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Abstract
Objective: To propose malnutrition screening methods for the elderly population
using predictive multivariate models. Due to the greater risk of nutrition deficien-
cies in ageing populations, nutritional assessment of the elderly is necessary in
primary health care.
Design: This was a cross-sectional study. Multivariate models were obtained by
means of discriminant analysis and binary logistic regression. The diagnostic accu-
racy of each multivariate model was determined and compared with the Chang
method based on receiver operating characteristic curves. The optimal cut-point,
sensitivity, specificity and Youden index were estimated for each of the models.
Setting: The province of Cordoba, Spain.
Participants: Two hundred fifty-five patients over the age of 65 years from three
health centres and three nursing homes.
Results: Fourteen models for predicting risk of malnutrition were obtained, six by
discriminantmultivariate analysis and eight by binary logistic regression. Sensitivity
ranged from 55·6 to 93·1 % and specificity from 64·9 to 94 %. The maximum and
minimum Youden indexes were 0·77 and 0·49, respectively. We finally selected a
model which does not require a blood test.
Conclusions: The proposed models simplify nutritional assessment in the elderly
and, except for number 2 of those calculated by binary logistic regression, have
better diagnostic accuracy than the Spanish version of the Mini Nutritional
Assessment screening tool. The selected model, whose validation is necessary
for the future with other different samples, provides good diagnostic accuracy,
and it can be performed by non-medical personnel, making it an accessible, easy
and rapid tool in daily clinical practice.
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The population is ageing throughout the world, especially
inWestern countries. By 2050, the number of older persons
aged 60 years or over is expected to reach 2·1 billion(1), thus
making it necessary to tailor health services to the specific
characteristics and needs of the elderly population. If the
increase in life expectancy is to be accompanied by good
quality of life, the management of chronic diseases is
insufficient; the social, economic, functional and mental
problems of elderly people should also be addressed(2).
Ageing involves a greater risk of nutritional deficiency,
either due to a decrease in protein and energy intake
and/or a decrease in vitamins and minerals. This situation

is further exacerbated by problems of tooth and taste loss.
Gastrointestinal malabsorption is another factor that causes
malnutrition and is sometimes accentuated due to the inter-
action of various drugs(3). Therefore, the comprehensive
care of elderly patients must also include the assessment
of nutritional status, since malnutritionmay lead to physical
and psychological deterioration and hence a greater risk of
morbidity andmortality, as well as increased health costs(4).

In order to determine nutritional status in the elderly, it is
necessary to perform a global assessment that includes the
medical history of the patient’s eating habits, degree of
autonomy to perform basic and instrumental activities of
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daily living, mood, cognitive status, chronic disease, phar-
macological treatment and anthropometric measures(5).
In primary health care, however, it is difficult to carry out
nutritional assessments on a regular basis.

To simplify the detection of malnutrition, nutritional
questionnaires are used as screening tools. The most
widely used questionnaire for this population group is
the Mini Nutritional Assessment (MNA), which showed a
sensitivity of 96 % and a specificity of 98 %(6,7) in the original
study. However, the MNA has recently been validated in
the Spanish population(8) and obtained a much lower diag-
nostic accuracy (sensitivity 63·2 % and specificity 72·9 %)
than reported in the original work. These results are consis-
tent with those found in other MNA validation studies
carried out in different countries(9–11).

For these reasons, new tools for screening malnutrition
in the over-65 population need to be developed to improve
the diagnostic accuracy of the MNA questionnaire. In addi-
tion, the screening tools should be easy to use and interpret
in any health care setting (primary health care, home care,
nursing homes, etc.)(12).

The objective of this study is to propose malnutrition
screening methods for use in the elderly population
based on predictive multivariate models constructed with
variables collected in the assessment of nutritional status.
These methods aim to simplify and improve the diagnostic
accuracy of other tools such as the MNA questionnaire.

Methods

Design, population and sample
This cross-sectional study was carried out in Cordoba,
Spain.

From the population over 65 years of age attended in
five medical quotas in three primary health centres, two
urban and one rural, and three nursing homes (n 1725
patients), the minimum sample size was estimated. For a
CI of 95 % and a power of 80 %, for an expected sensitivity
and specificity of the new instrument of 85 % and taking
Chang Method as Gold Standard (with 99 % of sensitivity
and 95 % of specificity), the minimum sample size was
248 individuals. Based on the losses of a previous pilot
study(8), the need to increase the number of subjects by
3 % was determined, obtaining a final sample size of 255
subjects. For the selection of the sample, a randomised
sampling was carried out and stratified by age and type
of patient (ambulatory/home/nursing home).

The inclusion criteria were: patient over 65 years of age,
the possibility of obtaining information from the patient
and/or primary caregiver and consent to participate in
the study. The exclusion criteria were: existence of an inca-
pacitating underlying disease (dementia, vascular accident,
etc.) that prevented obtaining informed consent or infor-
mation required for the study and not being able to locate
a relative/caregiver who could act as surrogate.

Study and measurement variables
The outcome variable was nutritional status evaluated by
the Chang method. This method was considered the most
objective one, having significant advantages of reliability,
reproducibility and specificity(13). This method determines
the type and degree of malnutrition based on a score
obtained from three types of variables: anthropometric
(percentage of weight loss with respect to ideal weight,
mid-upper arm circumference and triceps skinfold),
biochemical (serum albumin level) and immunological
(peripheral blood lymphocyte count). For purposes of
analysis, the patients were classified according to the final
score as malnourished (if a result indicating any type and
degree of malnutrition was obtained) or normo-nourished.

The following independent or predictor variables were
also included in the models:

— Sociodemographic variables: age (years), sex (male/
female) and residence (in-home dependent/institu-
tionalised/outpatient).

— Anthropometric variables: height (cm), weight (kg),
BMI (kg/m2), calf circumference (cm), arm muscle cir-
cumference (cm) and waist circumference (cm).

— Clinimetric scales: depressive symptoms (Yesavage)(14),
cognitive impairment (Pfeiffer)(15), instrumental capacity
(Lawton and Brody)(16), dependence in basic activities of
daily life (Barthel)(17) and nutritional status (Chang)(18,19).

— Clinical analyses: Hb (g/dl), proteins (g/dl), iron (μg/dl),
thyrotropin (mU/l), cholesterol (mg/dl), C-reactive pro-
tein (mg/l) and vitamin D (ng/ml).

— Other variables: number of diseases, number of pre-
scription drugs taken and presence of most prevalent
diseases.

All the measurements were performed by specially trained
medical and nursing personnel in order to minimise the
CV following the recommendations of the Anthropometric
Standardization Reference Manual(20). Each variable was
measured three times, and the mean value was calculated.
Mid-upper arm circumference, calf circumference and waist
circumference were determined in the non-dominant limb
using a flexible tapemeasure. In addition, the triceps skinfold
was measured using a Harpenden skinfold caliper with an
accuracy of 0·2mm. Weight and height were measured
with an accuracy of 0·1 kg and 0·1 cm, respectively. A blood
sample was subsequently taken to determine the analytical
parameters. All data were collected from 2014 to 2016.

Two types of models were distinguished according to
the nature of the predictor variables in the final model:
non-invasive (without biochemical variables) or mixed
(with biochemical variables, among others).

Statistical analysis
The quantitative variables are shown as means at a 95 % CI.
The qualitative variables are reported in frequencies and
percentages. To test the goodness-of-fit of the quantitative
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variables to a normal data distribution, the Lilliefors-
corrected Kolmogorov-Smirnov test was performed. To test
the hypothesis, ANOVA for the comparison of three means
(parametric) or the Kruskal–Wallis test (non-parametric)
was used. A post hoc analysis was carried out using the
Bonferroni and Tukey tests, while the χ2 test was used
for the qualitative variables. Variables that showed a signifi-
cant association with nutritional status were used to
develop the models.

Given that the outcome variable was a dichotomous
qualitative variable, two types of multivariate models were
obtained:

— Binary logistic regression models adjusted for various
qualitative and quantitative predictor variables. The
models with invasive and non-invasive variables were
compared. The adjusted OR was determined with a
95 % CI. Goodness-of-fit tests (–2 log-likelihood,
goodness-of-fit statistic, Cox and Snell R2,
Nagelkerke R2 and Hosmer-Lemeshow tests) were
performed to assess the overall fit of the model.

— Discriminant analysis models adjusted only for
quantitative predictor variables. The models with
invasive and non-invasive variables were compared.
Coefficients were obtained for each Fisher linear dis-
criminant function (normo-nutrition andmalnutrition).
Box’s M test was used to check the equality of
the matrices for both groups (normo-nourished and
malnourished), and the Wilks’ lambda test was used
to determine the discriminant capacity of the predictor
variables.

Finally, receiver operating characteristic curves were used
to compare the diagnostic accuracy of each multivariate
model against the Chang method. The optimal cut-point,
sensitivity, specificity and Youden index values were deter-
mined for each of the models.

For all the statistical analyses, an alpha error probability
of<5 % (P< 0·05) was considered acceptable and a 95 %CI
was calculated. SPSS (version 22.0) and EPIDAT (version
4.2) software were used to perform the analyses.

Results

Characteristics of the sample
Of the 255 patients enrolled, 248 (97·2 %) completed the
study (one patient died during the study and the analytical
data could not be completed for six of them).

Of the total number of patients in the study, 72·2 % (179)
were women and the overall mean age of the sample was
81·3 years (95 % CI 80·2, 82·4). 51·5 % of the participants
had no schooling, 31·4 % had completed primary school
and 17 % had completed secondary or higher education.
Regarding the level of dependency, 48·8 % of the patients
were independent, 27·4 % were in-home dependents and

23·8 % lived in a nursing home. The mean number of
illnesses was 3·9 (95 % CI 3·7, 4·1) with an average daily
intake of 6·5 prescription drugs (95 % CI 6·1, 6·9). The
prevalence of malnutrition according to the Chang
nutritional status score was 29·6 %. A detailed description
of the overall characteristics of the sample by age range
is shown in Table 1.

Design of models to detect malnutrition
Fourteen models for predicting risk of malnutrition were
obtained from the adjusted binary logistic regression and
discriminant analysis multivariate models. Of these, six
were obtained by means of a discriminant multivariate
analysis and eight by means of binary logistic regression.
The sensitivity of the models ranged from 55·6 to 93·1 %
and the specificity from 64·9 to 94 %. The maximum
Youden index value was 0·77, and the minimum value
was 0·49. Tables 2 and 3 show the models in addition to
the main indicators of sensitivity, specificity, the validity
index and the AUC.

From non-invasive models, model 2 through discrimi-
nant analysis includes four variables (age, the Barthel
and Lawton scales and BMI), obtaining an acceptable
Youden index (0·51) and good sensitivity (86·1 %). By con-
trary, model 8, which was calculated by binary logistic
regression, showed better Youden index (0·6) but worse
sensitivity (66·2 %).

Of the mixed models, model 5 is integrated by eight var-
iables showing the best Youden (0·77). Model 6, obtained
by binary logistic regression with the predictor variables
age, BMI, arm muscle circumference, lymphocytes and
thyrotropin, showed a high sensitivity (84·7 %) and speci-
ficity (87·7 %).

The model 2 of discriminant analysis, as a non-invasive
model, and model 6 of logistic regression, within the inva-
sive ones, were considered the most practical. Finally, the
canonical function of model 2 was obtained for its use in
clinical practice. Figure 1 shows a summary diagram of
the design of these models, and the coefficients of the
discriminant equation from model 2 are also represented.

Discussion

This study aims to determine the nutritional status of elderly
patients by means of predictive models that are easy and
quick to use in any social health care setting. For this
purpose, fourteen multivariate models were obtained to
detect malnutrition by combining several variables related
to nutritional assessment.

In adults over 65 years of age, poor nutritional status can
lead to amarked increase inmorbidity andmortality, which
is exponentially accentuated in the frail elderly due to
chronic illnesses, functional dependence and inadequate
intake(21). In a recently published prospective cohort study,
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Table 1 Descriptive characteristics of sample by age group

Total
(n 248)

<75 years
(n 73)

76–84 years
(n 74)

≥85 years
(n 101)

% n % n % n % n P

Sex <0·001
Male 27·8% 69 42% 29 36·2% 25 21·7% 15
Female 72·2% 179 24·6% 44 27·4% 49 48% 86

Residence
Home 27·4% 68 11·8% 8 16·2% 11 72·1% 49 <0·001
Institutionalised 23·8% 59 8·5% 5 23·7% 14 67·8% 40
Outpatient 48·8% 121 49·6% 60 40·5% 49 9·9% 12

Number of illnesses NS
Mean 3·90 3·64 3·88 4·11
95 % CI 3·70, 4·10 3·27, 4·02 3·52, 4·23 3·79, 4·43

Number of prescription drugs NS
Mean 6·51 5·78 6·82 6·81
95 % CI 6·13, 6·89 5·1, 6·46 6·09, 7·56 6·22, 7·41

Anthropometric parameters
BMI <0·001
Mean 28·65 30·96 29·93 26·03
95 % CI 27·92, 29·38 29·74, 32·19 28·62, 31·24 24·97, 27·1

Triceps skinfold NS
Mean 16·18 16·83 16·77 15·28
95 % CI 15·27, 17·08 15·18, 18·48 14·98, 18·56 13·91, 16·65

Mid-upper arm circumference <0·001
Mean 29·01 30·78 30·22 26·84
95 % CI 28·46, 29·54 29·86, 31·69 29·44, 30·99 26, 27·67

Calf circumference <0·001
Mean 34·29 36·82 35·28 31·73
95 % CI 33·66, 34·91 35·95, 37·7 34·21, 36·34 30·77, 32·69

Analytical parameters
Hb <0·001
Mean 12·79 13·74 13·37 11·66
95 % CI 12·54, 13·03 13·37, 14·10 13·01, 13·72 11·29, 12·03

Lymphocyte count NS
Mean 2·08 2·51 2·05 1·79
95 % CI 1·84, 2·33 1·69, 3·33 1·91, 2·20 1·66, 1·92

Total proteins <0·001
Mean 6·59 6·75 6·74 6·36
95 % CI 6·52, 6·66 6·64, 6·85 6·64, 6·85 6·24, 6·48

Albumin <0·001
Mean 3·88 4·16 4 3·59
95 % CI 3·83, 3·94 4·10, 4·22 3·93, 4·08 3·5, 3·68

Iron <0·001
Mean 72·44 78·22 81·74 61·93
95 % CI 68·3, 76·59 72·17, 84·28 72·94, 90·53 55·9, 67·96

Thyrotropin <0·05
Mean 2·25 1·89 2·01 2·68
95 % CI 1·98, 2·51 1·64, 2·14 1·7, 2·31 2·1, 3·25

Cholesterol NS
Mean 188·81 193·7 193·35 182·03
95 % CI 184·12, 193·45 185·1, 202·32 185·6, 201·09 174·15, 189·9

C-reactive protein <0·05
Mean 7·36 5·61 4·68 10·54
95 % CI 5·44, 9·26 3·45, 7·77 2·99, 6·37 6·33, 14·76

Vitamin D <0·001
Mean 44·64 52·88 50·88 34·69
95 % CI 41·33, 47·95 47·14, 58·62 43·6, 58·16 30·72, 38·66

Assessment questionnaires
Pfeiffer
Normal-mild 78·6% 173 38·2% 66 34·1% 59 27·7% 48 <0·001
Moderate 9·5% 21 9·5% 2 19% 4 71·4% 15
Severe 11·8% 26 7·7% 2 7·7% 2 84·6% 22

Yesavage
Normal 66·1% 127 39·4% 50 29·9% 38 30·7% 39 NS
Moderate 26·6% 51 25·5% 13 33·3% 17 41·2% 21
Severe 7·3% 14 42·9% 6 42·9% 6 14·3% 2

Barthel
Low independent-dep. 70% 173 38·2% 66 34·7% 60 27·2% 47 <0·001
Moderate-severe 12·6% 31 9·7% 3 16·1% 5 74·2% 23
Completely dependent 17·4% 43 7% 3 20·9% 9 72·1% 31
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it was observed that poor nutritional status is, on its own, an
important prognostic factor of mortality, regardless of the
cause. In addition, an association between malnutrition
and mortality due to neoplasms and cardiovascular or
respiratory disease has been reported(22).

The most frequent variables in the models with the
greatest validity are age, BMI, arm muscle circumference,
the Barthel and Lawton scales and the analytical parame-
ters thyrotropin and lymphocyte count.

BMI, which is one of the most selected variables in
all the models, has been used as a criterion to measure
malnutrition in numerous studies. When the BMI value is
below normal, it is strongly associatedwithmalnutrition(23).
However, a recent meta-analysis has recommended
increasing BMI cut-points to 23 kg/m2 to identify malnutri-
tion in people 72 years of age and over(24). Similarly, the
ESPEN consensus suggested a cut-off of 22 kg/m2 in people
over 70 years of age(25). In our study, BMI is considered a
continuous quantitative variable in the models that include
this measurement.

However, age is one of the variables most strongly asso-
ciated with malnutrition in our models. In a systematic
review of 2499 publications by Fávaro-Moreira et al., the
authors analysed variables that could be related to the
development of malnutrition and found that age was
among the most significant(26).

Although the association between an individual’s loss
of functional capacity and the risk of malnutrition is
well known(27), level of dependency is rarely included in
tools used to diagnose malnutrition. Dependency is only
included in the Subjective Global Assessment question-
naire and in some questions of the MNA. In our study,
the Barthel and Lawton scores have been found to be deter-
minant variables in several of the models and in the most
reliable non-invasive model.

As regards the analytical parameters, thyrotropin
appears in nine models. An increase in this hormone could
be due to an indirect effect given the decrease in the pro-
duction of thyroid hormones in old age(28,29). Lymphocyte
count is the other most repeated analytical parameter
(seven models). Several studies have confirmed the

association between a decrease in lymphocytes and the
risk of malnutrition(30,31).

In assessment equations, we selected model 2 from
discriminant analysis (based on age, BMI, and Barthel
and Lawton scales) for its accuracy and simplicity of appli-
cation. That is, showing the same capacity to predict a state
of malnutrition that others, this model does not require a
blood test. We consider this an extremely important aspect
due to the ease and speedwith which it can be applied dur-
ing a routine examination in primary care and the financial
savings this would entail. In addition, the model includes
variables that are usually considered when assessing
elderly patients (Fig. 1).

Other studies have developed screening methods
using variables to detect malnutrition, among them
the mixed nutritional screening method (CIPA) for
hospitalised patients that includes four parameters: intake
control for 72 h, BMI, proteins and albumin(32). Specific
models have also been developed to assess malnutrition
in diseases such as gastric adenocarcinoma using
different variables (albumin, prealbumin and the CA-125
marker)(33).

In addition to theMNA, there are othermethods for diag-
nosing malnutrition, among them the Subjective Global
Assessment(34), the Malnutrition Screening Tool(35) and
the Malnutrition Universal Screening Tool(36). These are
non-invasive screening tools that must be implemented
by trained health personnel and are based on subjective cri-
teria that can be interpreted in different ways depending on
who performs the screening. In a recent study to validate
the Malnutrition Screening Tool in Spanish, compared with
a complete nutritional assessment, a sensitivity of 69·4 %
and a specificity of 94·2 %(37) were obtained as validity
parameters for the tool. Malnutrition Universal Screening
Tool was also evaluated in the same study and showed a
sensitivity of 79·4 % and a specificity of 89·1 %. Although
these findings are acceptable, we believe that the results
of our study are more balanced and beneficial for the pop-
ulation and health professionals, as the proposed models
eliminate possible subjective interpretations and do not
require specific training to use them.

Table 1 Continued

Total
(n 248)

<75 years
(n 73)

76–84 years
(n 74)

≥85 years
(n 101)

% n % n % n % n P

Lawton
Low independent-dep. 48·1% 118 48% 59 37·4% 46 14·6% 18 <0·001
Moderate-severe 17·6% 43 16·3% 7 25·6% 11 58·1% 25
Completely dependent 34·3% 84 7·4% 6 21% 17 71·6% 58

Chang
Not malnourished 70·4% 171 35·1% 60 37·4% 64 27·5% 47 <0·001
Malnourished 29·6% 72 13·9% 10 13·9% 10 72·2% 52

Data expressed in percentage % and absolute number in category; mean and 95 % CI; P = level of significance.

Screening, nutrition and ageing 453

https://doi.org/10.1017/S1368980020002153 Published online by Cambridge University Press

https://doi.org/10.1017/S1368980020002153


Table 2 Multivariate models by discriminant analysis

ROC

Discriminant analyses Type Variables S Sp PPV NPV CCR PLR NLR J OR Range Cut-point value

Model 1 Mixed BMI, TSH, CRP, Vit D 86·8% 68·8% 55·1% 92·2% 74·3% 2·72 0·19 0·56 0·845 0·79–0·9 0·096
Model 2 Non-invasive Age, Barthel, Lawton, BMI 86·1% 64·9% 50·8% 91·7% 71·2% 2·45 0·21 0·51 0·833 0·776–0·891 0·188
Model 3 Mixed Age, CRP, TSH, BMI 72·2% 78·8% 59·1% 87% 76·8% 3·41 0·35 0·51 0·841 0·785–0·897 0·297
Model 4 Mixed AC, LC, TSH, Albumin, Iron 70·3% 89·9% 74·6% 87·4% 84% 6·98 0·33 0·60 0·865 0·811–0·919 –0·602
Model 5 Mixed AC, LC, TSH, CRP 69·4% 90% 74·6% 87·4% 83·8% 6·94 0·34 0·59 0·852 0·796–0·907 –0·554
Model 6 Mixed AC, LC, TSH, CRP, Iron 73·4% 87·2% 71·2% 88·3% 83% 5·72 0·30 0·61 0·876 0·823–0·928 –0·388

S, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; CCR, correctly classified cases; PLR, positive likelihood ratio; NLR, negative likelihood ratio; J, Youden index; ROC, receiver operating characteristic
curve; TSH, thyroid-stimulating hormone; CRP, C-reactive protein; Vit D, vitamin D; AC, mid-upper arm circumference; LC, lymphocyte count.

Table 3 Multivariate models obtained by binary logistic regression

ROC

Binary LOG. REG. Type Variables S Sp PPV NPV CCR PLR NLR J OR Range Cut-point value

Model 1 Non-invasive Age, BMI, AC, Barthel, Lawton 87·5% 66·7% 78% 83% 81·9% 2·62 0·18 0·54 0·837 0·778–0·896 0·195
Model 2 Non-invasive Age, BMI, Neoplasm 55·6% 93% 77% 83% 81·9% 7·94 0·48 0·49 0·812 0·75–0·874 0·521
Model 3 Invasive Age, TSH, CRP, LC, glucose 75·7% 85·8% 78% 85% 83·7% 5·33 0·28 0·61 0·866 0·814–0·918 0·384
Model 4 Mixed Age, Barthel, Lawton, LC, TSH,

BMI, AC
79·2% 91·8% 84% 88% 87·2% 9·65 0·22 0·71 0·928 0·894–0·962 0·427

Model 5 Mixed Age, Barthel, Lawton, LC, TSH,
BMI, AMC, HF

93·1% 84·2% 82% 89% 87·2% 5·89 0·08 0·77 0·946 0·918–0·974 0·258

Model 6 Mixed Age, BMI, AMC, LC, TSH 84·7% 87·7% 83% 89% 87·7% 6·88 0·17 0·72 0·923 0·887–0·958 0·327
Model 7 Non-invasive dichotomous AMC, dichotomous

Barthel, (AC x IWP), HF
70·4% 87·5% 70·4% 87·5% 82·4% 5·632 0·33 0·58 0·851 0·796–0·907 0·37

Model 8 Non-invasive Chang AMC, ACþ IWP (1),
ACþ IWP (2) dichotomous
Barthel, HF

66·2% 94% 82·4% 92·3% 85·8% 11·03 0·36 0·6 0·885 0·831–0·939 0·48

S, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; CCR, correctly classified cases; PLR, positive likelihood ratio; NLR, negative likelihood ratio; J, Youden index; ROC, receiver operating characteristic
curve; AC, mid-upper arm circumference; TSH, thyroid-stimulating hormone; CRP, C-reactive protein; LC, lymphocyte count; AMC, arm muscle circumference; IWP, ideal weight percentage; HF, heart failure.
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Limitations of the study
This study has two main limitations. First, some of the
models include variables used in the Chang method. This
method is considered the gold standard of nutritional screen-
ing,which could explain the high predictive capacity of these
models. Second, the proposed model for analysing nutri-
tional status has not been validated, so a validation study
of the model on a different, larger sample size would be
convenient.

Conclusions

The models proposed here simplify nutritional assessment
in the elderly and, except for number 2 of those calculated
by binary logistic regression, all of them showed a better
diagnostic accuracy than the Spanish version of the
MNA. In addition, the selected model can be performed
by non-medical personnel, making it an accessible, easy
and rapid tool in daily clinical practice. In any case, further
studies will be necessary to consolidate these results.
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