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1. Introduction

In a series of several papers [7,8,10], as well as in his book [11], Lawson argues persua-
sively of the existence of an important connection between the study of inverse semigroups
and that of ordered groupoids. He then proves, with an entirely coordinate-free approach,
the McAlister P -theorem [12], and redevelops O’Carroll’s theory of idempotent-pure
homomorphisms of inverse semigroups [16,17] using the techniques of ordered groupoids.
The key to Lawson’s approach is Ehresmann’s Maximum Enlargement Theorem [11, The-
orem 8.3.3], characterizing star-injective morphisms of ordered groupoids.

This paper associates to each ordered functor ϕ an ordered groupoid Der(ϕ) called
its derived ordered groupoid; such an approach for monoids goes back to [21]. Using the
derived ordered groupoid and the semidirect product, we are able to show that every
ordered groupoid morphism factors as an enlargement followed by an ordered fibration.
This means, intuitively, that up to Morita equivalence every ordered functor is a fibration
(surjective on R-classes in semigroup terms).

We then show that a broad class of ordered functors has the property of having a
‘best-possible’ factorization through a covering morphism; it is from this result, in the
star-injective case, that we deduce the Maximum Enlargement Theorem.

In terms of inverse semigroup theory, some of our results can be interpreted as follows.
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550 B. Steinberg

(i) Let ϕ : S → T be an idempotent-pure (pre)-homomorphism. Then the partially
ordered set in the McAlister–O’Carroll representation is the set of D-classes of
Der(ϕ) ordered by the J -order.

(ii) If ≡ is a congruence on an inverse semigroup S such that each idempotent equiv-
alence class is a semigroup with J = D, then there is a minimal congruence ∼⊆≡
such that the natural map S/∼ → S/≡ is idempotent pure. This always occurs, in
particular, if S is semisimple.

(iii) If ≡ is a congruence on an inverse semigroup S such that each idempotent equiv-
alence class is a Clifford semigroup, then the congruence ∼ described above exists
and is idempotent separating.

(iv) Our paper offers a natural definition of the semidirect product of inverse semi-
groups; this will be investigated further in future work.

Our work can be viewed as a generalization of the approach of Margolis and Pin
[14] to the P -theorem. Another such generalization was made by Gomes and Szendrei
[3]. In fact, hitherto unpublished work by the author, Lawson and Margolis shows that
their approach is related to ours via what is called in [11] the pseudoproduct; more
concretely, their derived quiver of a morphism of inverse semigroups is the resulting
algebraic structure obtained from applying the pseudoproduct to our derived ordered
groupoid of the corresponding morphism of ordered groupoids.

This work grew out of the work of the author and Tilson on derived categories [20].

2. Preliminaries and notation

In this paper morphisms will generally be written on the right of their arguments. The
domain and range of arrows of a category will be defined accordingly.

A category C is a set equipped with a partial binary operation, which we shall denote
by concatenation, satisfying several axioms which we shall list below. We will write ∃xy
if the product xy exists. An element e of C will be called an identity if ∃ex implies ex = x

and ∃xe implies xe = x. We use Co for the set of identities (or objects) of C. Elements
of C will often be called arrows. The axioms for a category are the following:

(C1) ∃x(yz) if and only ∃(xy)z in which case they are equal;

(C2) ∃x(yz) if and only if ∃xy and ∃yz; and

(C3) for each x ∈ C, there exists identities e, f such that ∃xe and ∃fx.
One can show that the identities in axiom (C3) are uniquely determined by x. We let
xd = f and xr = e; xd is called the domain of x and xr is called the range. Note that
∃xy if and only if xr = yd. Conversely, if there are functions d, r : C → Co such that
∃xy if and only if xr = yd, xdx = x = xxr, and x(yz) = (xy)z when both sides exist,
then the above axioms are satisfied. Observe that Co is a subcategory of C. In truth,
however, we will only use this definition of categories when we view them as algebraic
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objects. When we use categories as classifying objects, then we will stick to the more
classical formulation in terms of object and arrow sets. A subcategory D of a category
C is called a full subcategory if it contains all arrows of C between its objects. We use
Cop for C with the reverse multiplication.

A groupoid is a category G such that, for each x ∈ G, there is an element x−1 ∈ X
such that xd = x−1r, xr = x−1d, xx−1 = xd, and x−1x = xr. We leave it to the reader
to check that x−1 is uniquely determined by x. A groupoid G is said to be connected, if
for each e, f ∈ Go there is an element x with xd = e, xr = f . The maximal connected
subgroupoids of a groupoid are called the connected components of G. In analogy to
semigroup theory, if arrows g, g′ ∈ G are in the same connected component, we write
gD g′ and use the term D-class as a synonym for connected component. We will denote
the D-class of g by Dg.

If C, D are categories, then ϕ : C → D is a morphism or functor if ∃xy implies that
(xy)ϕ = xϕyϕ and for all x, xdϕ = xϕd, xrϕ = xϕr. Note that if G and H are groupoids
and ϕ : G→ H is such that ∃xy implies that (xy)ϕ = xϕyϕ, then ϕ is a morphism and
x−1ϕ = (xϕ)−1.

Suppose G is a groupoid and 6 is a partial order on G. Then G is called an ordered
groupoid if the following axioms hold.

(O1) x 6 y =⇒ x−1 6 y−1.

(O2) x 6 y, u 6 v, ∃xu, ∃yv =⇒ xu 6 yv.

(O3) If x ∈ G and e 6 xd, then there exists a unique element (e | x), called the restriction
of x to e, such that (e | x)d = e and (e | x) 6 x.

(O4) If x ∈ G, e ∈ Go and e 6 xr, then there exists a unique element (x | e), called the
corestriction of x to e, such that (x | e)r = e and (x | e) 6 x.

It can be shown [11] that (O4) is implied by the other axioms.
A subset X of a partially ordered set Y is called an order ideal if y 6 x ∈ X implies

that y ∈ X. It can be shown [11] that (G,6) is an ordered groupoid if and only if (O1)
and (O2) hold, Go is an order ideal, and that, for e ∈ Go, e 6 x ∈ G implies that there
exists y 6 x with yd = e. We will frequently use this fact in the sequel. Any groupoid is
ordered with respect to the equality relation, and when we say groupoid without further
qualification we mean a groupoid ordered by equality.

A partially ordered set X is called a meet semilattice if, for every x, y ∈ X, there is a
greatest lower bound x∧y. In this case,X becomes a semigroup under the meet operation.
An ordered groupoid G is called an inductive groupoid if Go is a meet semilattice. Any
group is an inductive groupoid. An inverse semigroup can be made into an inductive
groupoid by viewing its D-classes as groupoids (with the restricted or trace product) and
using the natural partial order. Conversely, any inductive groupoid can be viewed as an
inverse semigroup (see [11] for more).

If G is an ordered groupoid, and g, g′ ∈ G, we write g 6J g′ if there exists h ∈ G

such that gD h 6 g′. One can easily verify that this is a preorder. We use J to denote

https://doi.org/10.1017/S0013091599001017 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599001017


552 B. Steinberg

the associated equivalence relation. This notation comes by analogy to semigroup theory
(cf. [11, Proposition 3.2.8]). Observe that there is a containment D ⊆ J whence 6J
induces a preorder on the set of D-class of G, which we will also denote by 6J . This
preorder is given by

D1 6J D2 ⇐⇒ ∀h ∈ D2, ∃g ∈ D1 such that g 6 h, (2.1)

where D1 and D2 are D-classes of G.
An ordered functor is a functor ϕ : G → H such that x 6 y =⇒ xϕ 6 yϕ. An

inductive functor is an ordered functor between inductive groupoids which preserves the
meet of identities. An ordered functor ϕ : G→ H is called an order embedding if xϕ 6 yϕ
if and only if x 6 y. In such a situation, G can be viewed as an ordered subgroupoid
of H. One can show [11] that, for an ordered functor ϕ, (e | g)ϕ = (eϕ | gϕ) and that
(g | f)ϕ = (gϕ | fϕ).

If {Xj}j∈I is a collection of partially ordered sets, then
∏
j∈I Xj is a partially ordered

set, where we define (xj)j∈I 6 (yj)j∈I if xj 6 yj for all j ∈ I. This order is called the
product order. If {Gj}j∈I is a collection of groupoids, then

∏
Gj is a groupoid under

coordinatewise multiplication. If the Gj are ordered or inductive groupoids, so is
∏
Gj

under the product order. This product has the standard universal property of products.
If ϕ : X → Y and ψ : Z → Y are morphisms, the pullback is X×ϕ,ψZ = {(x, z) | xϕ =

zψ}. It is not hard to verify that if ϕ : G→ H and ψ : G′ → H are morphisms of ordered
(inductive) groupoids, then G ×ϕ,ψ G′ is an ordered (inductive) subgroupoid of G × G′
with the standard universal property of a pullback. The only non-trivial verification is
that if (e, f) 6 (g, g′)d ∈ G×ϕ,ψ G′, then

(e | g)ϕ = (eϕ | gϕ) = (fψ | g′ψ) = (f | g′)ψ
and so (e | g, f | g′) ∈ G ×ϕ,ψ G′. Also, we note that if G, G′ and H are inductive
groupoids and ϕ, ψ preserve the meet, then the pullback is an inductive groupoid.

We use OGrp for the category of ordered groupoids and order-preserving morphisms,
while we use Ind for the category of inductive groupoids and meet-preserving morphisms.
Of course, Ind is a subcategory of OGrp. It follows from the existence of pullbacks and
arbitrary products, that these categories are complete, that is, they have all limits.

The reader is referred to [11, Chapter 4] for basic results on ordered groupoids; we
caution the reader that his definitions of d and r are reversed from ours.

We use Morph to denote the category of ordered functors. That is, the objects of
Morph are ordered functors ϕ : G→ H, and an arrow between ϕ and ψ is a pair (τ, ρ)
of ordered functors making a commuting square

G
τ−−−−→ G′yϕ yψ

H
ρ−−−−→ H ′.

We use MorphI for the subcategory whose objects are inductive functors and whose
arrows are ordered pairs of inductive functors making the appropriate diagram commute.
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If X is a partially ordered set, we can make X into a ‘discrete ordered groupoid’ XD

by defining a partial multiplication ∃xy if and only if x = y, in which case xx = x.
Note that if X is a meet semilattice, then XD is an inductive groupoid. Observe that
(XD)o = XD, whence the name discrete. If H is a groupoid, H can be viewed in a natural
way as a partially ordered set by forgetting the multiplication; we then use HD to denote
the discrete ordered groupoid obtained from H viewed as a partially ordered set.

3. The adjunction

In this section we define the semidirect product of ordered groupoids and the derived
ordered groupoid of an ordered functor. As in the case of categories [20], these will
be functors standing in an adjoint relation (see [13] for the relevant definitions). The
universal property of the derived ordered groupoid will then be used to prove our various
factorization results. This adjunction, in the category setting, is due to Nico [15] and
Kientzle [6].

3.1. Ordered groupoid actions

We now define what it means for one ordered (inductive) groupoid to act on another.
This will then allow us to define a semidirect product of ordered (inductive) groupoids.
Our definition on the one hand is a generalization of the notion for groupoids of Brown [1]
and Houghton [5] (which, of course, generalizes the usual notion for groups), and on the
other it is a generalization of Lawson’s notion of an ordered representation [11]; see these
papers for examples (examples in the category setting can be found in [20]).

Let G and H be ordered groupoids. Then a left action (π,A) of H on G consists of the
following data: an ordered functor π : G→ Ho and an ordered functor A : HD×r,πG→ G

(which we normally denote by left exponentiation, (h, g)A = hg) such that the following
axioms hold (we use ∃hg if hr = gπ).

(A1) If ∃hg, then (hg)π = hd.

(A2) If ∃h1h2, ∃h2g, then h1(h2g) = h1h2g.

(A3) gπg = g.

Note that axiom (A1) implies that in (A2), ∃h1(h2g). If G and H are inductive groupoids,
then the left action is called inductive if π is a morphism of inductive groupoids.

We now collect several of the most important properties of an action into a proposition
which shall be used throughout this paper without comment.

Proposition 3.1. Let G, H be ordered groupoids and suppose H acts on the left of
G via (π,A).

(1) If h ∈ H, g ∈ G, and ∃hg, then h−1
(hg) = g.

(2) If g, g′ ∈ G and ∃gg′, then πg = πg′ = π(gg′).

(3) If g 6 g′ ∈ G, h 6 h′ ∈ H and ∃hg, ∃h′g′, then hg 6 h′g′.
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(4) If g, g′ ∈ G, h ∈ H and ∃hg, ∃gg′, then ∃h(gg′), ∃hg′, and h(gg′) = hghg′.

(5) If e ∈ Go, h ∈ H, and ∃he, then he ∈ Go ∩ (hd)π−1.

(6) For e ∈ Ho, eπ−1 is a full ordered subgroupoid of G and, for h ∈ H, left translation
by h induces an ordered isomorphism from (hr)π−1 to (hd)π−1. Furthermore, the
association taking an arrow of H to this ordered isomorphism induces a functor
from Hop to OGrp.

(7) If h ∈ H, g ∈ G and ∃hg, then ∃h(g−1) and h(g−1) = (hg)−1.

(8) If G and H are inductive groupoids and the action is inductive, then the association
of (6) is a functor from Hop to Ind.

Proof.

(1) Since ∃hg, h−1h = hr = gπ. By (A2) h−1
(hg) = h−1hg = gπg = g by (A3).

(2) This is clear since π is a functor and Ho is discrete.

(3) We have (h, g), (h′, g′) ∈ HD ×r,π G and (h, g) 6 (h′, g′). The result follows since
A preserves order.

(4) By property (2) above, ∃h(gg′), ∃hg′. So, in HD ×r,π G, we can find (h, g), (h, g′),
(h, gg′). But (h, g)(h, g′) = (h, gg′) so the result follows since A is a morphism.

(5) It follows that (h, e) ∈ (HD ×r,π G)o and so (h, e)A = he is an identity. We can
deduce from (A1) that he is in (hd)π−1.

(6) This follows easily from the above properties and (A1), (A2) and (A3).

(7) Follows straight from property (6), since ordered functors preserve the inverse oper-
ation.

(8) Since π is an inductive functor, if e, f ∈ Go with eπ = fπ, (e∧f)π = eπ∧fπ = eπ.
Suppose h ∈ H and e, f ∈ Go∩ (hr)π−1. By property (3), h(e∧ f) 6 he, hf , and so
h(e∧f) 6 he∧ hf . But applying the same reasoning to h−1, we see, by property (1),
that h

−1
(he∧ hh) 6 e∧f and hence, again using properties (1) and (3), we see that

he ∧ fh = h(e ∧ f).

�

Property (6) gives a ‘geometric viewpoint’ on what is an action. Essentially, one has a
bundle G of ordered groupoids lying over Ho, where the map π is the bundle projection
map. Arrows of H then induce ordered isomorphisms of the fibres. However, the bundle
picture fails to capture that G is ordered globally and that π relates this global ordering
to the ordering of Ho.

The following example of an action will be of use later in the paper.
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Example 3.2. Let H be an ordered (inductive) groupoid. Then H acts (inductively)
on Ho via 1H : Ho → Ho, the identity, and hhr = hd.

We define a category Act whose objects consist of triples (G,H, (π,A)) where H

acts on G via (π,A). Usually we suppress (π,A), just writing HG to denote an ordered
groupoid G with a left action by H. An arrow from HG to H′G

′ consists of a pair of
ordered functors (ψ, ρ), ψ : G→ G′ and ρ : H → H ′, which respect the action; that is,
gπHρ = gψπH′ (where πH , πH′ are the bundle projections for G and G′, respectively)
and ∃hg implies that (hg)ψ = hρgψ. Note that the first condition implies that if ∃hg,
then gψπH′ = gπHρ = (hr)ρ so ∃hρgψ. We use ActI to denote the subcategory where
all the groupoids, actions and ordered functors are inductive.

3.2. The semidirect product functor

Given a left action of an ordered groupoid H on an ordered groupoid G, we now define
the semidirect product by GoH; observe that we are again suppressing the action in our
notation. This construction, in the unordered setting, is what is called by Ehresmann [2]
the crossed product, and by most category theorists the Grothendieck construction [4].
Examples include the usual semidirect product of groups; for more examples, see [1,5]
for the unordered case and [11] for the case of an ordered groupoid acting on a partially
ordered set; further examples of the Grothendeick construction, viewed as a semidirect
product, can be found in [20].

As a partially ordered set, G o H = G ×π,d H. Note that if G and H are finite, so
is G oH. To define a product, first note that if (g, h), (g′, h′) ∈ G oH and ∃hh′, then
g′π = h′d = hr so hg′ is defined. Then ∃(g, h)(g′, h′) if ∃hh′ and ∃ghg′, in which case we
define

(g, h)(g′, h′) = (ghg′, hh′).

Proposition 3.3. One has that GoH is an ordered groupoid. If G, H and the action
are all inductive, then GoH is an inductive groupoid.

Proof. It is straightforward to see that

(GoH)o = Go ×π,1Ho
Ho,

(g, h)d = (gd, hd), and (g, h)r = (h
−1
gr, hr). It is then routine to verify associativity

and so GoH is a category. In fact, it is a groupoid: (g, h)−1 = (h
−1
g−1, h−1). The reader

is referred to [5,20] for details.
To verify (O1), note that if (g, h) 6 (r, s), then h−1 6 s−1, g 6 r and h−1

g−1 6 s−1
r−1.

So (g, h)−1 = (h
−1
g−1, h−1) 6 (s

−1
r−1, s−1) = (r, s)−1.

As for (O2), if
(g, h) 6 (r, s), (j, k) 6 (u, v)

and
∃(g, h)(j, k),∃(r, s)(u, v),

then hk 6 sv and hj 6 su. So (g, h)(j, k) = (ghj, hk) 6 (rsu, sv) = (r, s)(u, v).
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To see that (G oH)o = Go ×π,1Ho
Ho is an order ideal, note that if (g, h) 6 (e, f) ∈

(GoH)o, then g 6 e, h 6 f implies that

(g, h) ∈ Go ×π,1Ho
Ho = (GoH)o.

Suppose (e, f) 6 (g, h)d = (gd, hd). Then e 6 gd and f 6 hd, so there exist (e | g)
and (f | h). Since (e | g)π = eπ = f = (f | h)d, ((e | g), (f | h)) ∈ G o H. But
((e | g), (f | h))d = (e, f) and ((e | g), (f | h)) 6 (g, h).

If G and H are inductive, and the action is as well, then we claim (e, f) ∧ (e′, f ′) =
(e ∧ e′, f ∧ f ′). Indeed, since π preserves meets, (G o H)o = Go ×ϕ,1Ho

Ho is a meet
semilattice under pointwise meet. �

Observe that the projection ψ : G o H → H defined by (g, h)ψ = h is clearly a
morphism. In the inductive case, the projection is meet preserving. Thus ψ ∈ Morph
(MorphI). We claim that the correspondence Sd given by Sd(HG) = ψ : G oH → H

is a functor.

Proposition 3.4. The correspondence Sd : Act → Morph is a functor called
the semidirect product functor. The restriction of this functor to ActI has codomain
MorphI.

Proof. If (ψ, ρ) : HG → H′G
′, then it is a simple verification to see that ψ × ρ :

G o H → G′ o H ′ is an ordered functor and that (ψ × ρ, ρ) gives a morphism of the
projections. It is then immediate that Sd is a functor. �

If (ψ, ρ) is an arrow of Act, we will use (ψ o ρ, ρ) to denote the arrow of Morph
obtained by applying the semidirect product functor.

Example 3.5. If we let H act on Ho as in Example 3.2, then it is easy to see that
HooH is isomorphic to H by the projection τ : HooH → H. Furthermore, if HG ∈ Act
and π′ : G→ Ho is the bundle projection, then π′ preserves the action by (A1), and the
map π′ o 1H corresponds to the projection ψ : GoH → H under the isomorphism.

3.3. The derived ordered groupoid

To any ordered functor, we proceed to associate an ordered groupoid which will play a
role in our theory similar to that played by the kernel in group theory. This construction
first appeared for categories in the work of Quillen [18] and has been rediscovered several
times since [15, 21]. Let ϕ : G → H be a morphism of ordered groupoids. Define the
derived ordered groupoid of ϕ to be, as a partially ordered set,

Der(ϕ) = H ×r,dϕ G = {(h, g) | hr = gdϕ}.

Note that if G and H are finite, then Der(ϕ) is also finite. We define a partial product
by ∃(h, g)(h′, g′) if h′ = hgϕ and ∃gg′. In this case,

(h, g)(h′, g′) = (h, gg′).
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Proposition 3.6. One has that Der(ϕ) is an ordered groupoid.

Proof. It is straightforward to show that

Der(ϕ)o = H ×r,ϕ Go

and that the equations (h, g)d = (h, gd) and (h, g)r = (hgϕ, gr) hold. Then to see that
Der(ϕ) is a category, one performs a routine calculation to check associativity. It is, in
fact, a groupoid with (h, g)−1 = (hgϕ, g−1); for details we refer the reader to [20].

We now show that Der(ϕ) is an ordered groupoid. First note that if (h, g) 6 (h′, g′),
then h 6 h′, g−1 6 (g′)−1, and gϕ 6 g′ϕ, so

(h, g)−1 = (hgϕ, g−1) 6 (h′g′ϕ, (g′)−1) = (h′, g′)−1.

If (h, g) 6 (l, k), (r, s) 6 (u, v) and ∃(h, g)(r, s), ∃(l, k)(u, v), then

(h, g)(r, s) = (h, gs) 6 (l, kv) = (l, k)(u, v).

To see that Der(ϕ)o is an order ideal, note that if (h, g) 6 (h′, e) with e ∈ Go, then
g 6 e so g ∈ Go and hence (h, g) ∈ Der(ϕ)o. Finally, suppose (h, e) 6 (h′, g′)d with
e ∈ Go. Then we claim (h, (e | g′)) ∈ Der(ϕ). Indeed hr = eϕ = (e | g′)dϕ. But
(h, (e | g′)) 6 (h′, g′), so we now see that Der(ϕ) is an ordered groupoid. �

Define an action of H on Der(ϕ) as follows: let π : Der(ϕ) → H be defined by
(h, g)π = hd and A : HD ×r,π Der(ϕ) → Der(ϕ) by (h′, (h, g))A = (h′h, g). First note
that since h 6 h′ implies hd 6 h′d, π preserves order. To see that A preserves order, if
(h′, (h, g)) 6 (k′, (k, l)), then (h′h, g) 6 (k′k, l). The remaining verifications that (π,A)
is an action are straightforward and as in the category setting [20].

Proposition 3.7. The correspondence Der : Morph→ Act is a functor.

Proof. Let (ψ, ρ) : ϕ → τ be an arrow of Morph. Define Der(ψ, ρ) = (ρ × ψ, ρ). It
is easy to verify that ρ×ψ is an ordered functor; in fact, it is a functor as per [20, § 3.3]
and preserves order by definition of the product order. The action is preserved since

(h
′
(h, g))(ρ× ψ) = ((h′h)ρ, gψ) = h′ρ(hρ, gψ),

as desired. Functoriality is immediate. �

An important example is the following: suppose that G is a group, then Der(1G) is
the Cayley graph of G with generators G, viewed as a groupoid via the multiplication
rule (g, g1)(gg1, g2) = (g, g1g2).

3.4. Proof of the adjunction

Our next goal is to prove that Der is left adjoint to Sd. We first need the following
embedding result.
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Proposition 3.8. Let ϕ : G → H be an ordered functor. Define a map ι : G →
Der(ϕ)oH by

gι = ((gdϕ, g), gϕ). (3.1)

Then ι is an order embedding.

Proof. The map is well defined, since gϕd = (gdϕ, g)π. If g 6 h, then ((gdϕ, g), gϕ) 6
((hdϕ, h), hϕ). It is a functor, for if ∃gg′, then

(gg′)ι = (((gg′)dϕ, gg′), (gg′)ϕ) = ((gdϕ, g), gϕ)((grϕ, g′), g′ϕ) = gιg′ι,

since gr = g′d. We have that ι is an order embedding since

((gdϕ, g), gϕ) 6 ((g′dϕ, g′), g′ϕ)

implies g 6 g′. �

Thus G can, in fact, be viewed as an ordered subgroupoid of Der(ϕ)oH and ϕ = ιψ,
where ψ : Der(ϕ)oH → H is the projection. In this manner we obtain a morphism (ι, 1H)
from ϕ to ψ. Observe that the function τ : Der(ϕ) oH → G given by ((h, g), h′)τ = g

is an ordered functor and that ιτ = 1G. Thus G is a retract of Der(ϕ) o H. Further
properties of this embedding will be studied in Theorem 4.9.

Theorem 3.9. Der : Morph→ Act is left adjoint to Sd : Act→Morph.

Proof. This will follow immediately from [20, Theorem 4.4] once we show that the
unit and counit of the adjunction from the category setting are ordered functors in the
ordered groupoid setting. Proposition 3.8 shows that the unit ι is an ordered functor. If
ψ : GoH → H is the semidirect product projection, then the counit ρ : Der(ψ)→ G is
defined by (h, g)ρ = hg. This is immediately verified to preserve order by the definition
of a left action. �

We then obtain the following from the usual abstract nonsense [13].

Corollary 3.10. Let ϕ : G → H be an ordered functor and ι : G → Der(ϕ)oH be
the order embedding of (3.1). Then (ι, 1H) is a universal arrow from ϕ to the semidirect
product functor Sd.

4. A menagerie of morphisms

In this section we investigate various classes of morphisms and how they relate to the
derived and semidirect product functors. From this work, we will obtain our factorization
theorems. We begin with some definitions.

We call an ordered functor ϕ : G → H identity separating if ϕ|Go is injective. An
ordered functor ϕ is called star injective (or, by some authors, an immersion), respec-
tively, star surjective (or, by some authors, a fibration), if, for all e ∈ Go, ϕ|ed−1 :
ed−1 → eϕd−1 is injective, respectively, surjective; it is called a covering morphism if it
is both star injective and star surjective. Star-injective inductive functors correspond to
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idempotent-pure morphisms of inverse semigroups. Indeed, it is straightforward to prove
the following.

Proposition 4.1. Let ϕ : G → H be a morphism of ordered groupoids. Then ϕ is
star injective if and only if Hoϕ

−1 = Go.

We now exhibit the following important example of a covering morphism.

Theorem 4.2. Let ϕ : G → H be an ordered functor. Then the projection σ :
Der(ϕ)→ G given by (h, g)σ = g is a covering morphism.

Proof. Clearly σ is an ordered functor. Suppose (h, g)d = (h′, g)d. Then h = h′,
whence σ is star injective. Let (h, e) ∈ Der(ϕ)o and suppose gd = e = (h, e)σ. Then,
since hr = eϕ = gdϕ, (h, g) ∈ Der(ϕ) and (h, g)d = (h, e). So ϕ is star surjective and
hence a covering morphism. �

If G is an ordered groupoid and e, f ∈ Go, we let G(e, f) = ed−1 ∩ fr−1 denote the
hom-set of e and f . We call G(e, e) the local group at e. It is easy to show, and well
known, that the local groups at any two elements of the same D-class are isomorphic. If
ϕ : G→ H is a functor, there is an induced map ϕe,f : G(e, f)→ H(eϕ, fϕ).

An ordered functor ϕ : G → H is called faithful if it is injective when restricted
to each hom-set, or, equivalently, it is injective when restricted to each local group.
Such morphisms, for inductive groupoids, correspond to H-injective homomorphisms of
inverse semigroups. Note that any star-injective functor must be faithful. One says that
ϕ is full if for each e, f ∈ Go, ϕe,f is surjective or, equivalently, for each e ∈ Go, ϕe,e
is surjective. Full maps are necessarily star surjective. The corresponding concept for
inverse semigroups is that of an H-surjective morphism.

Observe that if ϕ : G→ H is an ordered functor and e ∈ H0, then eϕ−1 is an ordered
subgroupoid of G. If V is a class of ordered groupoids, we say that ϕ is a V-morphism
if, for all e ∈ Ho, eϕ−1 ∈ V. For instance, if PO is the class of partially ordered sets,
then Proposition 4.1 says that an ordered functor if star injective if and only if it is a
PO-morphism. If G is the class of groups, then the G-morphisms are just the identity-
separating morphisms.

An ordered groupoid is called combinatorial or aperiodic if its local groups are trivial
(or, equivalently, each hom-set has at most one element). The class of aperiodic ordered
groupoids will be denoted A. Observe that A-morphisms are precisely faithful ordered
functors.

We will call an ordered groupoid a Clifford groupoid if it is precisely the union of its
local groups; this class will be denoted CR. Note that PO = A ∩ CR: star-injective
morphisms are precisely faithful CR-morphisms.

An ordered groupoid is called semisimple if distinct D-equivalent elements are incom-
parable; observe that (O3) and (O4) imply that semisimplicity is equivalent to asking
that distinct D-equivalent identities be incomparable. We will use SS to denote the class
of semisimple ordered groupoids. Notice that the class SS is closed under taking ordered
subgroupoids; hence any morphism with semisimple domain is an SS-morphism. Also
note that PO ⊆ CR ⊆ SS, so any star-injective ordered functor is an SS-morphism.

https://doi.org/10.1017/S0013091599001017 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599001017


560 B. Steinberg

We shall call an ordered groupoid quasi-stable if D = J ; this class will be denoted QS.
In this case, the preorder 6J on the set of D-classes is a partial order.

Lemma 4.3. Let G be an ordered groupoid. Then G ∈ QS if and only if e′ 6 f 6 e

and e′D e implies eD f , where e, e′, f ∈ Go.

Proof. Necessity is clear. For sufficiency, suppose D1, D2 are D-classes with D1 6J
D2 and D2 6J D1. Let e ∈ D2∩Go. Then, by (2.1), there exists f ∈ D1 with f 6 e (and
hence f ∈ Go). Similarly, there exists e′ ∈ D2 ∩ Go with e′ 6 f . Thus, by assumption,
D1 = D2. �

We then have the following immediate corollary.

Corollary 4.4. SS ⊆ QS.

4.1. Classifying morphisms

We now characterize various morphisms in terms of their derived ordered groupoids.
First a lemma.

Lemma 4.5. Suppose ϕ : G→ H is an ordered functor and (h, e)D (h′, e′) in Der(ϕ)
with e, e′ ∈ Go. Then hd = h′d. If, in addition, one has that h 6 h′, then h = h′ and
eD e′ in hrϕ−1.

Proof. Any arrow from (h, e) to (h′, e′) is of the form (h, g) with gd = e, gr = e′.
But then h′ = hgϕ, whence hd = h′d. If, in addition, h 6 h′, then h = h′ by (O3) and
so h = hgϕ, whence gϕ = hr and so eD e′ in hrϕ−1. �

Theorem 4.6. Let ϕ : G→ H be an ordered functor. Then

(1) ϕ is faithful if and only if Der(ϕ) ∈ A;

(2) ϕ is a CR-morphism if and only if (f, e)D (f, e′) with f ∈ Ho, e, e′ ∈ Go implies
e = e′;

(3) ϕ is an SS-morphism if and only if Der(ϕ) ∈ SS;

(4) p is a QS-morphism if and only if Der(ϕ) ∈ QS;

(5) ϕ is star injective if and only if Der(ϕ) ∈ A and (f, e)D (f, e′) with f ∈ Ho, e ∈ Go

implies e = e′’;

(6) ϕ is star surjective if and only if every D-class of Der(ϕ) contains an object of the
form (f, e) with f ∈ Ho, e, e′ ∈ Go.

Proof. (1) First suppose ϕ is faithful and (h, g)d = (h, g)r. Then (h, gd) = (hgϕ, gr),
whence gϕ ∈ Ho and gd = gr. Thus, since ϕ is faithful, g ∈ Go and hence (h, g) ∈
Der(ϕ)o; so Der(ϕ) ∈ A. Conversely, if Der(ϕ) ∈ A, gd = gr, and gϕ ∈ Ho, then
(gϕ, g) ∈ Der(ϕ), (gϕ, g)d = (gϕ, gd) = (gϕ, gr) = (gϕ, g)r. So, by combinatoriality,
(gϕ, g) ∈ Der(ϕ)o, whence g ∈ Go. Thus ϕ is faithful.
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(2) Suppose that ϕ is a CR-morphism and (f, e), (f, e′) are as in the statement. By
Lemma 4.5, eD e′ in fϕ−1. Since ϕ is a CR-morphism, e = e′ as desired. For the converse,
let f ∈ Ho and gϕ = f . Then (f, gd), (f, gr) ∈ Der(ϕ) and are connected by the arrow
(f, g), whence, by assumption, gd = gr. It follows that fϕ−1 ∈ CR.

(3) Let ϕ be an SS-morphism and suppose (h, e)D (h′, e′) are elements of Der(ϕ)o with
(h, e) 6 (h′, e′). Then e, e′ ∈ Go and so, by Lemma 4.5, h = h′ and eD e′ in hrϕ−1 ∈ SS.
Since e 6 e′, we can conclude e = e′ and so Der(ϕ) ∈ SS. For the converse, suppose
f = eϕ = e′ϕ with e, e′ ∈ Go, eD e′ in fϕ−1, and e 6 e′. Then (f, e) 6 (f, e′). Also
if g ∈ fϕ−1 with gd = e, gr = e′, then (f, g) is an arrow from (f, e) to (f, e′), whence
(f, e) = (f, e′) by semisimplicity of Der(ϕ). Thus e = e′ as desired.

(4) Suppose ϕ is a QS-morphism and (h′, e′) 6 (k, f) 6 (h, e) in Der(ϕ)o with
(h, e)D (h′, e′) and e, e′, f ∈ Go. Then, by Lemma 4.5, h′ = h (whence k = h) and
e′D e in hrϕ−1. But fϕ = kr = hr so, by Lemma 4.3, it now follows that f D e in
hrϕ−1, whence there exists g ∈ hrϕ−1 such that gd = e, gr = f . Moreover, (h, g) is
an arrow from (h, e) to (k, f) in Der(ϕ), so another application of Lemma 4.3 shows
Der(ϕ) ∈ QS. Conversely, suppose Der(ϕ) ∈ QS and suppose e, e′, f ∈ Go are such
that f ′ = eϕ = e′ϕ = fϕ, e′ 6 f 6 e, and eD e′ in f ′ϕ−1. Then in Der(ϕ) we have
(f ′, e′) 6 (f ′, f ′) 6 (f ′, e). Also, if g ∈ G is such that gϕ = f ′, gd = e, gr = e′, then (f ′, g)
takes (f ′, e) to (f ′, e′) and so (f ′, e′)D (f ′, e). Thus, by quasi-stability, (f ′, f)D (f ′, e),
whence, by Lemma 4.5, eD f in f ′ϕ−1 as desired.

(5) Follows from (1) and (2).

(6) Suppose ϕ is star surjective and let (h, e) ∈ Der(ϕ)o. Then hr = eϕ. Thus, since
ϕ is star surjective, there exists g ∈ G with gr = e and gϕ = h. Then (h, g−1) ∈ Der(ϕ),
(h, g−1)d = (h, gr) = (h, e) and (h, g−1)r = (h(g−1)ϕ, gd) = (hd, gd). So every D-class
contains an element of the desired form. For the converse, suppose e ∈ Go and eϕ = hr.
Then (h, e) ∈ Der(ϕ) and so, by assumption, there is an element (f, e′) with f ∈ Ho,
e′ ∈ Go in the same D-class as (h, e). Hence there is an edge from (f, e′) to (h, e). This
edge must be of the form (f, g) with gd = e′, gr = e and h = fgϕ = gϕ. Thus ϕ is star
surjective. �

4.2. Semidirect products and morphisms

Given a morphism (ϕ, ρ) in Act, we want to investigate the relationship between ϕ

and ϕo ρ. First a definition. Lawson [11] defines a special functor ϕ : G→ H to be an
ordered functor satisfying the following two additional properties.

(S1) If ∃g1ϕg2ϕ, then there exist g′1, g
′
2 ∈ G with g1ϕ = g′1ϕ, g2ϕ = g′2ϕ and ∃g′1g′2;

(S2) If g1ϕ 6 g2ϕ, then there exists g′1 ∈ G with g′1ϕ = g1ϕ and g′1 6 g2.

This definition is so formulated as to ensure that Gϕ will be an ordered subgroupoid of
H. It can be shown that any inductive functor is a special functor [11]. Also, if ϕ : G→ H

is a special functor and G is inductive, then Gϕ is also inductive.
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Theorem 4.7. Let (ϕ, 1H) : HG→ HK be a morphism in Act. Then

(1) ϕ is a V-morphism (for a class V of ordered groupoids) if and only if ϕo 1H is a
V-morphism;

(2) ϕ is surjective if and only if ϕo 1H is surjective;

(3) ϕ is full if and only if ϕo 1H is full;

(4) ϕ is faithful if and only if ϕo 1H is faithful;

(5) ϕ is star injective if and only if ϕo 1H is star injective;

(6) ϕ is star surjective if and only if ϕo 1H is star surjective;

(7) ϕ is a special functor if and only if ϕo 1H is a special functor.

In particular, if H acts on G with bundle projection π : G→ Ho, then the projection
ψ : G oH → H is star surjective. Furthermore, ψ is a covering if and only if G ∈ PO
and is a V-morphism, for V any of A, SS or CR, if and only if G ∈ V.

Proof. Let π : G→ Ho and π′ : K → Ho be the bundle projections.

(1) Let f ∈ Ko. Then f 7→ (f, fπ′) is a bijection between Ko and (K o H)o. Define
a morphism τ : (f, fπ′)(ϕ o 1H)−1 → fϕ−1 by (g, fπ′)τ = g. We show that this is an
isomorphism. It is clearly an order isomorphism of partially ordered sets (since gϕ = f

implies gπ = gϕπ′ = fπ′). To see that τ is a functor, note that (g1, fπ
′)(g2, fπ

′) =
(g1

g2πg2, fπ
′) = (g1g2, fπ

′). It is now clear that ϕ is a V-morphism if and only if ϕo 1H
is a V-morphism.

(2) Suppose ϕ is surjective. Let (k, h) ∈ K o H and suppose gϕ = k. Then since
gπ = gϕπ′ = kπ′ and hd = kπ′, we see that (g, h) ∈ GoH and (g, h)(ϕo 1H) = (k, h).
Conversely, if k ∈ K, then (k, kπ′) ∈ KoH and so is the image of some (g, kπ′) ∈ GoH.
But then gϕ = k.

(3) Suppose ϕ is full. Let (e, eπ), (f, fπ) ∈ (G o H)o and suppose (k, h) is an arrow
from (eϕ, eπ) to (fϕ, fπ). Then kd = eϕ and h−1

kr = fϕ, whence kr = hfϕ = (hf)ϕ
(note that h is an arrow from eπ to fπ = fϕπ′). Let g ∈ G be such that gϕ = k,
gd = e, gr = hf ; such g exists by fullness. Then (g, h) ∈ GoH has (g, h)d = (e, eπ) and
(g, h)r = (h

−1
(hf), fπ) = (f, fπ) and maps to (k, h). For the converse, let k ∈ K be such

that kd = eϕ, kr = fϕ with e, f ∈ Go. Then (k, kπ′) ∈ KoH is an arrow from (eϕ, kπ′)
to (fϕ, kπ′), so, by assumption, there exists (g, kπ′) ∈ G oH, with (g, kπ′)d = (e, kπ′)
and (g, kπ′)r = (f, kπ′), mapping to (k, kπ′). But then gϕ = k, gd = e and gr = f (since
(kπ′)−1

gr = gr). So ϕ is full.

(4) Follows from (1).

(5) Follows from (1).

(6) Suppose ϕ is star surjective and let (e, eπ) ∈ (G oH)o. Let (k, h) ∈ K oH with
(k, h)d = (eϕ, eπ). Then kd = eϕ and hd = eπ. So, by assumption, there exists g ∈ G
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with gd = e and gϕ = k. Then (g, h) ∈ G oH with domain (e, eπ) and maps to (k, h).
For the converse, let e ∈ Go and k ∈ K with kd = eϕ. Then (k, eϕπ′) ∈ K o H with
domain (e, eϕπ′)(ϕ o 1H), whence, by assumption, there exists (g, eϕπ′) ∈ G oH with
image (k, eϕπ′) and (g, eϕπ′)d = (e, eπ). Hence gd = e and gϕ = k as desired.

(7) Suppose that ϕ is a special functor and that

∃(g1, h1)(ϕo 1H)(g2, h2)(ϕo 1H).

Then ∃(g1ϕ(h1g2)ϕ, h1h2). Since ϕ is a special functor, there exist g′1, g
′
2 such that g′1ϕ =

g1ϕ, g′2ϕ = (h1g2)ϕ and ∃g′1g′2. Note that

g′2π = g′2ϕπ
′ = (h1g2)ϕπ′ = h1g2π = h1d.

Similarly, g′1π = g1π. It then follows that ∃(g′1, h1)(h
−1
1 g′2, h2) in G o H and that these

elements agree, respectively, with (g1, h1) and (g2, h2) when mapped under ϕo 1H .
Suppose (g1ϕ, h1) 6 (g2ϕ, h2). Then, since ϕ is a special functor, there exists g′1 ∈ G

with g′1ϕ = g1ϕ and g′1 6 g2. Note that g′1π = g′1ϕπ
′ = g1π so (g′1, h1) ∈ G o H and

(g′1, h1) 6 (g2, h2). But (g′1, h1)(ϕ o 1H) = (g1, h1)(ϕ o 1H). It follows that ϕ o 1H is a
special functor.

For the converse, suppose first that ∃gϕg′ϕ. Then gϕπ′ = g′ϕπ′ so gπ = g′π. Con-
sider (g, gπ), (g′, g′π) ∈ G o H. Then ∃(gϕ, gπ)(g′ϕ, g′π) and so, by assumption, there
exist (g1, h1), (g2, h2) ∈ GoH which are composable and map, respectively, to (gϕ, gπ),
(g′ϕ, g′π), whence h1 = gπ = g′π = h2. Thus h1g2 = g2 and so ∃g1g2.

Suppose gϕ 6 g′ϕ. Then (gϕ, gπ) 6 (g′ϕ, g′π) in KoH, so there exists (r, s) ∈ GoH
with (gϕ, gπ) = (rϕ, s) and (r, s) 6 (g′, g′π). So r 6 g′ and rϕ = gϕ.

To prove the final set of assertions, recall from Example 3.5 that the projection ψ :
GoH → H is actually the map πo1H (under suitable identification of H and HooH).
Since the map π : G→ Ho is automatically star surjective (Ho being a partially ordered
set), the above results show that ψ = π o 1H is star surjective. It is simple to verify
that, for V any of PO, A, SS or CR, π : G → Ho is a V-morphism if and only if
G ∈ V. This completes the proof since covering morphisms are precisely star surjective
PO-morphisms. �

It is well known [11] that covering morphisms always arise from semidirect product
projections ψ : XDoH → H, where XD is a partially ordered set. We shall obtain a new
proof of this as an immediate consequence of one of our main theorems.

4.3. Enlargements

We now wish to investigate a little further the nature of the embedding (3.1) associated
to an ordered functor ϕ : G → H. To do this, we generalize Lawson’s notion of an
enlargement [9,11]. We call an ordered functor ϕ : G → G′ enlarging if it satisfies (S2)
and

(E1) Goϕ is an order ideal of G′o;
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(E2) ϕ is full;

(E3) if e ∈ G′o, then there exists f ∈ G0 such that eD fϕ.

It is easy to verify that (E1) and (E2) imply that Gϕ is an order ideal. Note that an
identity-separating, enlarging functor is special. If ϕ is enlarging and an order embedding,
we say that ϕ is an enlargement and, following Lawson [9], that G′ is an enlargement of
G. Observe that a full, surjective, special functor is automatically enlarging.

Proposition 4.8. The class of enlarging functors is closed under composition.

Proof. Let ϕ : G→ G′ and ρ : G′ → H be enlarging functors. A composition of full,
ordered functors is a full, ordered functor. For (S2), suppose that g1ϕρ 6 g2ϕρ. Then,
since ρ satisfies (S2), there exists g′ ∈ G′ such that g′ 6 g2ϕ and g′ρ = g1ϕρ. Since Gϕ
is an order ideal, g′ ∈ Gϕ. Using that ϕ satisfies (S2), we conclude that there exists g′1
with g′1 6 g2 and g′1ϕ = g′, whence g′1ϕρ = g1ϕρ, as desired. For (E1), suppose h 6 eϕρ

with e ∈ Go. Then eϕ ∈ Goϕ ⊆ G′o and so, since ρ is enlarging, h ∈ G′oρ. Hence there
exists f ∈ G′o with fρ = h. Since ρ satisfies (S2), there exists g′ ∈ G′ with g′ρ = fρ = h

and g′ 6 eϕ. But, since ϕ is enlarging, g′ ∈ Goϕ, whence h ∈ Goϕρ. For (E3), suppose
e ∈ Ho. Then, since ρ is enlarging, there exists e′ ∈ G′o such that eD e′ρ. Since ϕ is
enlarging, there exists f ∈ Go such that e′D fϕ, whence eD e′ρD fϕρ. It follows ϕρ is
enlarging. �

Theorem 4.9. Let ϕ : G→ H be an ordered functor. Then ι : G→ Der(ϕ)oH, as
per (3.1), is an enlargement.

Proof. We already saw in Proposition 3.8 that ι is an order embedding. To show that
(E1) holds, let e ∈ Go. Then eι = ((eϕ, e), eϕ). Suppose ((h, g), h′) 6 ((eϕ, e), eϕ). Then
hr = gdϕ and h′d = hd. Now g 6 e implies g ∈ Go. Hence gd = g. Also h′ 6 eϕ implies
h′ ∈ Ho. So h′ = h′d = hd. Now h 6 eϕ so h ∈ Ho. Thus h = hr = hd = h′. But
hr = gdϕ = gϕ. So we see that ((h, g), h′) = ((gϕ, g), gϕ) = gι with g ∈ Go.

To verify (E2), suppose that ((h, g), h′) ∈ Der(ϕ) o H with ((h, g), h′)d = eι and
((h, g), h′)r = fι with e, f ∈ Go. Then first note that hr = gdϕ and hd = h′d. Now

((h, g), h′)d = ((h, g)d, h′d) = ((h, gd), h′d).

So eϕ = h′d, gd = e and h = eϕ. But

((h, g), h′)r = ((h′)−1
(h, g)r, h′r)

= ((h′)−1
(hgϕ, gr), h′r)

= (((h′)−1hgϕ, gr), h′r).

So (h′)−1hgϕ = fϕ, gr = f , h′r = fϕ. Hence ((h, g), h′) = ((eϕ, g), h′) = ((gdϕ, g), h′).
But h′ = h′fϕ = hgϕ = (eg)ϕ = gϕ. Thus ((h, g), h′) = ((gdϕ, g), gϕ) = gι. So ι is full.
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Finally, for (E3), let ((h, e), f) ∈ (Der(ϕ) o H)o. Then f ∈ Ho, e ∈ Go, f = hd,
and eϕ = hr. But ((hr, e), h−1) ∈ Der(ϕ) o H since eϕ = hr and h−1d = hr. Now
((hr, e), h−1)d = ((hr, e), hr) = ((eϕ, e), eϕ) = eι, while

((hr, e), h−1)r = (h(hr, e)r, hd) = (h(hreϕ, e), f) = ((h, e), f).

Hence ((h, e), f)Deι.
Thus we see that ι is an enlargement. �

5. Factorization theorems

This section contains the various factorization theorems which form our main body of
results. The following two results follow directly from what we have already proved.

Theorem 5.1 (Fibration Theorem). Let ϕ : G→ H be an ordered functor. Then
ϕ = ιψ, where ι is an enlargement (with a right inverse) and ψ is an ordered fibration.
If G and H are finite, then the domain of ψ can be taken to be finite.

Proof. Let ι : G→ Der(ϕ)oH be as per (3.1) and let ψ be the semidirect product
projection. Then ι is an enlargement by Theorem 4.9 and ψ is star surjective (a fibration)
by Theorem 4.7. Also, we have already shown that there was a retraction from Der(ϕ)oH
to G. �

We observe that in the above theorem if ϕ is a V-morphism, where V is any one of
A, SS or QS, then, by Theorems 4.6 and 4.7, we can conclude that ψ is a V-morphism.

The following theorem is a more detailed version of the above one.

Theorem 5.2. Let ϕ : G → H be an ordered functor. Then there is an enlargement
ι : G→ G′oH (with a right inverse) such that ϕ = ιψ with ψ the projection, and which
is universal amongst ordered functors from G into such semidirect products. If G and H
are finite, G′ can be taken to be finite.

Proof. Again let ι be as per (3.1). The theorem then follows from Theorem 4.9 and
Corollary 3.10. �

In the above theorem, if ϕ is a V-morphism and V is any of A, SS or QS, then G′

can be chosen to be in V. In particular, the case of an A-morphism can be viewed as the
ordered groupoid analogue of the Fundamental Lemma of Complexity [19]. Also recall
that G′ can be taken to have a covering morphism to G (cf. Theorem 4.2).

We now show that Ehresmann’s Maximum Enlargement Theorem [11, Theorem 8.3.3]
characterizing star-injective morphisms follows simply from our factorization results and
from our study of derived ordered groupoids and semidirect products. Lawson has shown
[8] that this theorem lies behind the classical theory of idempotent-pure homomorphisms
and prehomomorphisms of inverse semigroups due to O’Carroll [16,17] and McAlister
[12] (see [11, Chapter 8, § 4]).
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Theorem 5.3 (Maximum Enlargement Theorem). Let ϕ : G → H be a star-
injective ordered functor. Then there is an enlargement η : G → K, and an ordered
covering morphism ϕ′ : K → H such that ηϕ′ = ϕ.

Lawson showed that such a K has a universal property which characterizes it up to
isomorphism as the unique such enlargement [11, Theorem 8.3.5]. This theorem will fall
out of a more general result; furthermore, we will have an explicit construction of K.

We will need the following straightforward lemma [11, Lemma 8.1.2].

Lemma 5.4. Let ϕ : G→ H be a star-injective morphism of ordered groupoids. Then,
for x, y ∈ G, x 6 y if and only if xd 6 yd and xϕ 6 yϕ.

Fix an ordered functor ϕ : G→ H. We let D(ϕ) denote the set of D-classes of Der(ϕ).
We consider this set with the preorder 6J .

Lemma 5.5. Suppose H acts on the left of an ordered groupoid G ∈ QS. Let D(G)
denote the set of D-classes of G ordered by 6J and let ρ : G → D(G) be the quotient
map. Then the action of H on G induces an action of H on D(G) such that (ρ, 1H) is an
arrow of Act. Furthermore, ρ is a full, surjective, special functor.

Proof. Clearly ρ is a functor since composable arrows are in the same D-class. If,
for g, g′ ∈ G, g 6 g′, then g 6J g′, whence Dg 6J Dg′ . Thus ρ is an ordered functor.
Suppose π : G→ Ho is the bundle projection. Define π′ : D(G)→ Ho byDgπ

′ = gπ. This
is well defined since the image under π must be constant on D-classes. Define hDg = Dhg.
Since Dgπ

′ = gπ, the left-hand side is defined if and only if the right-hand side is defined.
Also, this definition is independent of the choice of g by Proposition 3.1 (6). It is now
straightforward to see that this is an action whose very definition ensures that (ρ, 1H) is
an arrow of Act.

To see that ρ is a special functor, observe that g1ρ and g2ρ are composable if and only
if Dg1 = Dg2 . But then g1rρ = g2ρ and ∃g1g1r. If Dg1 6J Dg2 , then, by (2.1), there
exists g ∈ Dg1 with g 6 g2. But then gρ = g1ρ. So ρ is a special functor. That ρ is full
and surjective is clear. �

Now for our main result.

Theorem 5.6. Let ϕ : G → H be a QS-morphism. Then ϕ = ηϕ′, where η is an
enlarging functor and ϕ′ is an ordered covering morphism. If G and H are finite, the
domain of ϕ′ can be taken to be finite.

Furthermore, if ϕ is star injective, η can be taken to be an enlargement (giving The-
orem 5.3); if ϕ is star surjective, η can be taken to be surjective; in particular, if ϕ is a
covering, we can take η to be an isomorphism; if ϕ is a CR-morphism, η can be taken
to be identity separating.

Proof. Since ϕ is a QS-morphism, by Theorem 4.6, Der(ϕ) ∈ QS. Hence D(ϕ) is
partially ordered by 6J and, by Lemma 5.5, the quotient morphism ρ : Der(ϕ)→ D(ϕ)
is a full, surjective, special functor which preserves the H-action. Let ι : G→ Der(ϕ)oH
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be the enlargement of Theorem 4.9 and ϕ′ : D(ϕ)oH → H be the projection. Note that
ϕ′ is a covering morphism by Theorem 4.7.

The induced map ρ o 1H : Der(ϕ) o H → D(ϕ) o H is a full, surjective special
functor by Theorem 4.7 and hence enlarging. Thus, by Proposition 4.8, η = ι(ρ o 1H) :
G → D(ϕ) o H is an enlarging functor. Also, ϕ = ηϕ′ and so we have proved the first
statement.

Suppose ϕ is star injective. We show that η is an order embedding. Indeed, if

gη = (D(gdϕ,gd), gϕ) 6 (D(g′dϕ,g′d), g
′ϕ) = g′η.

Then gϕ 6 g′ϕ and D(gdϕ,gd) 6J D(g′dϕ,g′d). Hence there exists (h, e) ∈ D(gdϕ,gd) such
that (h, e) 6 (g′dϕ, g′d) (whence h ∈ Ho, e ∈ Go). By Lemma 4.5, h = hd = gdϕ so
e = gd by Theorem 4.6. Thus gd 6 g′d, whence, by Lemma 5.4, g 6 g′. It follows that
η is an order embedding.

Suppose ϕ is star surjective. Since η is full, to show that η is surjective, it suffices to
show that (D(ϕ)oH)o ⊆ Gη. So let (D(h,g), f

′) ∈ (D(ϕ)oH)o; then f ′ ∈ Ho. By The-
orem 4.6, there is an element (f, e) ∈ D(h,g), where e ∈ Go and f ∈ Ho. We must then
have f = fr = eϕd = eϕ. Also, if π′ : D(ϕ) → Ho is the projection, then D(f,e)π

′ = f ,
whence f ′ = f ′d = D(h,g)π

′ = f . So (D(h,g), f
′) = (D(eϕ,e), eϕ) = eη, whence η is

surjective.
Combining the star-injective and star-surjective cases, we see that η is an ordered

isomorphism if ϕ is a covering morphism.
Suppose that ϕ is a CR-map and e, e′ ∈ Go with eη = e′η. Then (D(eϕ,e), eϕ) =

(D(e′ϕ,e′), e
′ϕ) when eϕ = e′ϕ and so (eϕ, e)D (eϕ, e′). By Theorem 4.6, it follows that

e = e′ and so η is identity separating. �

Immediate corollary results of the theorem and its proof are Theorem 5.3 and the
following.

Corollary 5.7. Let ϕ : G→ H be an ordered functor. Then ϕ is a covering morphism
if and only if there is an isomorphism τ : G → XD o H such that XD is a partially
ordered set and ϕ = τψ, where ψ is the semidirect product projection.

Keeping this corollary in mind, we see that our factorization is as good as can be.

Theorem 5.8. Let ϕ : G → H be a QS-morphism and suppose that ϕ = τψ,
where ψ is an ordered covering morphism which we assume, by the above corollary, to
be a semidirect product projection ψ : XD o H → H (XD a partially ordered set).
Then there is a unique morphism (β, 1H) : HD(ϕ) → HXD in Act such that τ =
η(β o 1H).

Proof. By Corollary 3.10, there is a unique morphism (α, 1H) : HDer(ϕ)→ HXD in
Act such that τ = ι(αo 1H). Since XD is a partially ordered set, α factors through the
projection ρ : Der(ϕ)→ D(ϕ) as ρβ, where β preserves the action. Also

η(β o 1H) = ι(ρo 1H)(β o 1H) = τ.
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We are thus left with checking uniqueness. If β′ is another such morphism, then ρβ′ = α

by uniqueness of α. Since ρ is surjective, it follows that β′ = β. �

The proof of this theorem motivated the consideration of D(ϕ) in the proof of Theo-
rem 5.6.
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