DEFINITION 2.2. (a) [12, III, Definition 4.13] A maximal subgroup M of a group
G is Y-normal in G, if G/ Coreg(M) € ¥; otherwise it is called &- abnormal.
(b) [3, Definition 3.1] A subgroup H of a group G is ¥-Dnormal in G if 0 (|G :
H|) € 7 and [HE, H!"’] < H, for every p € m, where H; = (G, € Syl,(G) : G,
reduces into H, that is, G, N H € Syl,(H)). We write H %-DnG.

REMARK 2.3. (1) If H is a maximal subgroup of G, then H ¢4-Dn G if and only
if H is -normal in G.
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(2) A subgroup H of a group G is ./ -Dnormal in the group G if and only if H is
normal in G.

(3) [3, Theorem 4.8] For a lattice formation %, a subgroup H of a group G is
& -Dnormal in G if and only if H satisfies:

[07(G), 0O"P(H)] < O"P(H), if in(p)| =2 or
[0°(G),H] < H, if n7(p)={p},

foreveryp e o(|G: H|) Cm.

DEFINITION 2.4 ([12, IV, Definition 5.12]). A subgroup H of a group G is said to
be ¥-subnormal in G if either H = G or there exists a chain H = H, < H,_| <

- < Hy = G such that H;,, is a ¥-normal maximal subgroup of H;, for every
i=0,...,n—1. We write H¥-snG.

REMARK 2.5. (1) [3,Proposition 3.5] A subgroup H of a group G is 4-subnormal

in G if and only if there existsachain H = T, < Tj_; < --- < Ty = G such that T;};
is a @-Dnormal subgroup of T, forevery i = 0, ..., [ — 1. In particular, a ¢-Dnormal
subgroup of a group is ¢-subnormal in the group.

(2) A subgroup H of a group G is .4 -subnormal in the group G if and only if H is
subnormal in G.

(3) If & C ¥, the normal and the subnormal subgroups of a group are ¢-Dnormal
and ¥-subnormal, respectively in the group.

LEMMA 2.6 ([13, Lemma 1.1]). Let & be a subgroup-closed saturated formation.
If H is 4-subnormal in G and H < U < G, then H is 4-subnormal in U.

THEOREM 2.7 ([5, Theorem 3.5], [3, Corollary 4.10)). Let ¥ be a subgroup-closed
saturated formation. The following statements are equivalent:

(1) ¥ is a lattice formation.
(i1) The set of all 4-subnormal subgroups is a lattice in every group.
(iii) The set of all 4-Dnormal subgroups is a lattice in every group.

A previous result to our development of % -Fitting classes is the following.

THEOREM 2.8 ({5, Theorem 4.1 and Theorem 4.5]). Let F be alattice formation.

(1) IfH and K are F -subnormal % -subgroups of a group G, then (H, K) € Z.
) If ¥/ C F, then the & -radical G g of G has the form

Gg=(XeF: X is F-subnormalin G).
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3) If ¥ C Z, Visan F-injector of G and H is an F -subnormal subgroup of G,
then V O\ H is an % -injector of H. (For the description of the Z -injectors see [15,
Theorem 2.1.1].)

In fact, these properties characterize lattice formations (see [7, Theorem 1]). The
following result will be needed in the sequel.

LEMMA 2.9 ([3, Lemma 4.11). Let .F be a lattice formation and let H and K be
& -subnormal subgroups of a group G = (H, K). Then

GFP = (HF® KF®)  forevery p € char(F).
We introduce next some concepts and results needed in Section 4.

DEFINITION 2.10 ({14, Definition], [16, Definition 5.8]). A subgroup H of a group
G is said to be ¥-abnormal in G if every link in every maximal chain joining H to G is
& -abnormal; thatis, H is a¥-abnormal subgroup of G if, whenever H <M < L < G
and M is a maximal subgroup of L, then M is a ¥-abnormal subgroup of L. We write
H %-abn G.

DEFINITION 2.11 ([12, III, Definition 3.2]). Let Z be a class of groups. A sub-
group U of a group G is called an 2 -projector of G if UK/K is Z -maximal in
G/K,forall K 4 G.

For a saturated formation ¢, it is well known that ¥-projectors and ¥-covering
subgroups coincides. In particular, if U is a 4-projector of G, then U is a 4-projector
of L, for every subgroup L of G containing U.

LEMMA 2.12 ([12, IV, Theorem 5.18]). Let G be a group whose ¥-residual G¥ is
abelian. Then G? is complemented in G and any two complements in G of G¥ are
conjugate. The complements are the 4-projectors of G.

As a consequence, the following result can be easily deduced.

COROLLARY 2.13. If H is a ¥-projector of a group G and H < U < G, then
HnUY < (U%Y.

THEOREM 2.14 ([11, Lemma 5.1}, [16, Satz 5.22]). Let H be a subgroup of a

group G. Then H is a 9-projector of G if and only if H € & and H is &¥-abnormal
in G.
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3. & -Fitting classes

DEFINITION 3.1. Let & be a lattice formation containing 4. A class Z (# @) of
groups is called an % -Fitting class if the following conditions are satisfied:

i) Ge Zand HF-snG,then H e 2.
i) fH, K F-sn G=(H,K)with Hand K in Z',then G € Z .

REMARK 3.2. (1) £ is aFitting class if and only if £ is an .4 -Fitting class.
(2) Let & C &, C %, where &, and £, are lattice formations. If 2" is an %,-
Fitting class, then £ is an & -Fitting class. (Notice that the #,-subnormal subgroups
of a group are #,-subnormal in the group.) In particular, £  is a Fitting class.
(3) Foraclass Z of groups and a lattice formation # containing .4/, we define:

$,9(Z)=(G: GF-snH forsome H € Z);
Nosg(Z)=(G:3K; F-snG(i=1,...,r)withK, e
and G = (K,, ..., K},)).

A routine computation shows that S, & and Ny ¢ are closure operations.

Obviously the #-Fitting classes are the classes of groups which are both s, #- and
No,#-closed. Thus, 2 is an #-Fitting class exactly if (S, ¢, Ny 2} Z = Z . (For
details about closure operations see [12, II].)

Henceforth we will moreover assume that the lattice formation # contains 4.

PROPOSITION 3.3. A class Z (# 0) is an F -Fitting class if and only if the following
two conditions are satisfisfied:

W) IfGe L and H #-DnG,thenH € Z.
(i) IfH K #-DnG=(H,K)withH and K in &', then G € .

PROOF. If 2 is an # -Fitting class, it is clear that 2 satisfies (i’) and (ii’) because
# -Dnormal subgroups are % -subnormal subgroups by Remark 2.5.

Assume now that 2 satisfies (") and (ii').

Let G € & and H &#-sn G. By Remark 2.5 there exists a chain of subgroups
H=H,<H, <.--- < Hy=Gwith H,, #-DnH,, foreveryi =0,...,n— 1.
Then (i') implies that H € 2.

Assume that condition (ii) in the definition of #-Fitting class is not true and
take a group G of minimal order among the groups which do not belong to 2" but
are generated by two £ -subnormal subgroups in Z°. Among the pairs (A, B) of
subgroups of G such that A, B#-snG = (A, B) and A, B € £, choose a pair
(H, K) with |H| 4+ | K| maximum.
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If H and K are normal’in G, then G € Z by the hypothesis. So we can assume
that H is not normal in G.

Note that G = (H, H®), for every g € G\ NG(H). Otherwise there exists
g € G\ Ng(H) such that (H, H®) < G. By the choice of G, it follows that
(H, H®) € Z . But this contradicts the choice of the pair (H, K) since (H, H?) is
also #-subnormal in G.

By the hypothesis we can assume that H < M, for some % -normal maximal
subgroup M of G. Clearly H I M and so H < M 4. Again the choice of the pair
(H, K) implies that H = M 4.

We claimthat H = M 4 is & -Dnormalin G, which provides the final contradiction,
since G = (H, H8) with g € G\ Ng(H).

If p||G : M|, then GF® < M because M is £ -normal in G. Moreover G*?) =
(HF® (H&)F®) by Lemma 2.9, and so G'® € Z by the choice of G, that is,
GF® < Mg Since GF® = 0™ (G) = (G, : G, € Syl,(G), q € n(p)), itis
clear that GF® = (M4 )f®) = HF®),

In particular, 6 (|G : H|) € n(p) and clearly H is #-Dnormal in G. O

PROPOSITION 3.4. Let & be an & -Fitting class and let G be a group. Then:
(@) Z'isaFittingclassand Gog = (H<G:HF-snG, He Z)=(H <G
HF-DnG, HeXZ).
(b) IfH is an & -subnormal subgroup of G, then Hes = H N G 4.

PROOF. (a) Since £ is an & -Fitting class, the result is clear taking into account
Remark 2.5 (3) and Remark 2.5 (1).

(b) Obviously Hy < HN G4 . But HN G4 is & -subnormal in G, then HN G o
is also #-subnormal in both H and G by Lemma 2.6. The result is now clear
because £ is an & -Fitting class and statement (a). O

REMARK 3.5. In [6] the following stronger definition of ¢-normality, for a saturated
formation ¢, was introduced.

DEFINITION ([6, Definition 3.1']). A subgroup H of a group G is said to be ¥4-
normal in G ifeither H = Gor H/ Coreg(H) € g(p), forevery primep e 7 (|G : H|).

The subgroup-closed saturated formations which provide lattice properties for these
¢ -normal subgroups differs in general of the lattice formations (see [6]).
But some remarks should be done:

(1) The ¥-normal subgroups are ¢-Dnormal subgroups. The converse is not true
(see [3, Remark 3.2 (6)]).

(2) Remark 2.5 (1) is also true if ¥-Dnormal is changed by ¢-normal. In particular,
for maxirnal subgroups, ¢-normality and ¢-Dnormality coincides.
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3) If & C ¥, normal subgroups are also ¥-normal.
(4) Propositions 3.3 and 3.4 are also true if we change ¢-Dnormality by ¢-normality.

If 4 is a Fitting class with characteristic 7, then A4; € Z . The corresponding
result for & -Fitting class is the following:

PROPOSITION 3.6. If 2" is an ZF -Fitting class with char(Z )=n, then F NS, CZ .

PROOF. Suppose that the result is not true and let G be a group of minimal order in
(ZF NF)\ Z. Since G belongs to #, every maximal subgroup of G is & -normal.
By the choice of G, there is a unique maximal subgroup of G. This implies that G
is a cyclic p-group, for some p € . Then G € £, which contradicts the choice
of G. 0

REMARK 3.7. (1) In particular, if 2 is an % -Fitting class and A4 € 2, then
FCZ.

(2) There exists Fitting classes which are not & -Fitting classes for any lattice
formation % containing properly .#. The class of all metanilpotent groups .42 is
an example. To see this notice that the minimal local definition of 42, as saturated
formation, is the formation function g defined by

2(P) =Q(G/ 0y (G): Ge N = A,

for every prime p, (see [12, IV, Proposition 3.10]). If # is a lattice formation such
that & C A2, then f (p) < g(p) for every prime p, by [12, IV, Proposition 3.11].
But this implies that & = 4.

A different example with a Fitting class £, containing a lattice formation &, such
that A& C £, is given below after (3).

(3) Let A& C F C ¥ be lattice formations. Note that in this case % -subnormal
subgroups are ¥-subnormal subgroups. Then Theorem 2.8 tells in particular that 4
is an & -Fitting class.

We wonder which type of formations, related to the class of nilpotent groups and
to lattice formations, satisfy the property stated in Remark 3.7 (3). In [4, 9, 10] the
following formations were taken into consideration:

Let¥ = L F(g) be the saturated formation locally defined by the formation function
ggivenby g(p) = F5 (), forsomeo(p) C Psuchthatp € o(p),ifp € m = char(¥),
and g(g) =9,ifqg g m.

If # C & C ¥, itis not true in general that 4 is an £ -Fitting class. Take for
instance F = LF(f) locally defined by F(2) = F(3) = S23 and F(q) = S,
for every prime g # 2,3, and 4 = L F(g) locally defined by g(2) = #23), g(3) =
Fss) 8(5) = s and g(q) = &, for every prime g 3% 2,3, 5. (Notice that A"
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and Z are the unique lattice formations contained in ¢.) Then ¥ is not an .Z -Fitting
class. To see this consider the primitive group [ V;]1Z;. By [12, B, Corollary 10.7] this
group has an irreducible and faithful module Vs over Fs. Let G = [Vsl([ V,]1Z3). Then
H = VsZ; is #-subnormalin Gand H € 4,but G = (H, H*),for 1 # x € V;, and
GéY.

With some restrictions on the sets of primes o (p) which define ¢, it is possible to
obtain a stronger form of above-mentioned property. The formations which appear
were also studied in [8] with full characteristic.

LEMMA 3.8. Let ¥ be a saturated formation with char(¥) = n C P, locally defined
by the formation function g given by g(p) = (), for some o(p) € P such that
peo(p)ifp en,and g(q) =8, ifq € m. (Notice that we can assume without loss
of generality that o (p) C 7.)

Assume also that the following property holds: if q € o(p), then 0(q) € o(p),
for every pair of prime numbers p,q € m. Then G € 4 ifand only if G € %, and G
has a normal Hall o (p)'-subgroup for every prime number p.

PRrROOF. Take ¥, the saturated formation locally defined by the formation function
g1, given by g1(p) = g(p) = F4), if p € m,and g1(q) = Sy, if g € 7.

It is clear that G € ¥ if and only if G € 4 N .%,. By [8, Remark] we know that
G € %, if and only if G has a normal Hall o (p)’-subgroup, for every prime number
p € m, and a normal Hall wr-subgroup. Now the result is easily deduced. O

THEOREM 3.9. Let & = L F(g) be a saturated formation with char(4) = 7 as in
Lemma 3.8. Let F be a lattice formation containing ¥ . The following statements
are equivalent: :

(1) ¥ isan ZF-Fitting class.
(i) F(p) C Sy foreveryp € m.
(iii) F(p) € G(p), foreveryp € .
If ¥ C ¥, they are also equivalentto F C 4.

PROOF. It is not difficult to prove that (ii) is equivalent to (iii) taking into account
that G(p) = ) NY, forevery p € m, (see [12, IV, Proposition 3.8]).

Assume that (i) is true and take p € . If f (p) = (1), then F(p) = &, C F (-
Otherwise, F(p) = f (p) = F4)- Let p # r € n(p) and take G = [V,]Z,, with
V, an irreducible and faithful Z,-module over F,. Z, is an #-subnormal &-subgroup
of G. By hypothesis, G € 4. In particular, r € x.

Now a similar primitive group [V,]Z, belongs also to ¢, which implies that r €

o(p).
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We prove next that (ii) implies (i). Notice first that & is subgroup-closed. We claim
that Ny #(¥) = ¢. Assume that this is not true and take a group G of minimal order
among the groups which do not belong to ¢ but are generated by two £ -subnormal
subgroups in 4. Among the pairs (A, B) of subgroups of G such that A, B #-sn
G =(A,B)and A, B € 4, choose a pair (H, K) with |H| + | K| maximum.

Since ¢ is a Fitting class, we can assume without loss of generality that H is not
normal in G. By the choice of G and the choice of the pair (H, K), we can deduce
that G = (H, H?®), forevery g € G\ Ng(H). This implies that M = Ng(H) is the
unique maximal subgroup of G containing H. Since H is #-subnormal in G, then
M is & -normal in G. Again the choice of H implies that H = Mg. Arguing as in
the proof of Proposition 3.3, we deduce that G*® < H,if p € 0(|G : M|).

Since G does not belong to ¥, the hypothesis implies that 1 # GF®. Then H
contains a minimal normal subgroup N of G.

By the choice of G, it is clear that G/N € ¥. Since ¥ is a saturated formation, G
is a primitive group and N is the unique minimal normal subgroup of G.

If N is a g-group, for some prime g, then H is a o(g)-group. Otherwise, since
H € ¢4, we know by Lemma 3.8 that H has a normal Hall o (g)’-subgroup, which
centralizes N, a contradiction. Consequently, H/G"® € &, N ).

Assume that there exists r € o(q) N w(p) € 7. By the hypothesis 7(p) =
nw(r) € o(r) € o(q). This implies that G is a o (g)-group. Since N is a g-group and
G/N € ¥, it follows that G € ¥ a contradiction.

If 0 (q) N7 (p) is empty, then H = GF®, but this is not possible because H is not
normal in G and we are done. a

REMARK 3.10. Lattice formations and also the class of p-nilpotent groups, for every
prime p, are particular examples of the formations % considered in Theorem 3.9. In
particular, this theorem and Proposition 3.4 (a) improve Theorem 2.8, parts (1) and (2).

We show next some more examples of & -Fitting classes of a different nature.

EXAMPLE 1. Consider the normal Fitting class

2=2(3))=(Ge S : []._,det(gon M,) = 1, forall g € G, where the
product is taken over the 3-chief factors My,..., M, of a
given chief series of G)

(see [12, IX, Example 2.14 (b)]). Let # be a lattice formation containing .A’.
Then:

(1) & < 2ifandonly if 7(2) # n(3).

PROOF. If # C 2, it is obvious that w(2) # 7m(3). The converse is also clear
because of the structure of & -groups; see Lemma 2.1. 0

https://doi.org/10.1017/51446788700008727 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008727

(i1 Fitting classes and lattice formations I 103

(2) If # C P, then 2 is an £ -Fitting class.

PROOF. 8, #(2) = 2. Let G be a group in 2 and H an & -normal maximal
subgroup of G. It is enough to prove that H € 9. Since H is #-normal, Hf? 4 G,
if p € 0(|G : H|), in particular H*® € 2. If H would not belong to 2, then
|H : Hy| = 2. Since HF?’ < Hy, we would have 2 € n(p), andso 3 ¢ m(p) by (1).
Consequently H® covers every 3-chief factor of G. Consider now a chief series of
G through H®), take the intersection with H and refine it to a chief series of /. An
easy computation shows that H € 2.

No £(2) = 2. Assume that the result is not true and take a group G ¢ 2 and a
pair of subgroups (H, K) as in the proof of Theorem 3.9. Arguing as in that proof
we deduce from this choice the following facts: we can assume, without loss of
generality, that H is not normal in G, there is a unique maximal subgroup M of G
containing H = My and GF® < H,if p € o(|G : M|). Moreover, GF® < G,.
Then 2 € m(p), because |G : Ggy| = 2. Consequently 3 ¢ m(p). This implies
that GF® covers every 3-chief factor of G. But G = H G4 because otherwise
Mg = H < G = M which would imply H < G, a contradiction. By a computation
as above if follows that G € 2, which provides the final contradiction. O

EXAMPLE 1I. Consider the dominant Fitting class
D" =(Ge S :G/Cs(0:(G)) € )

for a set of primes 7 (see [12, IX, Example 2.5 (b) and Theorem 4.16}). Let & be a
lattice formation with 4 C &#. Then:

1) <P ifandonlyifr = Upeﬂn(p).

PROOF. Assume that & C 27, Itis clear thatm C Up =TT (P). Assume that there
isr € w(p) \ m for some p € m. Then the primitive group [ V,]Z, belongs to & but
does not belong to 27, a contradiction. Then = = UP T (P). The converse is clear
taking into account the structure of % -groups; see Lemma 2.1. O

(2) f &F < P97, then 27 is an F-Fitting class.

PROOF. 8, $(2") = 9". Let H be an & -normal maximal subgroup of a group
G in 2. It is enough to prove that H € 2" in order to obtain the result. If
{p} =0(G: H|),then Hf® <JGbecause H is F-normal. Inparticular, H*? € 9",
Distinguish the following cases:

(@) m(p) € . In this case O™ (G) < HF®' N Cs(0,(G)), because G € 9",
Notice that 0,(G) N H = 0O,(H), because every Hall w-subgroup of G reduces
in H. Then O"(H) < 0"(G) < Cy(0,(@)) < Cy(0O,(H)), thatis, H € 9".
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(b) 7(p) € . In this case O™ (G) < HF® < H, which implies, 07 (G) =
O™ (H) and so 0,(G) = O,(H). Since G € 27, we have O"(H) < 0"(G) <
Cs(0,(G)) = C;(0,(H)). This means that H € 2”.

No.# 2™ = 2™. Assume that the result is not true and take a group G ¢ 2"and a
pair of subgroups (H, K) as in the proof of Proposition 3.9. With the usual arguments
of this proof, we can assume, without loss of generality, that H is not normal in G
and G = (H, H?#), forevery g € G\ Ng(H). In particular, there is a unique maximal
subgroup M of G containing H = Mg~ and GF®) < G-, if p € 0(|G : M)).

If H < O,(G)H < G, then O,(G)H is an #-subnormal 2" -subgroup of G. But
this contradicts the choice of the pair (H, K).

Assume that G = O,(G)H. In this case, p € & and so n(p) € n. Conse-
quently, if G, denotes a Hall r-subgroup of G, we have G = G*® G, < GG, =
C5(0:(G)) Gy, € Injy. (G) by [12, IX, Theorem 4.16], that is G € 9™, a contradic-
tion.

Consider now the case 0,(G) < H. Since H € 27, by [12, IX, Theorem 4.16]
it follows that H is contained in a 2" -injector I of G. But I = Cg(0,(G))G,,
for some Hall m-subgroup G, of G. By the choice of G, < G. Thenp ¢ &
and so 7 C 7w(p)’. Since M is Z-normal in G, it is clear that GF® < M. In this
case, this implies that M contains every Hall 7r-subgroup of G. Moreover I < M.
Consequently, if g € G\ M, we have G = (H, H8) < (I, I*) < M, which provides
the final contradiction. O

The following results are proved with the similar arguments to those used for the
corresponding classical results, with obvious changes (see [12, IX, Theorem 1.12 (a)
and Lemma 1.13]).

PROPOSITION 3.11. (a) If ## and Z are two F -Fitting classes, then 3¢ o F is
an & -Fitting class.
(b) (Quasi-Ry-lemma) Let N, and N, be normal subgroups of a group G such that
Ny NN, = 1and G/N N, is F-group, and let Z be an & -Fitting class containing
G/N,. Then G € & ifandonly if G/N, € Z.

4. A characterisation of 4-projectors

Let & be a saturated formation, G a group and H a subgroup of G. It is obvious
that the following statements are equivalent:

(i) Whenever H4-DnT < G,then H =T.
(ii) Whenever H 4-sn T < G,then H = T.
(tii) If H is a ¥-normal maximal subgroup of T < G, then H = T.
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In this case, the subgroup H is said to be self-&-normalizing in G.

We provide in Theorem 4.2 a characterisation of the &-projectors, for a subgroup-
closed saturated formation &. It is an extension of the characterisation of the .4-
projectors as the Carter subgroups. Proposition 4.1 tells that some additional condition
should be satisfied by a self-&-normalizing ¢-subgroup to be a &-projector. The
proposed required condition is motivated by Corollary 2.13. Some related results
were obtained by Carter and Hawkes in [11] (see Theorem 2.14) and by Graddon in
[14, Theorem 2.15].

PROPOSITION 4.1. Let F be a lattice formation containing A. The following
statements are equivalent:

(i) Either & = N or F = ¥.

(ii) In every group G, the F -projectors of G are exactly the self-¥ -normalizing
F-subgroups of G.

PROOF. It is clear that (i) implies (ii).

Assume that statement (ii) holds. If &# # .4, there exists a prime p such that
the corresponding set of primes 7 (p) defining & satisfies |7 (p)| > 2. Take p #
g € n(p). If & # &, there exists a prime r € 7 (p)’. Consider the primitive group
X =[V,]1Z,. By [12, B, Corollary 11.7], X possesses an irreducible and faithful
module V, over F, such that [V, Z,] < V.. Then V, = [V,, Z,] x Cy,(Z,), with
1 #1V, Z,] < V,, by [12, A, Proposition 12.5]. Take G = [V,]X the corresponding
semidirect product. Consider the #-subgroup H = Cy(Z,)Z,. We claim that
H is self-#-normalizing in G. Notice that the unique maximal subgroup of G
containing H is V,Z,. If H were &#-Dnormal in some subgroup T containing H
properly, then r € o (|T : H|). Moreover the Sylow r-subgroup 7, of T would verify
[T.,Z,] < HN[V,, Z,] = 1. This would imply that T, < Cy (Z,) < H. But this
contradicts r € o(|T : H|). Therefore, H is a self-# -normalizing .Z -subgroup of
G, but H is not an F-projector of G. This contradicts statement (ii) and concludes
the proof. O

THEOREM 4.2. Let 4 be a subgroup-closed saturated formation. For a subgroup
H of a group G, the following statements are equivalent:

(@) H is a¥-projector of G;
(b) H is a self-4-normalizing 4-subgroup of G and H satisfies the following prop-
erty:

(%) IfH <K <G, then HN KY < (KYY.

PROOF. If H is a ¥-projector of G, then H is a self-&-normalizing ¥-subgroup
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of G by Theorem 2.14. Moreover, H is also a &-projector in every subgroup K of G
containing H. Then statement (2) is clear by Corollary 2.13.

Conversely, suppose that statement (2) holds. We observe first that H is a ¢-
maximal subgroup of G. We use induction on |G|. Then we may assume that H is a
¥ -projector of every proper subgroup of G containing H.

If H were a maximal subgroup of G, then H would be a ¥-projector of G by
Theorem 2.14 and we would be done.

Let M be a maximal subgroup of G containing H.

Suppose that M is ¥-abnormal in G. By [12, V, Lemma 3.4] there exists a ¢-
normalizer D of G, and a ¥-normalizer D, of M such that D < D,. Since H is a
¥ -projector of M, we may assume by [12, V, Theorem 4.1] and by the conjugacy of
the ¢-normalizers, that D < D, < H. We claim that H is ¥-abnormal in G. For
any maximal subgroup L of G containing H, we have that H is ¢-abnormal in L
by Theorem 2.14 because H is a ¥-projector of L. But D < H < L, then [12, V.
Lemma 3.4] implies that L is ¥-abnormal in G. This means that H is &-abnormal
in G. Then H is a 4-projector of G by Theorem 2.14.

Consequently, we can suppose that every maximal subgroup of G containing H is
%-normal in G.

We split the rest of the proof into the following steps:
Step 1. M = HGY. In particular, M is the unique maximal subgroup of G contain-
ing H.

Since GY < M, the result is clear because H isa 4 -projector of M.
Step 2. We may suppose that Coreg(H) = 1.

Assume that K = Coreg(H) # 1. We have that H/K is a self-&-normalizing
4 -subgroup of G/K. Moreover, if H/K < T/K < G/K, then

(H/KYN(T/K)Y! =(HNT!K)/K =(HNTY)K/K
<(T?YK/K = (T/K)?).

By inductive hypothesis, H/K is a ¢¥-projector of G/K. Thus H is a ¢-projector
of G. Then we may suppose that Coreg(H) = 1.
Step 3. N < GY, for every minimal normal subgroup N of G.

Let N be a minimal normal subgroup of G. Obviously HN < G. Therefore, since
H is a¥-projector of M, wehavethat HN = HNNM = HNNHGY = H(NNGY)
by [12, IV, Theorem 5.4]. Thus Step 2 implies that NN GY # 1. Then N = NN GY,
thatis, N < GY. v
Step 4. We may suppose that for each minimal normal subgroup N of G, there exists
a subgroup T of G such that HN is a 4-normal maximal subgroup of T. Otherwise
H is a ¥-projector of G.

Let N be a minimal normal subgroup of G and assume that HN /N is self-¥-
normalizing in G/N. Moreover, HN/N € 4. We claim that H N /N verifies (%) in
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G/N. Consider HN/N < L/N < G/N.

If L < G, then H is a @-projector of L and the result is clear by Lemma 2.12.

If L = G,then (HN/N)N(G/N)! = (HN/N)N(GY/N)=(HNGY)N/N <
(G'YN/N = ((G/N)¥).

By inductive hypothesis, H N /N is a ¥-projector of G/N. But H is ¢-projector
of HN < G. Consequently, it is well known that H is a 4-projector of G. Hence we
may suppose that the statement of Step 4 holds.

Step 5. M = HN, for every minimal normal subgroup N of G. :

Let N be a minimal normal subgroup N of G and take a subgroup T for N as in
Step4. If T < G, then H is a &-projector of T, but this contradicts that HN is
%-normal in T by Theorem 2.14. Then T = G. But this implies that HN = M.
Step 6 G is monolithic.

If Ny and N, are two minimal normal subgroups of G, then M = HN, = HN,.
Therefore, MY < Ny, NN, = 1, thatis M € ¥. This is not possible because H is
¢-maximal in G.

Step 7. The final conclusion.

If (GY) # 1and N is the unique minimal subgroup of G, we would have G¥ =
G!NM =G NHN = (GY N H)N < (GY), which is not possible because
G is soluble. Hence GY " H = 1 and G = N. In particular, G = NR is a
primitive group, with R a maximal subgroup of G such that Coreg(R) = 1. Now,
since H is ¥-maximal in G, we can apply {12, III, Lemma 3.24] to obtain that
H=(HNN)HNR?) forsome g € NH. Since HNN = 1, we have that H < R,
but this is not possible by Step 1 and the proof is concluded. a
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