INEQUALITIES FOR THE PERMANENTAL MINORS OF NON-NEGATIVE MATRICES

R. A. BRUALDI AND M. NEWMAN

1. Introduction. Let A be an $n \times n$ non-negative matrix, that is, a matrix whose entries are non-negative numbers. The permanent of A is the scalar-valued function of A defined by

$$per(A) = \sum a_{1i_1} \dots a_{ni_n}$$

where the summation extends over all permutations i_1, \ldots, i_n of the integers $1, \ldots, n$. The purpose of this paper is to prove several inequalities involving the permanent of A and the permanent of submatrices of A when suitable restrictions are placed on the row sums. One result, for instance, states that when each of the row sums of A does not exceed 1, then the sum of the permanents of all $r \times r$ submatrices of A does not exceed $\binom{n}{r}$. This improves a result of Marcus and Gordon (1). For such matrices it is also shown that the permanent cannot be greater than the maximum permanent of an $r \times r$ submatrix of A.

If A is an $n \times n$ non-negative matrix with row sums r_1, \ldots, r_n and column sums s_1, \ldots, s_n , then A is called row substochastic if $r_i \leq 1, i = 1, \ldots, n$; row stochastic if $r_i = 1, i = 1, \ldots, n$; and doubly stochastic if $r_i = s_i = 1, i = 1$, \dots , n. Doubly stochastic matrices and their permanents have been studied extensively (2; 3; 4) and it is known that their permanents are always positive. Let r and n be positive integers with $1 \le r \le n$. Following Marcus and Minc (4) we denote by $Q_{\tau,n}$ the totality of strictly increasing sequences of r integers chosen from $1, \ldots, n$. Thus the sequence i_1, \ldots, i_r is in $Q_{r,n}$ if and only if $1 \leqslant i_1 < \ldots < i_r \leqslant n$. $Q_{r,n}$, of course, contains $\binom{n}{r}$ sequences. If i_1,\ldots,i_r and j_1,\ldots,j_r are two sequences in $Q_{\tau,n}$, then $A[i_1,\ldots,i_r|j_1,\ldots,j_r]$ denotes the $r \times r$ submatrix of A formed by rows i_1, \ldots, i_r and columns j_1,\ldots,j_r and $A(i_1,\ldots,i_r\,|\,j_1,\ldots,j_r)$ denotes the $(n-r)\times(n-r)$ submatrix of A formed by the rows complementary to i_1, \ldots, i_r and the columns complementary to j_1, \ldots, j_r . The permanent of $A[i_1, \ldots, i_r | j_1, \ldots, j_r]$ is called a permanental minor of order r of A. In case i_1, \ldots, i_r and j_1, \ldots, j_r are identical, we denote the corresponding submatrices more briefly by $A[i_1,\ldots,i_r]$ and $A(i_1,\ldots,i_r)$. In this case the permanent of $A[i_1,\ldots,i_r]$

Received February 18, 1965. This work was done while the first author was a National Research Council—National Bureau of Standards Postdoctoral Research Associate, 1964–1965.

is a principal permanental minor of order r. Suppose the sequences in $Q_{r,n}$ have been ordered lexicographically. Then the rth permanental compound of A, denoted by $P^r(A)$, is the $\binom{n}{r} \times \binom{n}{r}$ matrix whose entries are

per
$$(A[i_1, ..., i_r | j_1, ..., j_r])$$

arranged lexicographically in i_1, \ldots, i_r and j_1, \ldots, j_r . Observe that $P^1(A) = A$ and that $P^n(A)$ is the 1×1 matrix whose single entry is per A.

2. Results. We first observe the following: Let $A = (a_{ij})$ be an $n \times n$ non-negative row substochastic matrix. Then

$$(1) a_{i1} + \ldots + a_{in} \leqslant 1$$

for i = 1, ..., n. Hence for any sequence of integers $k_1, ..., k_r$ in $Q_{r,n}$

$$\prod (a_{i1} + \ldots + a_{in}) \leqslant 1,$$

where the product is taken over all $i = k_1, \ldots, k_r$; or

$$\sum_{\sigma} a_{k_1 \sigma(k_1)} \dots a_{k_r \sigma(k_r)} \leqslant 1,$$

the summation extending over all n^r mappings σ of k_1, \ldots, k_r into $1, \ldots, n$. Put $N = \binom{n}{r}$. Suppose the N sequences in $Q_{r,n}$ have been ordered lexicographically, say $\alpha_1, \ldots, \alpha_N$. For $i = 1, \ldots, N$, let σ_i run over all one-to-one mappings of k_1, \ldots, k_r onto α_i . Then inequality (2) can be written as

(3)
$$\sum_{\sigma_1} a_{k_1 \sigma_1(k_1)} \dots a_{k_r \sigma_1(k_r)} + \dots + \sum_{\sigma_N} a_{k_1 \sigma_N(k_1)} \dots a_{k_r \sigma_N(k_r)} + \sum_{\tau} a_{k_1 \tau(k_1)} \dots a_{k_r \tau(k_r)} \leq 1,$$

where τ runs over all mappings of k_1, \ldots, k_{τ} into $1, \ldots, n$ such that

$$\tau(k_i) = \tau(k_i)$$

for at least one pair i, j with $1 \le i < j \le r$. We can now write inequality (3) as

(4)
$$\sum \operatorname{per} (A[k_1, \ldots, k_r | j_1, \ldots, j_r]) + \sum_{\tau} a_{k_1 \tau(k_1)} \ldots a_{k_r \tau(k_r)} \leq 1,$$

the first summation extending over all sequences j_1, \ldots, j_r in $Q_{\tau,n}$. Since A is also a non-negative matrix, we may conclude from inequality (4) that

(5)
$$\sum \operatorname{per} (A[k_1, \ldots, k_\tau | j_1, \ldots, j_\tau]) \leq 1.$$

In equality (5) k_1, \ldots, k_r is an arbitrary but fixed sequence in $Q_{\tau,n}$ and the summation extends over all sequences j_1, \ldots, j_r in $Q_{\tau,n}$. Equality occurs in (5) if and only if equality occurs in (1) for $i = k_1, \ldots, k_r$ and

$$a_{k_1\tau(k_1)}\ldots a_{k_r\tau(k_r)}=0$$

for each τ . We can now state and prove the following two theorems.

Theorem 1. Let A be an $n \times n$ non-negative row substochastic matrix. Then for $r = 1, \ldots, n$ the rth permanental compound of A, $P^r(A)$, is an $\binom{n}{r} \times \binom{n}{r}$ non-negative row substochastic matrix. $P^1(A)$ is row stochastic if and only if A is row stochastic. For $r = 2, \ldots, n$, $P^r(A)$ is row stochastic if and only if A is a permutation matrix.

Proof. Since A is non-negative, $P^r(A)$ is clearly non-negative. The fact that $P^r(A)$ is row substochastic is immediate from inequality (5). Since $P^1(A) = A$, $P^1(A)$ is row stochastic if and only if A is. Let r be a positive integer with $2 \le r \le n$. By the preceding remarks, a necessary condition for $P^r(A)$ to be row stochastic is that A be row stochastic. Hence assume that A is row stochastic. Then $P^r(A)$ is row stochastic if and only if equality occurs in (5) for each sequence k_1, \ldots, k_r in $Q_{r,n}$, which in turn happens if and only if

$$a_{k_1\tau(k_1)} \dots a_{k_r\tau(k_r)} = 0$$

for all sequences k_1, \ldots, k_τ in $Q_{\tau,n}$ and all mappings τ of k_1, \ldots, k_τ into $1, \ldots, n$ such that $\tau(k_i) = \tau(k_j)$ for at least one pair i, j with $i \neq j$. Holding k_1, \ldots, k_τ fixed, we may allow the $\tau(k_p), p \neq i, j$, to vary independently over $1, \ldots, n$. By repeated summation of (6), using the fact that A is row stochastic, we obtain

$$a_{k_i\tau(k_i)}a_{k_j\tau(k_i)}=0$$

for all $i \neq j$ and for $\tau(k_i) = 1, \ldots, n$. Summarizing, we have shown that

$$a_{ik} a_{jk} = 0, \quad i \neq j, k = 1, 2, \ldots, n.$$

This means that A has at most one non-zero element in each column. Since A is row stochastic, there must be at least n non-zero elements in A, one in each row. Hence by the pigeon-hole principle each column has precisely one non-zero element and A is a permutation matrix. This completes the proof of the theorem.

THEOREM 2. Let A be an $n \times n$ non-negative row substochastic matrix. For $r = 1, \ldots, n$ let $p_r(A)$ be the sum of all the permanental minors of A of order r. Then

$$p_{\tau}(A) \leqslant \binom{n}{r}.$$

For r = 1, equality occurs in (7) if and only if A is row stochastic. For r = 2, ..., n equality occurs in (7) if and only if A is a permutation matrix.

Proof. Inequality (7) follows from Theorem 1 and the observation that $p_r(A)$ is the sum of all the elements of the rth compound of A, $P^r(A)$. For r = 1, $p_1(A)$ is the sum of the elements of A and equals n if and only if A is row stochastic. For $r = 2, \ldots, n$ equality occurs in (7) if and only if $P^r(A)$ is row stochastic, which, by Theorem 1, will happen if and only if A is a permutation matrix. This concludes the proof.

Inequality (7) improves a result of M. Marcus and W. R. Gordon who obtained in (1) by entirely different methods that for A an $n \times n$ non-negative doubly stochastic matrix

$$s_r(A) \leqslant \binom{n}{r}$$

where $s_r(A)$ is the sum of the squares of all permanental minors of order r. Their condition for equality is the same as ours, namely A a permutation matrix.

The next two theorems are concerned with the principal permanental minors of row stochastic matrices.

THEOREM 3. Let $A = (a_{ij})$ be an $n \times n$ non-negative row stochastic matrix. Then for $r = 1, \ldots, n-1$

(8)
$$\sum \operatorname{per} (A[i_1, \dots, i_r]) (1 - \operatorname{per} (A(i_1, \dots, i_r))) \leqslant {n-1 \choose r} (1 - \operatorname{per} (A))$$

where the summation extends over all sequences i_1, \ldots, i_τ in $Q_{\tau,n}$.

Proof. We first make the following observation. Since A is row stochastic,

$$\binom{n-1}{r} = \binom{n-1}{r} \prod_{i=1}^{n} (a_{i1} + \ldots + a_{in})$$

or

(9)
$$\binom{n-1}{r} = \binom{n-1}{r} \operatorname{per} (A) + \binom{n-1}{r} \sum_{\tau} a_{1\tau(1)} \dots a_{n\tau(n)}$$

where τ runs over all mappings of $1, \ldots, n$ into itself such that $\tau(i) = \tau(j)$ for at least one pair i, j with $i \neq j$.

Consider now the expression

(10)
$$\operatorname{per} (A[i_1, \ldots, i_r]) (1 - \operatorname{per} (A(i_1, \ldots, i_r)))$$

for a fixed sequence i_1, \ldots, i_r in $Q_{r,n}$. Set s = n - r and let j_1, \ldots, j_s be the complementary sequence in $Q_{s,n}$. Then (10) may be written as

(11)
$$per (A[i_1, \ldots, i_r]) (1 - per (A[j_1, \ldots, j_s])).$$

Since A is row stochastic, we may replace the number 1 in (11) by

$$\prod (a_{j1} + \ldots + a_{jn})$$

where the product is taken over all $j=j_1,\ldots,j_s$. Hence (11) may be written as

(12)
$$\sum_{\rho} \sum_{\sigma} a_{i_1\rho(i_1)} \dots a_{i_r\rho(i_r)} a_{j_1\sigma(j_1)} \dots a_{j_s\sigma(j_s)}$$

where ρ runs over all permutations of i_1, \ldots, i_τ and σ runs over all mappings of j_1, \ldots, j_s into $1, \ldots, n$ such that σ is not a permutation of j_1, \ldots, j_s . All of the terms in (12) are formally distinct. Every term in (12) occurs as a term in

(13)
$$\sum_{\tau} a_{1\tau(1)} \dots a_{n\tau(n)}$$

where τ runs over all mappings of $1, \ldots, n$ into itself such that $\tau(i) = \tau(j)$ for at least one pair i, j with $i \neq j$. A term $a_{1\tau(1)} \ldots a_{n\tau(n)}$ in the sum (13) may occur as a term in the double sum (12) for more than one sequence i_1, \ldots, i_τ in $Q_{\tau,n}$. We may write such a term as

$$a_{1l_1} \dots a_{nl_n},$$

where $l_p = l_q$ for some pair p, q with $p \neq q$. There is then an integer k such that $l_i \neq k$ for $i = 1, \ldots, n$. Define D to be that subset of $Q_{r,n}$ consisting of those sequences i_1, \ldots, i_r for which (14) occurs as a term in the corresponding double sum (12). Then for all sequences i_1, \ldots, i_r in D we have that $i_j \neq k$ for $j = 1, \ldots, r$. Hence the number of sequences in D cannot exceed the number of sequences in $Q_{r,n-1}$, which is $\binom{n-1}{r}$. Hence each term (14) occurs as a term in (12) for at most $\binom{n-1}{r}$ sequences in $Q_{r,n}$. Therefore

$$\sum \operatorname{per} (A[i_{1}, \ldots, i_{r}])(1 - \operatorname{per} (A(i_{1}, \ldots, i_{r}))) \leqslant {\binom{n-1}{r}} \sum_{\tau} a_{1\tau(1)} \ldots a_{n\tau(n)}$$

$$= {\binom{n-1}{r}} - {\binom{n-1}{r}} \operatorname{per} (A),$$

the equality following from our initial observation (9). This proves the theorem.

LEMMA 1. Let A be an $n \times n$ non-negative matrix. Let r be an integer with $1 \leqslant r \leqslant n-1$. Suppose that per (A) > 0 and that for all sequences i_1, \ldots, i_r in $Q_{r,n}$

(15)
$$\operatorname{per}(A) = \operatorname{per}(A[i_1, \dots, i_r]) \operatorname{per}(A(i_1, \dots, i_r)).$$

Then there exists a permutation matrix P such that

$$P'AP = \begin{bmatrix} x_1 \\ \cdot & 0 \\ \cdot \\ * & \cdot \\ & x_n \end{bmatrix}$$

where per $(A) = x_1 \dots x_n$. Here 0 denotes all 0's while * denotes arbitrary elements.

Proof. The lemma is true for n = 1. Suppose we have shown it for all $m \times m$ non-negative matrices with m < n and all integers r with $1 \le r \le m - 1$. We proceed by induction.

Partition the matrix A as

$$\begin{bmatrix} A_{rr} & A_{rs} \\ A_{sr} & A_{ss} \end{bmatrix}$$

where A_{rr} and A_{ss} are $r \times r$ and $s \times s$ matrices respectively. If A_{rs} is a zero matrix, then A has an $r \times s$ submatrix of 0's with r + s = n. Otherwise A_{rs}

contains a non-zero element. Since by hypothesis per $(A) = \text{per } (A_{ss})$, it follows that the $(n-1) \times (n-1)$ matrix obtained by crossing out the row and column of this non-zero element must have a zero permanent. Hence, by the Frobenius-König theorem, it contains a $p \times q$ submatrix of 0's with p+q=(n-1)+1. Thus in either case A has a $p \times q$ submatrix of 0's with p+q=n.

Suppose

$$a_{1i_1} \ldots a_{ni_n} \neq 0$$

where j_1, \ldots, j_n is a permutation of $1, \ldots, n$ other than the identical permutation. Then the permutation j_1, \ldots, j_n contains a cycle (k_1, \ldots, k_t) of length t > 1. Choose a sequence i_1, \ldots, i_r in $Q_{r,n}$ such that at least one, but not all, of the integers k_1, \ldots, k_t is included among the integers i_1, \ldots, i_r . For such a sequence i_1, \ldots, i_r it is easily seen that relation (15) does not hold. This contradicts our hypothesis and so

$$a_{1j_1}\ldots a_{nj_n}=0$$

for all permutations j_1, \ldots, j_n of $1, \ldots, n$ other than the identical permutation. Since per $(A) \neq 0$ by assumption, it follows that per $(A) = a_{11} \ldots a_{nn} \neq 0$ and no diagonal element of A is zero.

Let the zeros of the $p \times q$ zero submatrix of A occur in positions (i_{α}, j_{β}) , $1 \leq \alpha \leq p$, $1 \leq \beta \leq q$. Then $i_{\alpha} \neq j_{\beta}$ since no diagonal element is zero. Hence there exists a permutation matrix Q such that

$$Q'AQ = \begin{bmatrix} B & 0 \\ D & C \end{bmatrix}$$

where B is a $p \times p$ matrix and C a $q \times q$ matrix. If p = 1, then C must satisfy relation (15) with A replaced by C and for r replaced by r - 1 if r > 1 or for r unchanged if r = 1. The lemma then follows by applying the induction hypothesis to C. We argue similarly if q = 1. Otherwise p > 1 and q > 1 and B and C will both satisfy (15) for appropriate r. In this case the lemma follows by applying the induction hypothesis to both B and C.

Theorem 4. Let $A = (a_{ij})$ be an $n \times n$ non-negative row stochastic matrix. Then

(16)
$$e_r(A) \leqslant \binom{n-1}{r} + \binom{n-1}{r-1} \operatorname{per}(A) \quad \text{for } r = 1, \dots, n-1$$

where $e_{\tau}(A)$ is the sum of the principal permanental minors of order r of A. If A is doubly stochastic, equality occurs in (16) if and only if A is the $n \times n$ identity matrix.

Proof. The inequality (16) follows from inequality (8) and the obvious inequality

(17)
$$\operatorname{per}(A) \geqslant \operatorname{per}(A[i_1, \dots, i_r]) \operatorname{per}(A(i_1, \dots, i_r))$$

for each sequence i_1, \ldots, i_r in $Q_{r,n}$. If equality occurs in (16), it must also occur in (17). If A is doubly stochastic, it follows by the preceding lemma that there is a permutation matrix P such that $P'AP = I_n$ or $A = I_n$ where I_n is the $n \times n$ identity matrix. This establishes the theorem.

Our last theorem is also concerned with relationships between the permanent and permanental minors of a matrix.

Theorem 5. Let $A = (a_{ij})$ be an $n \times n$ non-negative row substochastic matrix. For $r = 1, 2, \ldots, n$, let m_r be the maximum of the permanental minors of A of order r. Then

per
$$(A) \leqslant m_r$$
, $r = 1, \ldots, n$.

In particular the permanent of a non-negative row substochastic matrix does not exceed its maximum element.

Proof. By the Laplace expansion for permanents for any sequence i_1, \ldots, i_{τ} in $Q_{\tau,n}$,

per
$$(A) = \sum per (A[i_1, ..., i_r | j_1, ..., j_r]) per (A(i_1, ..., i_r | j_1, ..., j_r))$$

where the summation extends over all sequences j_1, \ldots, j_r in $Q_{r,n}$. Hence

per
$$(A) \leqslant m_r(\sum \operatorname{per}(A(i_1,\ldots,i_r|j_1,\ldots,j_r))),$$

the summation again extending over all sequences j_1, \ldots, j_r in $Q_{r,n}$. By Theorem 1, this sum does not exceed one and the inequality follows.

COROLLARY 1. For A an $n \times n$ non-negative row substochastic matrix,

per
$$(P^s(A)) \le m_s$$
, $s = 1, 2, ..., n$.

Proof. This follows by applying Theorem 5 to $P^s(A)$ for the case r=1.

COROLLARY 2. Let A be an $n \times n$ 0, 1 matrix with k 1's in each row. Then per $(A) \leq k^n (k!/k^k)$.

Proof. The matrix $k^{-1}A$ is a non-negative row stochastic matrix and we may apply Theorem 5 to it. For this matrix $m_k \leq k!/k^k$. Since

per
$$(A) = k^{n} (\text{per } k^{-1}A),$$

the inequality follows.

A generalization of Theorem 4 to $n \times n$ non-negative matrices A with row sums s_1, \ldots, s_n can be obtained using the same methods. The inequality analogous to (16) is

$$s_1...s_n \sum \frac{1}{s_{i_1...s_{i_r}}} \operatorname{per} (A[i_1,...,i_r]) \leqslant {n-1 \choose r} s_1...s_n + {n-1 \choose r-1} \operatorname{per} (A)$$

where the summation extends over all sequences i_1, \ldots, i_r in $Q_{\tau,n}$.

REFERENCES

- M. Marcus and W. R. Gordon, Inequalities for subpermanents, Illinois J. Math., 8 (1964), 607-614.
- M. Marcus and M. Newman, Inequalities for the permanent function, Ann. Math., 75 (1962), 47-62.
- 3. —— On the minimum of the permanent of a doubly stochastic matrix, Duke Math. J., 26 (1959), 61-72.
- 4. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities (Boston, 1964).

National Bureau of Standards, Washington, D.C.