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This paper mainly considers the problem of generalizing a certain class of analytic
functions by means of a class of difference operators. We consider some relations
between starlike or convex functions and functions belonging to such classes. Some
other useful properties of these classes are also considered.
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1. Introduction and preliminaries

Let H denote the class of analytic functions in the open unit disc D = {z ∈ C : |z| <
1}. Let A be the subclass of H comprising of functions f normalized by f(0) = 0,
f ′(0) = 1, and let S ⊂ A denote the class of functions which are univalent in D. Let
f(z) ∈ H and let f(z) be univalent in D. Then f(z) maps D onto a convex domain
if and only if

Re

{
1 +

zf ′′(z)
f ′(z)

}
> 0, (z ∈ D). (1.1)

Such function f is said to be convex in D (or briefly convex). Let K denote the
subclass of H consisting of functions satisfying (1.1) and normalized by f(0) = 0,
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f ′(0) = 1. A function f ∈ S is said to be starlike of order α if

Re

{
zf ′(z)
f(z)

}
> α, (z ∈ D), (1.2)

for some 0 � α < 1. The class of functions starlike of order α is denoted by S∗(α).
Jackson in [13, 14] introduced and studied the q-difference operator, 0 < q < 1,

as

dqf(z) =
f(qz) − f(z)

qz − z
, z �= 0 and dqf(0) = f ′(0). (1.3)

This operator is the q-analogue of the derivative, which is also called the q-
derivative or the Jackson derivative. Obviously, dqf(z) → f ′(z), when q → 1−. This
q-derivative is useful in the theory of hypergeometric series and quantum physics.
Jackson’s derivative is a part of a field called q-calculus (quantum calculus), which
has many applications in combinatorics, number theory, fluid mechanics, quantum
mechanics and physics. The quantum calculus has many applications in the fields
of special functions and many other areas (see [1–6]). Further there is possibility of
extension of the q-calculus to post quantum calculus denoted by the p, q-calculus. In
[15] Chakrabarti and Jagannathan introduced a consideration of the p, q-integer in
order to generalize or unify several forms of q-oscillator algebras well known in the
physics literature related to the representation theory of single-parameter quantum
algebras (see also [3–5, 16]).

1.1. ξ, η-difference operator

Let us begin by defining a basic number [n]ξ,η called a ξ, η number by

[n]ξ,η =
ξn − ηn

ξ − η
, (ξ, η ∈ C, ξ �= η, n ∈ N \ {1}).

We consider the function

hξ,η(z) =
∞∑

n=1

[n]ξ,ηzn = z +
∞∑

n=2

ξn − ηn

ξ − η
zn, (1.4)

for ξ, η ∈ D. It is easy to see that if ξ, η ∈ D, then (1.4) converges for |z| < 1. The
ξ, η-difference operator on f ∈ A is

dξ,ηf(z) =
f(ξz) − f(ηz)

ξz − ηz
, z �= 0 and dξ,ηf(0) = f ′(0). (1.5)

It is easy to find that for f ∈ A

dξ,ηf(z) =
1
z

∞∑
n=1

[n]ξ,ηanzn =
1
z
{hξ,η(z) ∗ f(z)} , z ∈ D, (1.6)

where ∗ denotes the Hadamard product of power series (1.4) and

f(z) = z + a2z
2 + a3z

3 + · · · . (1.7)
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Lemma 1.1. [19] If f ∈ S∗(1/2) and g ∈ S∗(1/2) [ or if f ∈ K and g ∈ S∗ ], then

f(z) ∗ g(z)F (z)
f(z) ∗ g(z)

∈ co{F (D)}, z ∈ D, (1.8)

where F ∈ H and co{F (D)} denotes the closed convex hull of F (D).

1.2. Other known difference operators

If ξ and η are real then dξ,η becomes a p, q-difference operator. Corcino [7] devel-
oped the theory of a p, q-extension of the binomial coefficients and also established
some properties parallel to those of the ordinary and q-binomial coefficients, which
comprised horizontal generating function, the triangular, vertical and the horizon-
tal recurrence relations and the inverse and the orthogonality relations. Sadjang
[20] investigated some properties of the p, q-derivatives and the p, q-integrations.
Sadjang [20] also provided two suitable polynomial bases for the p, q-derivative and
gave various properties of these bases.

The p, q-derivative operator

Dp,qf(x) =
f(px) − f(qx)

(p − q)x
, (p �= q, x �= 0) (1.9)

was perhaps first used in [8]. The operator is also mentioned in the paper [9].
In [10] Hahn introduced the Hahn difference operator:

Dq,ωf(x) =
f(qx + ω) − f(x)

(q − 1)x + ω
, (0 < q < 1, ω > 0) (1.10)

and defined the q-analogues of the trigonometric functions. When ω = 0, (1.10)
becomes Jackson’s derivative operator. On the other hand, when q → 1, (1.10)
becomes the familiar forward difference operator of difference calculus. The oper-
ator (1.10) is a useful tool in constructing families of orthogonal polynomials and
investigating certain approximation problems, see, for instance the paper [4].

If E is a given interval and β : E → E, β �= x, is strictly monotonically increas-
ing function, i.e., x > t ⇒ β(x) > β(t), then β derivative of a function f(x) is
defined by

Dβf(x) =
f(β(x)) − f(x)

β(x) − x
. (1.11)

If β(x) = qx, then (1.11) becomes the q-derivative operator. Further, for β(x) =
qx + ω, the operator (1.11) reduces to the Hahn difference operator (1.10). The
operator (1.11) is found in the papers [11].

2. Main results

Theorem 2.1. If f is in the class K of convex univalent functions, then for ξ, η
such that ξ, η ∈ D, the function given by

zdξ,ηf(z) = z +
∞∑

n=2

[n]ξ,ηanzn, z ∈ D, (2.1)
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is in the class S∗(α) of starlike univalent functions of order α = 1−|ξη|
(1+|ξ|)(1+|η|) . The

order α is the best possible.

Proof. It is easy to check that

hξ,η(z) =
∞∑

n=1

[n]ξ,ηzn =
z

(1 − ξz)(1 − ηz)
, z ∈ D. (2.2)

Hence

zh′
ξ,η(z)

hξ,η(z)
= 1 +

ξz

1 − ξz
+

ηz

1 − ηz
.

Because

Re
ξz

1 − ξz
>

−|ξ|
1 + |ξ| , Re

ηz

1 − ηz
>

−|η|
1 + |η| , z ∈ D,

we have

Re
zh′

ξ,η(z)
hξ,η(z)

> 1 − |ξ|
1 + |ξ| −

|η|
1 + |η|

=
1 − |ξ||η|

(1 + |ξ|)(1 + |η|) , z ∈ D.

Therefore, if ξ, η ∈ D, then hξ,η is starlike univalent in D of order 1−|ξ||η|
(1+|ξ|)(1+|η|) . On

the other hand

zdξ,ηf(z) =

{
z +

∞∑
n=2

anzn

}
∗

∞∑
n=1

[n]ξ,ηzn = f(z) ∗ z

(1 − ξz)(1 − ηz)
. (2.3)

Hence zdξ,ηf is a convolution of f with a starlike function of order α = 1−|ξ||η|
(1+|ξ|)(1+|η|) .

Because of the famous result [19] that K ∗ S∗(δ) = S∗(δ), δ ∈ [0, 1), we finally
obtain that the function in (2.1) is in the class S∗( 1−|ξ||η|

(1+|ξ|)(1+|η|) ). The order α is the
best possible because if we take convex function f(z) = z/(1 − z), then

zdξ,ηf(z) = hξ,η(z)

and the order of starlikeness of zdξ,ηf(z) is equal to the order of starlikeness of
hξ,η(z) which is α as we just have proved. �

It is known that

∀f ∈ S∗∃ g ∈ K : f(z) = zg′(z).

A question worth considering here is the following:
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Is it true that

∀f ∈ S∗ ∃ g ∈ K ∃ξ, η ∈ D : f(z) = zdξ,ηg(z) ?

In terms of the convolution, this problem becomes: Are there ξ, η ∈ D such that for
given f(z) = z + a2z

2 + · · · ∈ S∗, the function

z +
∞∑

n=2

an

[n]ξ,η
zn ∈ K ? (2.4)

The answer of the question (2.4) is ‘no’. Namely, for the starlike function

z

(1 − z)2
= z +

∞∑
n=2

nzn, z ∈ D,

an = n and the function in (2.4) becomes

z +
∞∑

n=2

n

[n]ξ,η
zn,

which is not in the class K because it has the coefficients n/[n]ξ,η and∣∣∣∣ n

[n]ξ,η

∣∣∣∣ =
n

|ξn−1 + ξn−2η + · · · + ξηn−2 + ηn−1| > 1.

Theorem 2.2. If f is in the class K of convex univalent functions, then

Re

{
1

1 − η

dξ,ηf(z)
dξf(ηz)

}
= Re

{
1

1 − η

dξ,ηf(z)
dξη,ηf(z)

}
> Re

{
1 + η

2(1 − η)

}
, z ∈ D, (2.5)

for all ξ, η ∈ D.

Proof. It is known from [19], [p.10], that if f ∈ K, then for all ζ, v and w ∈ D, we
have

Re

{
ζ

ζ − v

v − w

ζ − w

f(ζ) − f(w)
f(v) − f(w)

− v

ζ − v

}
>

1
2
. (2.6)

If we put ζ = ξz, w = ηz and v = ξηz in (2.6), then we obtain

Re

{
1

1 − η

f(ξz) − f(ηz)
z(ξ − η)

[
f(ξηz) − f(ηz)

ηz(ξ − 1)

]−1
}

− Re

{
η

1 − η

}
>

1
2
, z ∈ D.

Trivial calculations give

Re

{
1

1 − η

f(ξz) − f(ηz)
z(ξ − η)

[
f(ξηz) − f(ηz)

ηz(ξ − 1)

]−1
}

> Re

{
1 + η

2(1 − η)

}
, z ∈ D.

This gives (2.5). �
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Theorem 2.3. If f is in the class K of convex univalent functions, then, we have

Re

{
ξ2

η − ξ2

dξ2,ξf(z)
dξ,ηf(z)

}
= Re

{
ξ2

η − ξ2

dξf(ξz)
dξ,ηf(z)

}
< Re

{
η + ξ2

2(η − ξ2)

}
, z ∈ D,

(2.7)
for all ξ, η ∈ D.

Proof. From (2.6), we have that for f ∈ K, for all t, v and w ∈ D, we have

Re

{
t

t − v

v − w

t − w

f(t) − f(w)
f(v) − f(w)

− v

t − v

}
>

1
2
. (2.8)

If we put v = ηz, w = ξz and t = ξ2z in (2.8), then we obtain

Re

{
ξ2z

ξ2z − ηz

ηz − ξz

ξ2z − ξz

f(ξ2z) − f(ξz)
f(ηz) − f(ξz)

− ηz

ξ2z − ηz

}
>

1
2
.

After some calculations, we obtain

Re

{
ξ2

ξ2 − η

f(ξ2z) − f(ξz)
ξ2z − ξz

ηz − ξz

f(ηz) − f(ξz)
− η

ξ2 − η

}
>

1
2

or

Re

{
ξ2

ξ2 − η

dξ2,ξf(z)
dξ,ηf(z)

− η

ξ2 − η

}
>

1
2
.

This proves (2.7). �

Corollary 2.4. If f is in the class K of convex univalent functions, then we have

Re

{
ξ2

η − ξ2

1
1−ξz ∗ dξf(z)

dξ,ηf(z)

}
< Re

{
η + ξ2

2(η − ξ2)

}
, z ∈ D,

for all ξ, η ∈ D, η �= ξ2.

Corollary 2.5. If f is in the class K of convex univalent functions, then we have

Re

{
ηzdξ,ηf(z)

f(ηz)

}
>

1
2
, z ∈ D (2.9)

and

Re

{
ξ

ξ − η

(
dξ,ηf(z) − η

ξ

)}
>

1
2
, z ∈ D, (2.10)

for all ξ, η ∈ D.

Proof. If we put v = 0, w = ηz and t = ξz in (2.8), then we obtain

Re

{
ηz

f(ηz)
f(ξz) − f(ηz)

ξz − ηz

}
>

1
2
, z ∈ D.

After some calculations, we obtain (2.9). If we put v → w = ηz and t = ξz in (2.8),
then we obtain (2.10), in the same way. �
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The class of starlike functions of order α is defined by condition (1.2). We want
to consider here this condition with the operator dξ,η instead of derivative f ′. For
the purpose of this paper, we represent by S∗

ξ,η(α) a class which is defined by

Definition 2.6. Let f ∈ A. For given ξ, η ∈ D, we say that f is in the class S∗
ξ,η(α)

of ξ, η-starlike functions of order α, 0 � α < 1, if

Re

{
zdξ,ηf(z)

f(z)

}
> α, z ∈ D, (2.11)

where the operator dξ,η is defined in (1.5).

Condition (2.11) may be written as

Re

{
f(ξz) − f(ηz)

ξz − ηz

z

f(z)

}
> α, z ∈ D. (2.12)

Remark 2.7. For ξ → η condition (2.11) becomes

Re

{
zf ′(z)
f(z)

}
> α, z ∈ D, (2.13)

and the class S∗
ξ,η(α) tends to the well-known class S∗(α) of starlike functions of

order α.

Remark 2.8. It is known that condition (2.13) implies the univalence of f , when-
ever f ∈ A. Notice that the condition (2.11) does not imply that f is univalent in
D. For example, it is known that f(z) = z + (3/4)z2 is not univalent in D, while
f ∈ S∗

1/2,1/4(0) because for this function f we have

Re

{
zdζf(z)

f(z)

}
= Re

{
1 + (3/4)2z
1 + (3/4)z

}
>

25
28

, z ∈ D.

Theorem 2.9. The function g(z) = z + cz2 is in the class S∗
ξ,η(α), if and only if,

Re

{
1 − |c|2(ξ + η) − |c||ξ + η − 1|

1 − |c|2
}

> α. (2.14)

Proof. We have

Re

{
zdξ,ηg(z)

g(z)

}
= Re

{
1 + c[2]ξ,ηz

1 + cz

}
= Re

{
1 + c(ξ + η)z

1 + cz

}
.

The function

z 
→ 1 + c(ξ + η)z
1 + cz

maps D onto a disc centred at S with radius R, where

S =
1 − |c|2(ξ + η)

1 − |c|2 , R =
|c||ξ + η − 1|

1 − |c|2 .

Therefore, g ∈ S∗
ξ,η(α), if and only if, Re(S − R) > α, which gives (2.14). �
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Corollary 2.10. For all ξ, η ∈ D in the classes S∗
ξ,η(0) are not univalent functions

in D.

Proof. It suffices to consider here a function h(z) defined by

h(z) = z +
1

ξ + η
z2, z ∈ D.

In view of the definition 2.6, we have

Re

{
zdξ,ηh(z)

h(z)

}
= Re

{
1 + z

1 + 1
ξ+η z

}
> 0, z ∈ D,

which implies that h ∈ S∗
ξ,η(0). But we observe that for the function h(z) we have

|1/(ξ + η)| > 1/2, therefore the function h(z) is not univalent which validates the
assertion of the corollary 2.10. �

Theorem 2.11. If f is in the class S∗(1/2) of starlike functions of order 1/2, then

zdξ,ηf(z)
f(z)

∈ co{F (D)},

for all ξ, η ∈ D where

F (z) =
1 − z

(1 − ξz)(1 − ηz)
, z ∈ D.

Proof. Note that

g(z) =
z

1 − z
∈ S∗(1/2), z ∈ D.

Therefore, lemma 1.1 gives

zdξ,ηf(z)
f(z)

=
f(z) ∗ z

1−z

z
(1−ξz)(1−ηz)

z
1−z

f(z) ∗ z
1−z

∈ co{F (D)}, (2.15)

where

F (z) =
z

(1−ξz)(1−ηz)
z

1−z

, z ∈ D,

for all ξ, η ∈ D. �

Corollary 2.12. If f is in the class S∗(1/2) of starlike functions of order 1/2,
then f ∈ S∗

ξ,η(0) for all real ξ, η ∈ (−1, 1), such that

1 + ξ + η − 3ξη � 0 and ξη � 0 (2.16)

or

1 + ξ + η + ξη � 0 and ξη < 0. (2.17)
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Proof. From theorem 2.11, we have for ξ �= η

F (z) =
1 − z

(1 − ξz)(1 − ηz)
=

ξ−1
ξ−η

1 − ξz
+

1−η
ξ−η

1 − ηz

Re

{
zdξ,ηf(z)

f(z)

}
> min

z∈D

Re

{
ξ−1
ξ−η

1 − ξz
+

1−η
ξ−η

1 − ηz

}
.

Assume that z = cos φ + i sin φ, then after some calculations, we have

Re

{
ξ−1
ξ−η

1 − ξz

}
=

ξ − 1
ξ − η

1 − ξ cos φ

(1 − ξ cos φ)2 + (ξ sin φ)2

=
ξ − 1
ξ − η

1 − ξ cos φ

1 + ξ2 − 2ξ cos φ

also

Re

{
1−η
ξ−η

1 − ηz

}
=

1 − η

ξ − η

1 − η cos φ

(1 − η cos φ)2 + (η sin φ)2

=
1 − η

ξ − η

1 − η cos φ

1 + η2 − 2η cos φ
.

Therefore, we have

Re

{
1 − z

(1 − ξz)(1 − ηz)

}

=
1

ξ − η

(ξ − 1)(1 − ξ cos φ)(1 + η2 − 2η cos φ)
−(η − 1)(1 − η cos φ)(1 + ξ2 − 2ξ cos φ)
(1 + ξ2 − 2ξ cos φ)(1 + η2 − 2η cos φ)

=
(1 − cos φ) (1 + ξ + η − ξη − 2ξη cos φ)
(1 + ξ2 − 2ξ cos φ)(1 + η2 − 2η cos φ)

.

For all φ ∈ [0, 2π), we have

1 − cos φ � 0, 1 + ξ2 − 2ξ cos φ > 0, 1 + η2 − 2η cos φ > 0.

Furthermore,

[1 + ξ + η − 3ξη � 0 and ξη � 0] ⇒ 1 + ξ + η − ξη − 2ξη cos φ � 0

for all φ ∈ [0, 2π). Next,

[1 + ξ + η + ξη � 0 and ξη < 0] ⇒ 1 + ξ + η − ξη − 2ξη cos φ � 0

for all φ ∈ [0, 2π). Finally,

Re

{
1 − z

(1 − ξz)(1 − ηz)

}
=

(1 − cos φ) (1 + ξ + η − ξη − 2ξη cos φ)
(1 + ξ2 − 2ξ cos φ)(1 + η2 − 2η cos φ)

� 0

for all φ ∈ [0, 2π) and for all real ξ, η ∈ (−1, 1), ξ �= η, satisfying (2.16) or (2.17).
This means that in this case f ∈ S∗

ξ,η(0). For ξ = η, in the same way as above, we
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can obtain for z = cos φ + i sin φ

Re {F (z)} = Re

{
1 − z

(1 − ξz)2

}

=
(1 − cos φ)

(
1 + 2ξ − ξ2 − 2ξ2 cos φ

)
(1 + ξ2 − 2ξ cos φ)2

� 0

for all φ ∈ [0, 2π) and for all real ξ ∈ (−1, 1), satisfying (2.16) or (2.17) with ξ = η.
This means that also in this case f ∈ S∗

ξ,η(0). �

Corollary 2.12 provides some examples of functions in the class S∗
ξ,η(0) for all real

ξ, η ∈ (−1, 1), satisfying (2.16) or (2.17). It is known that K ⊂ S∗(1/2), therefore
corollary 2.12 leads to the following result.

Corollary 2.13. If f is in the class K of convex univalent functions, then
f ∈ S∗

ξ,η(0) for all real ξ, η ∈ (−1, 1), satisfying (2.16) or (2.17).

Recall here another definition of q-starlike functions of order α. Namely, making
use of q-derivative (1.3), Argawal and Sahoo in [2] introduced the class S∗

q (α).
A function f ∈ A belongs to the class S∗

q (α), 0 � α < 1, if∣∣∣∣zdqf(z)
f(z)

− 1 − αq

1 − q

∣∣∣∣ � 1 − α

1 − q
, z ∈ D. (2.18)

If q → 1− the class S∗
q (α) reduces to the class S∗(α). If α = 0 the class S∗

q (α)
coincides with the class S∗

q (0) = S∗
q , which was first introduced in [12] by Ismail

et al. and was considered in [1, 3, 5, 17, 18].

3. Conclusion

We have considered a certain classes of analytic functions by means of a difference
operator which is a q-analogue of the derivative, which is also called the q-derivative
or the Jackson derivative. Jackson’s derivative is a part of a field called q-calculus
(quantum calculus), which has many applications. Some relations between starlike
or convex functions and functions belonging to the classes defined above, which
have been investigated, may provide opportunity for further work on the subject.
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18 F. Rønning. A Szegö quadrature formula arising from q-starlike functions. In Continued
fractions and orthogonal functions, theory and applications (ed. S. Clement Cooper and
W. J. Thron), pp. 345–352 (New York: Marcel Dekker Inc., 1994).

19 St. Ruscheweyh and T. Sheil-Small. Hadamard product of Schlicht functions and the
Poyla-Schoenberg conjecture. Comment. Math. Helv. 48 (1973), 119–135.

20 P. N. Sadjang. On the fundamental theorem of p, q-calculus and some p, q-Taylor formulas.
ArXiv:1309.3934 [math.QA].

https://doi.org/10.1017/prm.2023.8 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.8

	1 Introduction and preliminaries
	1.1 ,-difference operator
	1.2 Other known difference operators

	2 Main results
	3 Conclusion
	References

