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PERIODIC SOLUTIONS FOR A PAIR OF DELAY-COUPLED
ACTIVE THETA NEURONS
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Abstract

We consider a pair of identical theta neurons in the active regime, each coupled to the
other via a delayed Dirac delta function. The network can support periodic solutions
and we concentrate on solutions for which the neurons are half a period out of phase
with one another, and also solutions for which the neurons are perfectly synchronous.
The dynamics are analytically solvable, so we can derive explicit expressions for the
existence and stability of both types of solutions. We find two branches of solutions,
connected by symmetry-broken solutions which arise when the period of a solution as
a function of delay is at a maximum or a minimum.

2020 Mathematics subject classification: primary 92B25; secondary 92B20, 34K24.
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1. Introduction

Many physical entities such as neurons and lasers can be modelled as oscillators
[5, 19]. Coupling them together results in a network of coupled oscillators. The effect
of one oscillator on others in a network may be delayed due to, for example, the finite
speed of light, or of action potentials propagating along axons [3, 5].

One of the simplest model oscillators is the theta neuron [4], which is the normal
form of the saddle-node-on-invariant-circle (SNIC) bifurcation [7]. A theta neuron
has a single parameter, I, which can be chosen so that the neuron is either excitable or
active (periodically firing). It has the advantage that its state can be found explicitly
as a function of time for constant I [14]. In a previous paper [14] we considered a
single theta neuron with delayed self-coupling (an autapse [21]) in the form of a Dirac
delta function of time. The action of a delta function on a theta neuron can be easily

1School of Mathematical and Computational Sciences, Massey University (Albany), Private Bag
102-904, North Shore Mail Centre, Auckland, New Zealand; e-mail: c.r.laing@massey.ac.nz
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted
re-use, distribution and reproduction, provided the original article is properly cited.

1

https://doi.org/10.1017/S1446181124000282 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446181124000282
https://orcid.org/0000-0002-6086-2978
mailto:c.r.laing@massey.ac.nz
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446181124000282&domain=pdf
https://doi.org/10.1017/S1446181124000282
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calculated, so we were able to analytically describe periodic solutions of this model
and determine their stability, giving a complete description of the types of periodic
solutions, where they occur in parameter space and their stability.

More recently we considered a pair of theta neurons, each coupled to the other
through delayed delta functions [15]. We considered the case of excitable neurons
and found two types of periodic solutions: those for which the neurons were perfectly
synchronous, and those for which the neurons were half a period out of phase with
one another. Extending the analysis in [14] we derived explicit expressions for the
existence and stability of both types of solutions. We also described symmetry-broken
solutions and analytically determined their stability. We found disconnected branches
of solutions, all of which lose stability when the period of a solution as a function of
delay is at a minimum.

This paper considers a pair of theta neurons, each coupled to the other through
delayed delta functions, but when the uncoupled neurons are active. We perform an
analysis similar to that in [15], finding two continuous branches of periodic solutions,
one for which the neurons are perfectly synchronous, and another for which they
alternate firing. These branches undergo symmetry-breaking bifurcations whenever
the period as a function of delay is either a maximum or a minimum. The model is
presented in Section 2, synchronous solutions are studied in Section 3, and alternating
ones in Section 4. Symmetry-broken solutions are studied in Section 5. We consider
the case of smooth feedback in Section 6 and conclude in Section 7.

2. Model

We first consider a single theta neuron [4] governed by

dθ
dt
= 1 − cos θ + (1 + cos θ)I, (2.1)

where θ ∈ [0, 2π) and I is a positive constant. The solution of equation (2.1) is

θ(t) = 2 tan−1
[√

I tan
(√

It + tan−1
( tan[θ(0)/2]

√
I

))]
.

In what follows we set I = 1, and thus a single theta neuron satisfies dθ/dt = 2 and
θ(t) = θ(0) + 2t. (While this may seem to be a drastic assumption, if I � 1, by letting
tan (θ/2) =

√
I tan (φ/2) we find that dφ/dt = 2 [18].)

In this paper, we consider a pair of such neurons coupled with each other via delayed
Dirac delta functions, described by

dθ1
dt
= 1 − cos θ1 + (1 + cos θ1)

(
1 + κ

∑
i:t−τ<si<t

δ(t − si − τ)
)
, (2.2)

dθ2
dt
= 1 − cos θ2 + (1 + cos θ2)

(
1 + κ

∑
i:t−τ<ti<t

δ(t − ti − τ)
)
, (2.3)

https://doi.org/10.1017/S1446181124000282 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181124000282


[3] Periodic solutions in coupled theta neurons 3

0 2 4 6 8 10

time

-2

0

2

(a)

1

2

0 2 4 6 8 10

time

-2

0

2

(c)

1

2

0 2 4 6 8 10

time

-2

0

2

(b)

1

2

0 2 4 6 8 10

time

-2

0

2

(d)

1

2

FIGURE 1. Example periodic solutions of (2.2)–(2.3). The top row shows synchronized solutions while
the bottom shows alternating solutions. The left column has κ = 2 while the right has κ = −1. All diagrams
have τ = 2.

where τ is the (constant) delay and firing times in the past of neuron 1 can be written
{. . . , t−3, t−2, t−1, t0}, and those of neuron 2 can be written {. . . , s−3, s−2, s−1, s0}. The
constant κ is the strength of coupling between the neurons. The influence of the delta
function is to increment θ using

tan (θ+/2) = tan (θ−/2) + κ, (2.4)

where θ− is the value of θ before the delta function acts and θ+ is the value after
[14]. Such a network with I = −1 (that is, when both neurons are excitable rather than
active) and 0 < κ was considered in [15].

Example solutions of (2.2)–(2.3) are shown in Figure 1. In this paper, we focus on
solutions of the form shown: either both neurons are perfectly synchronous, or they are
half a period out of phase with one another. Since between the times at which a delta
function acts we have dθ/dt = 2, and we know the effect of the delta function, (2.4),
we can analytically construct solutions such as those in Figure 1 and determine their
stability. In Section 3 we consider synchronous solutions and in Section 4 we consider
alternating solutions.
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3. Synchronous solutions

We first consider periodic solutions of (2.2)–(2.3) for which the neurons are
perfectly synchronous, as shown in the top row of Figure 1. The influence of one
neuron on the other is thus the same as that of the neuron on itself. The existence of
such solutions is governed by the same equation that governs the behaviour of a single
neuron delay-coupled to itself [14].

3.1. Existence As shown in [14], perfectly synchronous periodic solutions of
(2.2)–(2.3) with period T satisfy

(n + 1)T = τ +
π

2
− tan−1

[
κ + tan

(
τ − nT +

π

2

)]
, (3.1)

where tan−1 is the arctangent function and n is the number of past firing times in the
interval (−τ, 0), assuming that a neuron has just fired at time t = 0. The primary branch
of solutions, corresponding to n = 0, is given explicitly by

T(τ) = τ +
π

2
− tan−1

[
κ + tan

(
τ +
π

2

)]
(3.2)

for 0 ≤ τ ≤ π, while secondary branches are given parametrically, using the reappear-
ance of periodic solutions in delay differential equations with fixed delays [25], as

(τ, T) = (s + nT(s), T(s)), (3.3)

where 0 ≤ s ≤ π. Several branches of such solutions are shown in blue in Figure 2.

3.2. Stability We now derive the stability of a synchronous periodic solution.
Suppose neuron 1 last fired at time t0 and neuron 2 last fired at s0 where s0 ≈ t0. The
most distant past firing of neuron 1 in (t0 − τ, t0) is t−n and the most distant past firing
of neuron 2 in (s0 − τ, s0) is s−n.

For neuron 1, from t0 we wait τ − (t0 − s−n) at which point neuron 1 has its phase
incremented due to a past firing of neuron 2. Before the reset, θ1 equals

θ−1 = π + 2(τ − (t0 − s−n)),

and after reset it is θ+1 , where

tan (θ+1 /2) = tan (θ−1 /2) + κ.

Neuron 1 will then fire after a further time Δ1 where

Δ1 =
π − θ+1

2
.

Thus,

t1 = t0 + τ − (t0 − s−n) + Δ1

= τ + s−n + π/2 − tan−1[κ + tan(π/2 + τ − (t0 − s−n))]. (3.4)
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FIGURE 2. Blue: synchronous periodic solutions (solid stable, dashed unstable). The nth branch goes
from (nπ, π) to ((n + 1)π, π). Red: alternating periodic solutions (solid stable, dashed unstable). The
nth branch goes from ((n − 1/2)π, π) to ((n + 1/2)π, π). Black: symmetry-broken periodic solutions (all
unstable, except the branch at τ = 0 which is neutrally stable). The filled circles indicate saddle-node
bifurcations. κ = 2.

Similarly, for neuron 2, from time s0 we wait τ − (s0 − t−n) until neuron 2 has its
phase incremented as a result of the past firing of neuron 1. Before the reset θ2 equals

θ−2 = π + 2(τ − (s0 − t−n)),

and after the reset it equals θ+2 , where

tan (θ+2 /2) = tan (θ−2 /2) + κ.

Neuron 2 will then fire after a further time Δ2, where

Δ2 =
π − θ+2

2
.

So,

s1 = s0 + τ − (s0 − t−n) + Δ2

= τ + t−n + π/2 − tan−1[κ + tan(π/2 + τ − (s0 − t−n))]. (3.5)

Equations (3.4) and (3.5) give t1 and s1 in terms of previous firing times, but in
general we have

si+1 = τ + ti−n + π/2 − tan−1[κ − cot(τ − (si − ti−n))], (3.6)

ti+1 = τ + si−n + π/2 − tan−1[κ − cot(τ − (ti − si−n))], (3.7)

where we used tan (π/2 + x) = − cot x. We write (3.6)–(3.7) as

F(si+1, ti−n, si) = 0,
G(ti+1, si−n, ti) = 0.
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To find the stability of a solution, we perturb ti → ti + ηi and si → si + μi. Then for
linear order we have

∂F
∂si+1

μi+1 +
∂F
∂ti−n
ηi−n +

∂F
∂si
μi = 0,

∂G
∂ti+1
ηi+1 +

∂G
∂si−n

μi−n +
∂G
∂ti
ηi = 0,

which, after evaluating the partial derivatives at a periodic solution with period T, we
write as

−μi+1 + (1 − γ)ηi−n + γμi = 0, (3.8)

−ηi+1 + (1 − γ)μi−n + γηi = 0, (3.9)

where

γ =
csc2 (τ − nT)

1 + [κ − cot (τ − nT)]2 . (3.10)

This is the same quantity as was found in [14], when studying the stability of a periodic
solution of a self-coupled theta neuron. Assuming solutions of the linear equations
(3.8)–(3.9) of the form μi = Aλi and ηi = Bλi for some constants A and B, as in [15],
we obtain the characteristic equation for the multipliers, λ, as follows:

Fa(λ) ≡ λ2n+2 − 2γλ2n+1 + γ2λ2n − (1 − γ)2 = 0.

This is the same equation as was found in [15], where two excitable neurons were
studied, the only difference being the definition of γ. The magnitudes of the roots of
Fa(λ) determine the stability of the perfectly synchronous periodic solution. If all roots
have |λ| ≤ 1 the periodic solution is not unstable, but if one or more roots have |λ| > 1
the periodic solution is unstable.

We first consider the case n = 0. Then Fa(λ) = (λ − 1)(λ + 1 − 2γ). The root λ = 1
reflects the invariance of the system to uniform time translation, and since 0 < γ the
only instability that can occur is when γ = 1. This point corresponds to dT/dτ = 0 on
the primary branch. To see that this is the case, differentiating (3.2) with respect to
τ, we find that dT/dτ = 1 − γ where γ is given by (3.10) with n = 0. Thus dT/dτ = 0
when γ = 1.

Summarizing the results in [15] for 0 < n, we find that such a synchronous
solution undergoes two types of bifurcations, one when dT/dτ = 0 and the other at
a saddle-node bifurcation (that is, when the curve of period, T, as a function of delay,
τ, is either vertical or horizontal) on each branch, indexed by n.

3.3. Branches of solutions Plotting branches of solutions as given by equations
(3.2)–(3.3) for κ = 2, and indicating their stability, we obtain the blue curve in
Figure 2. Note that these curves are the same as shown in [14, Figure 7], but their
stability is different, due to the possibility of losing stability to a solution which is
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not synchronous. These symmetry broken states are shown in black in Figure 2, and
they are analysed in Section 5.1. Note that if on an unstable section of a branch there
are two saddle-node bifurcations (marked with filled circles in Figure 2) there are
two unstable multipliers between the bifurcations. Stable solutions lose stability in
symmetry-breaking bifurcations when dT/dτ = 0, and between a symmetry-breaking
and a saddle-node bifurcation a solution has one unstable multiplier.

4. Alternating solutions

We now consider solutions for which the neurons take turns firing, half a period out
of phase with one another, as shown in the bottom row of Figure 1.

4.1. Existence As shown in [15], the existence of alternating solutions of
(2.2)–(2.3) is given by (3.1) under the replacement of τ by τ + T/2:

(n + 1/2)T = τ +
π

2
− tan−1

[
κ + tan

(
τ − (n − 1/2)T +

π

2

)]
. (4.1)

The meaning of n in (4.1) is that if neuron 1 fires at time 0, there are n past firing times
of neuron 2 in (−τ, 0); n could be zero.

4.2. Stability Performing a similar analysis as in Section 3.2 or in [15], we obtain
the firing time maps, valid when the oscillators are approximately half a period out of
phase:

ti+1 = τ + si+1−n + π/2 − tan−1 [κ + tan (π/2 + τ − (ti − si+1−n))], (4.2)

si+1 = τ + ti−n + π/2 − tan−1 [κ + tan (π/2 + τ − (si − ti−n))] (4.3)

for i = 0, 1, 2, . . . .
We want to linearize around an alternating periodic solution of (4.2)–(4.3). To do

that, write (4.2)–(4.3) as

R(ti+1, si−n+1, ti) = 0,
S(si+1, ti−n, si) = 0,

then perturb the firing times and assume that these perturbations either grow or decay
exponentially with index. The calculations are similar to those in Section 3.2, and we
obtain the characteristic equation governing the stability of these solutions as

Fb(λ) ≡ λ2n+1 − 2γλ2n + γ2λ2n−1 − (1 − γ)2 = 0, (4.4)

where

γ =
csc2 (τ − (n − 1/2)T)

1 + [κ − cot (τ − (n − 1/2)T)]2 . (4.5)

This characteristic equation was found in [15] for the case of two excitable neurons,
but in that paper γ referred to a different quantity, not that in (4.5). Using the results
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in [15] for the roots of (4.4), we have that the alternating periodic solution with n = 0
is stable for 0 < γ < 1 and unstable for 1 < γ. For 0 < n each branch of alternating
periodic solutions undergoes two bifurcations when the curve of T as a function of
τ is either vertical or horizontal, just as for the synchronous solutions. Branches of
these solutions are shown in red in Figure 2, with stability indicated. Saddle-node
bifurcations are also shown.

5. Symmetry-broken solutions

As mentioned, both types of solutions analysed above undergo bifurcations when
dT/dτ = 0. These are symmetry-breaking bifurcations and we now analyse the
resulting solutions.

5.1. Symmetry-breaking from synchronous solutions We start with (3.6)–(3.7)
and break the symmetry, so that si − ti−n = (n − φ)T and ti − si−n = (n + φ)T; thus
φ = 0 corresponds to the perfectly synchronous case. Substituting these into
(3.6)–(3.7), we obtain equations for the existence of such states:

tan (π/2 + τ − (n + 1 − φ)T) = κ + tan (π/2 + τ − (n − φ)T), (5.1)

tan (π/2 + τ − (n + 1 + φ)T) = κ + tan (π/2 + τ − (n + φ)T). (5.2)

Using the identity tan a − tan b = sin (a − b)/(cos a cos b) first on (5.1) and then on
(5.2), and the fact that cosine is an even function, we find that solutions of (5.1)–(5.2)
satisfy T = 2τ/(2n + 1). In this case both (5.1) and (5.2) reduce to

cot ((1/2 − φ)T) = κ − cot ((1/2 + φ)T). (5.3)

For fixed κ, solutions of (5.3) lie on a curve in (T , φ) space, as shown in Figure 3. The
curves terminate at φ = ±1/2, and these values correspond to alternating solutions.
When φ = ±1/2 we see from (5.3) that T = π, independent of κ. When φ = 0
we have T = 2 cot−1 (κ/2). Thus the symmetry-broken solutions lie on the lines
T = 2τ/(2n + 1), where (2n + 1) cot−1 (κ/2) ≤ τ ≤ (n + 1/2)π, and are plotted in black
in Figure 2 emanating from each minimum on the curve of synchronous solutions
(shown in blue). They each terminate at a maximum on the curve of alternating
solutions (shown in red). Note that only every second of the black curves shown in
Figure 2 is described by this analysis; the other curves are analysed in Section 5.2.
The stability of these types of solutions can be calculated as in [15] and they are all
unstable.

5.2. Symmetry-breaking from alternating solutions

5.2.1. τ = 0 solutions We see from Figure 2 that a symmetric alternating solution
exists for τ = 0. But a whole family of asymmetric solutions also exist, shown with the
vertical black line at τ = 0 in Figure 2. We now analyse them.
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FIGURE 3. Solutions of (5.3), describing symmetry-broken solutions, for κ = 4, 2, 1 (left to right).

Between firing times the flow is given by dθ1/dt = 2 and dθ2/dt = 2. Assume that
θ2 has just fired (that is, θ2 = π) and θ1 = α where 0 < α < π. Both θ1 and θ2 will
increase until θ1 = π, which takes a time Δ1 = (π − α)/2, at which point θ2 = 2π − α.
The phase θ2 is then incremented to θ+2 = 2 tan−1 (κ + tan (π − α/2)). Both phases
then continue to increase until θ2 = π, which takes a further time Δ2 = (π − θ+2 )/2,
at which point θ1 = π + 2Δ2 = 2π − θ+2 . The phase θ1 is then incremented to
θ+1 = 2 tan−1 (κ + tan (π − θ+2 /2)). For this process to describe a periodic solution we
need θ+1 = α, which is true for all 0 < α < π. (A similar calculation can be done for
π < α < 2π.) Thus there is a continuum of such periodic solutions.

The period of such a solution is T = Δ1 + Δ2 and so we can write Δ1 = (1/2 + φ)T
and Δ2 = (1/2 − φ)T for some −1/2< φ< 1/2, where φ= 0 corresponds to the symme-
tric alternating solution. We find that cot (Δ1)= tan (α/2) and cot (Δ2)= κ− tan (α/2)
and thus cot (Δ2) = κ − cot (Δ1), or

cot ((1/2 − φ)T) = κ − cot ((1/2 + φ)T), (5.4)

which is identical to (5.3), and whose solutions are shown in Figure 3. This family of
asymmetric solutions lie on the T-axis with 2 cot−1 (κ/2) < T ≤ π, and are shown in
black in Figure 2. These solutions are neutrally stable, as there is a continuum of them.

5.2.2. τ > 0 solutions The solutions in the previous section exist for τ = 0. Using
the reappearance of solutions of delay differential equations, we see that a solution
with a given φ and T which satisfies equation (5.4) is also a periodic solution with the
same φ and T when the delay equals a multiple of T. Thus, these symmetry-broken
solutions lie on the lines T = τ/n with 2n cot−1 (κ/2) < τ ≤ nπ; these are shown black
in Figure 2. These lines leave minima on the curves of alternating solutions (shown
in red) when φ = 0, and terminate at maxima on curves of synchronous solutions
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FIGURE 4. Periodic solutions of (6.1)–(6.2). Blue: synchronous solutions. Red: alternating solutions.
Solid: stable. Dashed: unstable. The symmetry-broken solutions (all unstable) are shown in black. Filled
circles show the points at which the number of unstable Floquet multipliers of a solution has changed
from one to two; these are saddle-node bifurcations. m = 5, κ = 2.

(shown in blue) when φ = ±1/2. The stability of these solutions can be determined
using calculations similar to those in [15], and they are unstable.

6. Smooth feedback

We now consider the case of smooth feedback, to see whether the results for Dirac
delta function coupling persist. The equations we study are

dθ1
dt
= 1 − cos θ1 + (1 + cos θ1){1 + κP[θ2(t − τ)]}, (6.1)

dθ2
dt
= 1 − cos θ2 + (1 + cos θ2){1 + κP[θ1(t − τ)]}, (6.2)

where

P(θ) = am(1 − cos θ)m,

with am = 2m(m! )2/(2m)!, is a pulsatile function centred at θ = πwith
∫ 2π

0 P(θ)dθ = 2π
for all m. Increasing m makes this function “sharper”, and in the limit m→ ∞ we have
P(θ) = 2πδ(θ − π) where δ is the Dirac delta function [13].

We set m = 5 and find branches of synchronous and alternating solutions using
DDE-BIFTOOL [22]. They are plotted in Figure 4, as are the symmetry-broken
solutions, with stability indicated. We find perfect qualitative agreement with the
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[11] Periodic solutions in coupled theta neurons 11

results shown in Figure 2, obtained for delta function coupling, showing the robustness
of our results.

7. Discussion

We exactly described periodic solutions that occur in a pair of delay-coupled active
theta neurons, and analytically found their stability. Our work is an extension of that
in [15] where a pair of excitable theta neurons were studied. The results are similar, in
that symmetry-breaking instabilities were found where dT/dτ = 0. To obtain periodic
solutions for excitable systems we needed excitatory coupling, that is, 0 < κ. The
results in this paper also had 0 < κ, but that is not necessary to see periodic solutions in
networks of active neurons. The analysis performed here is equally valid for inhibitory
coupling (κ < 0), the main difference being that all solutions will have periods greater
than or equal to π (the period of an uncoupled neuron) as inhibition can only slow
down oscillations.

We now briefly discuss similar work by others. A number of authors have
considered delay-coupled phase oscillators which rotate at a constant speed when
uncoupled, as we do. However, some choose the interactions between oscillators to
be smooth, depending on sinusoidal functions of phase differences, for example [2,
3, 20, 26]. Others consider uniformly rotating oscillators with delayed delta function
coupling [6, 12, 17, 24], but none have used the update rule (2.4) specific to a theta
neuron with pulsatile current input. As an example, Klinshov et al. [9] study a model
containing a phase resetting curve Z(θ−) = θ+ − θ−, where θ− is the value of θ before
the delta function acts and θ+ is the value after. For the update rule (2.4) we have

Z(θ) = 2 tan−1 [tan (θ/2) + κ] − θ.

One can show that −1 < Z′(θ), so neither a single self-coupled theta neuron nor a pair
of them as considered here can undergo a “multijitter” bifurcation of the type seen in
[9–11].

We note that a number of authors (including the authors in [16]) write
dθ/dt = [· · · ] + f (θ)δ(t − τ) to indicate that θ is incremented by the amount f (θ) at
t = τ. However, this interpretation of the impulsive differential equation is incorrect
[1, 8]. Alternating and synchronous periodic solutions were found in a pair of
delay-coupled FitzHugh–Nagumo systems [23]; however, this work and [15] are the
most comprehensive studies of this phenomena so far, aided by the analytical solutions
of the models under study.
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