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Abstract. The main problem investigated in this paper is the following. Assume
that we are given a convergent projective system of topological measure spaces ordered
by ordinals. When does there exist a consistent system of liftings (densities, linear
liftings) on the projective system converging to a lifting (density, linear lifting) on the
limit space. We look mainly for strong or strong completion Baire liftings. We reduce
the problem to the question about the existence of strong liftings being inverse images
of other strong liftings under measure preserving mappings (Proposition 2.4) and then
we adapt a condition applied earlier by A. and C. Ionescu Tulcea [14] to get a strong
lifting for an arbitrary measure on a product space (Theorem 2.7). In this way we
get some results (see Theorems 2.7, 5.3, 5.7, 6.4 and 6.5) extending the well known
achievements of A. and C. Ionescu Tulcea [14] and Fremlin [9].

The application of projective limits allows us to carry over results obtained earlier
only for product spaces (see e.g. [23], [18], [19], [20], [21]) to more general classes of
topological probability spaces. In particular, we can extend the class of spaces for which
there is a positive answer to a problem of J. Kupka [17] concerning the permanence of
the strong lifting property under the formation of products (see Theorem 6.5).

2000 Mathematics Subject Classification. 28A51, 28C15, 60A10.

1. Preliminaries. Given a probability space (£2, X, i) the family of all p-null
subsets of £2 is denoted by Xy. For 4, B € X we write A = B a.e. (i) iff AAB, the
symmetric difference of 4 and B, is a u-null set. The (Carathéodory) completion of
(£2, X, u) will be denoted by (£2, >, n).If 2 c X, then wE will be the completion of
1| E. L°(u) denotes the family of all bounded real-valued p-measurable functions on
(£2, X, n). Equivalent functions are not identified. The space of equivalence classes of
functions that are u-integrable (or bounded) is denoted by L'(11) (resp. by L>®(w)). The
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o-algebra generated by a family £ of sets is denoted by o(£). N and R stand for the
natural numbers and the real numbers respectively. If M C §2, then M€ : = 2\M. We
use the notion of (lower) density, linear lifting, lifting in the sense of [14, Chapter III]
and for every probability space (§2, ¥, u) we denote by #(u), G(u) and A(u) the
system of all (lower) densities, linear liftings, and liftings respectively. If ¥+ € G(u) then,
following [14] we define density ¥ € ©(u) by setting

Y(E) == {Y(xg) =1} foreach Ee X,

where xr denotes the characteristic function of E.

Throughout a quadruple (£2, 7, X, u) will be called a topological measure space,
if (82, 7)) is a Haussdorff topological space and (£2, X', u) is a measure space such that
T C X. B(£2) is the Borel o-algebra of (£2, 7). The Baire o-algebra of (2, 7), i.e. the
o-algebra generated by the system of all cozero subsets of €2, is denoted by B((£2). Let
(£2, X, u) be a probability space and 7 be a topology on £2. A family F C X' is called
a measurable network for (£2, 7) if for each G € 7 there exists a subfamily G C F such
that G = | JG. If F can be taken to be countable, then we say that F is a countable
network. If (£2, 7) is a (Hausdorff) topological space we denote by C,(£2) the space
of all bounded continuous functions on §2. The measure u is called t-additive, if for
every incrasing family (G;);c; of open subsets of £2 we have u(lJ,.; Gi) = sup;c; u(G)).

A Radon measure space is a complete topological measure space (£2, 7, g(Q), W)
such that the measure u is locally finite, i.e. for every o € §2 there exists an open set
G containing o such that u(G) < +o00, and inner regular with respect to the compact
sets, i.e. u(E) = sup{u(K) : Kcompact, K C E} forall E € X.

For a topological measure space (§2, 7, X, u) a lifting p € A(u) is called strong, if
G C p(G)forall G € T, and p is called almost strong, if there existsa N € X such that
G C p(G)UN for all G € 7. We say that a topological measure space (£2, 7, X, )
(or just p) has the almost strong lifting property, ASLP for short, if there exists an
almost strong lifting p € A(ur), and it has the universal strong lifting property (USLP
for short), if each p € A(u) is almost strong. For a list of spaces having the USLP the
reader should compare [26]. This list of spaces comprises most spaces appearing in
applications. For each p € A(u) there exists exactly one (multiplicative) lifting o (in the
sense of [14, Chapter III, Section 1, Definition 2]) on £>(u) such that p(x4) = xp)
for all A € X (see [14]). For simplicity we write o = p. If (£2, 7) is completely regular,
then a p € A(w) is strong if and only if p(f) = f for every f € Cp(£2). If n admits a
strong lifting then u is T-additive (see [1], Prop. 3).

p € A(w) is called completion Baire, if p(A) € By(£2) for each 4 € X, and p is
called strong completion Baire, if it is strong and completion Baire.

A measure p on B,(£2) is called completion regular if for every Borel set B there
exist A1, Ay € B,(§2) such that 4| € B € A, and u(A4>\A4;) = 0. A measure u on 5(£2)
is called completion regular, if its restriction to 5,(£2) is completion regular. If u is
completion regular, then each lifting is completion Baire.

For a complete probability space (@, Z, v) and ¢ € ¥(v) put

T, ={A € E:A4AC¢(A)}.
Then 7, is a topology on @ called the density topology associated with ¢ (see [14,

Chapter V, Section 1]). The same definition holds true for liftings instead of densities
and the corresponding topology is called the lifting topology.
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If y is an ordinal, then we will often identify it with the set {¢ < y} of all ordinals
less than y. I will always be a nonempty set and if ((§2;, X;, u;))ies is a family of
probability spaces then, for each ¢ # J C I we denote by (£2;, X, is) the product
measure space ®;e;(2;, i, fi). ®ics($2i, Ty, pi) is the completion of ®;es (2, Ty, ).
For ¥ #J C K C I we denote by fjx the canonical projection from £k onto £2; and
for each ¥ # J C I we write f; := fj;. For J := {i} € I we write f; := fi3. If for each
i € I atopology 7;is given, then 7; is the product topology on £2;, whenever @ # J C I.
The collection of all finite subsets of 7 is denoted by F (/) and «([) is the first ordinal
of the cardinality card(I).

If I ={a <y}and 0 < 8 < y, then instead of (]_[OK,3 2y, Qu<pZa, Qu<plia) WE
write (2.4, X, t<p) and, we denote by fiy)<p) (resp. f«) the canonical projection
from Q. onto 2, (resp. from ., onto Q) foralla < B < y.[[]=* is the collection
of all non-empty subsets J of I such that card(J) < «.

If (22, X, ) is a probability space we write ! for the product measure on £27 and
X! for its domain.

For the product (2, X, u) = ®ies(£2;, Xi, ;) of a family ((2;, Xy, pi))ier of
complete probability spaces let be given a density ¢ for 1. We recall that ¢ respects
coordinates, if for cach non-empty subset J of I the inclusion go(E 7 X §2yc) C ) x 2y
holds true (cf. [9]).

2. Inverse images of densities and liftings. Let (£2, X, u), (©, Z, v) be complete
probability spaces, f : 2 —> © a measurable function with u(f~'(B)) = v(B) for each
B e E,andlet ¢ € G(v). A linear lifting ¢ € G(u) is called an inverse image of v under

f,if
¢(gof)=w(g)of foreach ge L2().

Let t € #(v). A density ¢ € #(w) is called an inverse image of t under f, if
o(fNE) =f""(1(E)) foreach EeT.

The definition of an inverse image of a lifting is covered by both definitions.

LEMMA 2.1. For complete probability spaces (£2, X, u), (0, E,v), densities § €
Hw) and ¢ € 9(v), and a ¥ — &-measurable, measure preserving map f : 2 — O the
following conditions are all equivalent.

(1) The map f is T5-1,-continuous.
(i) Forall Be &, f~'(¢(B)) C 8(f~1(B))).
If in addition § € A(n) and ¢ € A(v) then we may add the following equivalent condition.

(ii1) The lifting § is the inverse image of the lifting ¢.

Proof. Note that for all B, C € & with B = C a.e.(v) we have f~!(B) = f~1(C)
a.e.(u) since v = f(p).

(i) = (i)). Be & implies ¢(B) € 7;, hence f~!(¢(B)) € Ts. Consequently
S71E(B) C 8(f~1(¢(B) = 8(f~"(B)).

(i) = (i). G € T; means G C ¢(G), hence f~1(G) C f~1(¢(G)) C 8(f~1G)), i.e
UG e T;. O

LEMMA 2.2. Let (82, X, ), (®, &, v) be complete probability spaces and f : 2 —>

©® ameasurable, measure preserving map. Then for each € G(v) the collection of inverse
images of W in non-empty.
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Proof. Let B be the o-subalgebra of ¥ generated by f~'(&)U Xy. Define ¢ €
G(u | B) by means of ¢(g) := ¥(h) o f foreach g € L*(u | B) and & € £*°(v) such that
hof = ga.e. (u). Then, it is enough to extend ¢ in an arbitrary way to X. O

The corresponding result for liftings instead of linear liftings can be found in [21,
Lemma 2.1].
The following problem however remains open:

QUESTION 2.3. Let (£2,7,X,u) and (©,S, &,v) be complete topological
probability spaces and f : 2 —> © a measure preserving map. Suppose that v admits a
strong lifting t. When does there exist a strong inverse image p € A(w) of T under f?

In general a strong lifting may have empty set of strong inverse images (see
Remark 2.5). We know two classes of spaces (£2, 7, ¥, u) admitting strong inverse
imagesof t € A(v)underf : 2 — @if (O, S, &, v)isfixed. These are the hyperstonian
spaces and the extremally disconnected Baire spaces where each set of the first category
is closed, endowed with a category measure.

The following proposition solves the problem of the existence of a strong inverse
image of a strong lifting under a measure preserving mapping in case of liftings
possessing almost strong inverse images.

PrROPOSITION 2.4. Let (2,7, X, ) and (©,S, E,v) be complete topological
probability spaces and f : 2 —> © be a measure preserving map. If v admits a strong
lifting © which has an almost strong inverse image in A(w), then T possesses a strong
inverse image p € A(w) under f if and only if the following condition is satisfied:

If Be E and G € T are arbitrary, then

STEB)NG#I = u(fT(BNG)>0. (1

If ¢ € A(n) is an almost strong inverse image of © and N € Xy is a set satisfying
the inclusion G € ¢(G)U N for all G € T, then p can be taken to satisfy the equality
$IN® = pIN®.

Proof. Foreach w € N, let

A) ={d: A fY(E),wecp(d)), Ew)={G:GeT,we G},
H(w) :={ANG: A e Aw), G € E(w))}
and F(w) C X be the filter defined by
Fw)={E€ X :3F e Hlw) with FCE a.e.(u)}

Due to the assumption (1) all members of H(w) and, consequently of F(w) are of
positive measure and every F(w) is measure stable.

Define a mapping p : ¥ — X by means of

P(E) :=[p(E)YNNU p*(E) foreach E € X,

where p*(E) := {w € N : E € F(w)}. It is straightforward to verify that p € 9 (u).
Claim 1. For each E € T we have f~'(z(E)) € p(f~(E)).
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Proof of claim. Let E € T.If w € N we have

w e[ ((E) &= w e p(fT(E) <= [T(E) € Alw) € F(w)
= we p"(f1(E) = w e n(f(E)),

ie.
f@EY)NNCSH(f(E)NN forall EeT. )
If o ¢ N we have
wen(fTE) <= weo(f(E) < e[ ((E)),
ie.
(fYE)NN=f"1(x(E))NN¢ forall EeT. (3)

From (2) and (3) follows the desired result.

Claim 2. p is strong.

Proof of claim. Let Ge T andw € G.

If w € N then G € £(w) € F(w) hence w € p*(G) < p(G).
If w ¢ N, then w € ¢(G) hence w € p(G) N N¢ C p(G). Consequently p is strong. This
completes the proof of Claim 2.

By von Neumann [30] there exists a p € A(u) such that

o(E) C p(E) foreach E e X. 4)

Since p is strong it follows by (4) that p is strong.
Claim 3. p is an inverse image of T under f.
Proof of claim. For each A € T applying (4) and Claim 1 we get

ST @A) S/ (A) € p(f7(A4)).

Consequently, applying the above relation for A€ instead of 4 and the lifting properties
we get easily the p is an inverse image of r under f.

Assume now that there exists a strong inverse image p € A(u) of T under f. Let
Be 5,Ge Sandw e f~1(z(B)) N G. We have then

wefl@B)NGswep(f'(BYNG
= w e p(fT'(B)N p(G) = p(fT(B)NG),

hence u(f~'(B) N G) > 0. Thus, condition (1) holds true. This completes the proof of
the proposition. O

REMARK 2.5. In general the condition (1) alone does not guarantee the existence
of a strong inverse image of a strong lifting. To see it let (£2, 7, X, u) be the space
from Fremlin’s simplification [8] of Losert’s example and let ® = §2. Then, let & be
generated by p-null sets, S be the trivial topology on ® and v be the restriction of
to Z. Then the relation (1) is obviously satisfied if f is the identity map.

For the proof of the next theorem we need the following lemma, which is a
generalization of Proposition 2 from [16]. Its proof is a modification of the proof of
Proposition 2 from [16].

https://doi.org/10.1017/S0017089503001411 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089503001411

508 N. D. MACHERAS, K. MUSIAL AND W. STRAUSS

LEMMA 2.6. Let (O1, S)) and (O©3, Sy) be topological spaces such that (©y, Sy) has
a countable network Gy € B(©1). Then By(01) ® By(@,) = By(O) x ©»).

Proof. Let f be a continuous function on ®; x @, and let {G, :n € N} be a
countable basis of the natural topology of R. Suppose that G; = {G" : m € N}. Then
for each n we have f~1(G,) € S| x S, and

[Gy= (Gl xUp) where Up=|J{V:ves & GpxVcf (G

meN

and {GY, : m,n € N} is a sub-collection of {G, : n € N}.
Denote by S; the topology in &, generated by the sets U}, for m, n € N. For every
m,n € N put

me=|J{U:UeS and UxUgc (G}
Then we get

NGy = (U x ug).

meN

Denote by by S the topology in ®; generated by the sets U} for m,n € N.
If G is an open subset of R, then

@ =Jr'Gy.

keN

for some ny, ns, ... and so

o=r'G.)=U un xus). (5)

keN m,keN

It follows that f'is S} x S3-continuous.

Since the topologies S} and &3 have countable bases and f is Sf x &3 -continuous,
it follows from Proposition 1 of [16] that /" is By(O1, S}) ® By(O2, S;)-measurable,
where By(0;, S;) denotes the Baire o -algebra of ®; with respect to the weaker than S;
topology S} fori =1, 2.

Consequently, 1 is By(®)) x By(®,)-measurable, hence By(O; x @) C By(O)) ®
By(©-,). But, because of the continuity of the canonical projections f; : @ x @, — O;
fori = 1, 2 the inclusion By(®1) ® By(@,) C By(@; x ©3) holds true in any case, hence
the result follows. O

The hypothesis (/ T) in the next theorem, which is a consequence of Proposition 2.4,
traces back to A. and C. Ionescu Tulcea [14, page 115]. It is implied by independence
and is equivalent itself to the relation (1) of Proposition 2.4.

THEOREM 2.7. Let (®;, X;) be a measurable space, T; a topology on ©; fori =1, 2,
Q=0 X0y, ¥=X,Q X, and let T := 1) x T, be the product topology on 2. If
is a probability measure on X supporting Q2 denote by u; the image measure of | under
the canonical projection f; from Q onto ©,. Assume that T, C 3, and iy admits a strong
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lifting T (notice that this yields T; < ) 1). Then the following conditions are equivalent:
(1) If U € T, and A € X, are arbitrary, then

(1) For each G; € T; for i = 1,2, and for each A € 3\ we have
ST @@)N(Gr x G) # ¥ == B(f (AN (Gi x G)) > 0

and each of them follows from
(ili) There exists a strong inverse image p € A() of T under f1.

If the topological space (©,, 1) has a countable network G, C 3, then all the above
conditions are equivalent.

In particular, if condition (iii) holds true then

(a) 3= B(@ ) for i = 1,2 implies 3= B(.Q)

(b) Ifforeachi= 1,2 we have X; = By(®;) and (6, Tp) has a countable network
Gy C B(0,), then u; is completion regular, X = By($2) and 1 is completion regular.

Proof. (1) = (ii) Let G; € 7; for i = 1,2 and 4 € X be arbitrary sets satisfying
condition

f7 @A) N (G1 x Gy) # 0. (6)

Assume, if possible, that 7i( f;'(4) N (G1 x G)) = 0,i.e. A((4A x ©2) N (Gy x Ga)) =0,
or equivalently 71((4 N Gy) x G)) = 0. So applying condition (i) we get

(4N GuaAGr) =0

Since G, # ¥, we have 11»(G,) > 0 because 11y supports ©,, hence (AN G;) =0
implying 7(A4) N t(G1) = . Since 7t is strong, the latter implies t(4) N G; = ¥ hence
7 @A) N f7(Gr) = ¥, orequivalently £ (t(4)) N (G1 x @2) = Bhencef ' (z(4)) N
(G x G,) = @, which contradicts (6).

Consequently, we deduce that 7i( fl_l(A) N (Gy x Gy)) > 0, i.e. condition (if) holds
true.

(i) = (i) Let 4 € Xy and U € 7, be arbitrary sets such that w(4 x U)=0
but 711(4A)A2(U) > 0. Then 7(4) x U # @ hence f;'(z(A)) Nfy ' (U) # @ therefore
applying condition (ii) we get A(f'(A)Nf'(U) >0 or @AxU)>0, a
contradiction.

(ili) = (ii) If there exists a strong inverse image p € A() of T under f; then for
arbitrary 4 € X, G; € 7; fori = 1,2 and (01, 6,) effl(t(A)) N (G; x Gy) we have

(61.62) € 7 (x(A) N (G1 x Go) & (01, 62) € p(f;'(A) N (G1 x Ga)
= (61,6,) € p(f7'(4)) N p(G1 x G2)
& (61,6, € p(f7(A) N (G x G)),

hence ,u(fl_l(A) N (G x G3)) > 0. Thus, condition (if) holds true.

(i) = (iii)) Assume now that (©®,, 7) has a countable network G, C X». Then,
according to [21, Lemma 2.1] there exists a lifting ¢ € A(%@) being an inverse image of
7 under f]. Since t is strong we have

NG < o(f7(G) foreach GeT. (7
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Set
= O\e(/7' () : U € G} 8)

Then N € f‘o.
Let

gi={U1 x Uy : U GT,UQEQZ}.
It follows that G € ¥. Foreach U; x Us € G applying (7) and (8) we get

Ui x Uy = f71(Un) Ny (U)
< o(f7'(U)) N [e(fs ' (U2) UN]

= [e(/7 W) (/5 (W)U el (U)) N N]
C (U x U))UN,

1e.
U x Uy Cop(Uy x Up)UN foreach U, x U, € G. 9)

Let U e 7. Then U = |, .n(Uin x Uy,) where U, € G; and Uy, = (U, : Uy € 7,
and U; x U,, € U} forn e N. R
Consequently, we have U € X, hence applying (9) we get

UCep(U)UN foreach U€eT,

i.e. the lifting ¢ is an almost strong inverse image of t under f;. Therefore applying
Proposition 2.4 we conclude condition (iii).

In partlcular if condition (iii) holds true then:

(a) Since 3= B(O) the canonical projections f; are B(.Q) — B(O) measurable
fori=1,2hence & C B(.Q) which combined with (iii) implies B(.Q) =

(b) If for each i = 1,2 we have X; = By(©;) then it follows by Ijgmma 2.6 that
X = By(£2). On the other hand, it follows by the assumptions that 7; C By(®;) therefore
the equality B\o(@,-) = g(@,») holds true hence ,; is completion regular for each i = 1, 2.
Consequently, applying (a) we get 3= g(.Q) = E)(Q) and so u is completion regular.
This completes the proof of the theorem. O

REMARK 2.8. The above theorem remains true (with the same proof) under the
weaker assumption that p is strictly localizable, i.e. if there exists a disjoint family
(£2j)jer of measurable sets of finite measure such that 2 = | J,_; £2; and

Y={E:ECRQ ENeX Viell,
W(E)=> wENR) foreach Ee X
iel

Radon measures are strictly localizable, since they have a concassage (see e.g. [32]).

Theorem 2.7 improves Theorem 4 from [14, Chapter VIII, Section 2], where ©, is
assumed to be a metrizable space.

REMARKS 2.9. (a) From Theorem 2.7 it follows that the condition (/ T') implies the
existence of an inverse strong lifting for i if (©,, 75) has a countable network. It is not
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in general true that the existence of a (not nesseccarily inverse image) strong lifting
implies condition (/T) (see Remark 5.10 (b)).

(b) If ((Xi, Si, Xi, mi))ier 1s a family of complete topological probability spaces
such that each u; has the USLP and supports X;, and if (©, S, Z, v) is a complete
topological probability space admitting a strong lifting 7, then the product space

(2, 7,2,1)=0O x X1, SxS,ERZ,v® i)

is a complete topological probability space admitting a strong inverse image p € A(u)
of 7 under the canonical projection f from 2 onto ©. The above assertion follows
from [27, Theorem 3.9].

(c) Wedon’t know whether Theorem 2.7 remains true under the assumption that
112 has the USLP (instead of the stronger assumption that (®,, 7;) has a countable
network G, C ). Notice that the assumption of Theorem 2.7 for (®,, 7;) implies that
1> has the USLP but according to the Remark 5.10 (¢) the inverse implication is not
in general true.

If w is the product of the probability measures @ and u; then according to [22,
Theorem 5.5] there is a positive answer to the above question.

3. Projective limits of liftings. We use the notions of projective systems and
projective limits of probability spaces in the sense of [29]. For a projective system
(824, Xy, Mo, fap, I) of probability spaces a family (8,)qes of densities &, € ¥ (uq) is
called consistent, if

8p 0 fop =S 084 (10)

forall o, B € I witha < 8.

If (82, X, p, {fo)aer) is the projective limit of the above projective system and p,, is
an extension of u to a o-algebra X, containing X, then a density § € (i) is called a
projective limit or a p-density of the consistent family (8, )qes if

Sofil=f108, (11)

for all @ € I. We write in that case § € proj,c;limd, (notice that projective limits of
densities are not uniquely defined). We will say also that (8,)4e; is convergent to 5. The
same definitions hold true for liftings. We assume throughout that all the canonical
projections f, are surjections. We will use the notation p-lifting for a lifting being a
projective limit of other liftings.

A family (¥, )qer of linear liftings ¥, € G(uy) is called consistent, if for all«, 8 € 1
with o < B we have

V(g o fup) = Vulg) o fup forall ge L(uy). (12)

A linear lifting ¢ € G(w) is called a projective limit or a linear p-lifting of a consistent
family (¥ )oer, Where ¥, € G(ug), if for each o € 1 we have

V(gofu) =Vu(@ofy forall ge L¥uq) (13)

For liftings on complete probability spaces definitions (10) and (12) are equivalent and
the same is true for (11) and (13).
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If I =«, where « is an infinite ordinal, we say that a projective system
(824, X, Mo, fap, k) of probability spaces is continuous, if for every limit ordinal
& < « the projective limit of the system (2., Xy, iy, fop, £) exists and equals to
($2¢, X, pe, {fa)a<e)- For projective systems of topological probability spaces a similar
definition can be formulated, but then the mappings f,s are assumed to be in addition
continuous.

Let ((£2;, X}))ics be a family of measurable spaces. If  is a measure on X}, then
(£27, X, ) can be represented as a projective limit of a continuous projective system
of probability spaces in the following way.

Fix an index iy € I and assume that / = « := x (/) and iy = 0. Then it is easily seen
that ((£2.o, X <o, Ko, fi<a)<p), k) 15 @ continuous projective system of measure spaces
and that (£2;7, X, i, {f<a)a<«) 18 its projective limit.

Consequently, we may consider the notion of a consistent family (o, )q < of liftings
po € A(fty) as well as the notion of a projective limit lifting (p-lifting, in short) p for
the measure 1z, i.e. of a lifting p € A(L) N Projy < limp,.

PRrOPOSITION 3.1. Let « be an infinite ordinal and ($24, Xy, [ta, fag, k) a projective
system of complete probability spaces. Suppose that (2, X, i, {fy)a<c) is the projective
limit of the above projective system and (Yy,)o <. s a consistent family of linear liftings
VYo € G(uy). Then there exists a linear lifting ¥ € G(i), which is a projective limit of the
system (Yoo <ic. If all Yy are liftings then  can be chosen to be a lifting.

Proof. The only interesting case is when « is a limit ordinal. For every o < « we
denote by X* the o-subalgebra of ¥ generated by f, !(X,) and by the set of all x-null
subsets of 2, we set uf ;= | £, and define a linear lifting ¢} € G(u*) by setting

Vo (h) := Ya(g) o fo

forevery h € L2®(uk)withh=gof, a.e.(u)forsomeg e L(ug).

Foralla, B < k with o < B we have X7 € X hence L2(uy) S L2(up). A direct
calculation shows also that ¥z | £>(uy) = ¥

If « is a limit ordinal of countable cofinality, then there is a strictly increasing
sequence (d,)neN With supremum «. Put for simplicity ¥, : = v, and X := X7 for
alln € N and let U be a free ultrafilter on N. Then X = o(|,n Z,/) and we can define
Y by setting

Y(h) = limy,[Eg (W] for he L),

where Ex:(h) denotes the conditional expectation of 4 with respect to X;. Using the
arguments of the proof of Theorem 2 in [14, Chapter IV, Section 1], we get ¥ € G(e).
For each o < « there exists an n € N such that o < o, ¥, extends ¥ and ¥ extends
Y. Thus y is a projective limit of (Vg )q<-

If « is a limit ordinal of uncountable cofinality, then we proceed in the standard
way. If all ¢, are liftings then define for each & < « a lifting 1% € A(u}) by setting

Val(A) = £ (Yu(B))

for every 4 € X} with 4 = fa’l(@ a.e.(0) for some 4 € X,. It can be easily seen
that for any o < 8 < « the lifting 4 extends .
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Assume now that all i, are liftings. If « is of countable cofinality, then there exists
a density ¢ € 9(11) such that ¢ is an inverse image of ¥, under f, for each a < «
(see [10, Lemma 1]). By von Neumann [30] there exists a lifting 1 € A(x) such that
@(E) € ¥/(E) for each E € . It then follows that

V(£ (A) =f'(WulA)) foreach Ae X,.

Consequently, ¥ is a projective limit of (V) <.
If « is of uncountable cofinality, then we define ¢ € A(x) by

V(E) := Yo(E) foreach E € X, forsome o <«k.

Again v is a projective limit of (¥ )g <. O

It is known that not every convergent projective system (§2y, Xu, o, fup, I) Of
complete probability spaces admits a consistent family (o, )qe; Of (linear) liftings o,
(see [27, Example 3.5]). In the next theorem we present a condition guaranteeing the
existence of such a consistent family.

THEOREM 3.2. Let « be an infinite ordinal and (24, Xy, lia, fag, k) a continuous
projective system of complete probability spaces. Suppose that (2, X, i, {fu)a<i) is the
projective limit of the above system. Then:

(1) There exist a consistent family (Vo) o <« Of linear liftings v, € G(uy) and a linear
lifting € G() such that  is a projective limit of the system {(Yro)q<ic. If all Wy are
liftings then  can be chosen to be a lifting.

(2) There exist a consistent family (Qy)e<c Of densities ¢, € ¥ (uy) and a density
@ € B (1) such that ¢ is a projective limit of the system (@) e <.

Proof- (1) (A) We construct a consistent family ()4 < 0f ¥, € G(14) by induction
on o < k. The inductive hypothesis will be that v, extends g whenever § <y <a.
To start the induction for @ = 0 we choose an arbitrary ¥y € G(u).

(B) Inductive step to a successor ordinal o. If « = g+ 1 where g < k and ¥g €
G(up) is known we choose by Lemma 2.2 a ¥, € G(uq) such that

Ipot(gofﬁrx) = Wﬂ(g) ofﬁot for each g€ EOO(M;‘})- (14)

Since Ys(g o fis) = Ws(g) o fis for all § < B and all g € L2(us), we get Yiu(g o fra) =
Ys5(g) o fs54 from (14), i.e. the family (1s)s<o 1S consistent.

(C) Inductive step to a limit ordinal «. In this case we find by Proposition 3.1 a
Yo € G(iy) such that v, is a projective limit of (Y¥g)g<q, i.6. the family (Yg)p<o is
consistent.

(D) Thus the induction can be pushed through to obtain a consistent family
(Vo )a<c such that ¢ is a projective limit of (Vo) gk
The corresponding result for liftings instead of linear liftings can be found in [25,
Proposition 2.2].

(2) Itfollows from (1) that there exists a consistent family (¥, )4 <, of linear liftings
Yo € G(uy) and a v € G() such that  is a projective limit of (¥ )q<c. Foreacha < «
put ¢, = ﬂa . Since (Yo )a<c 18 consistent, for each @ < f <k and each F € X, we
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have

05 (Jap (B)) = (Vs (1 00) = 1} = (W (xe o fa)) = 1}
= {Va(xp) o fop =1} = fog (Walxp) = 1))
= fp (@l E)).

i.e. (@a)a<« 1s consistent, which means that (¢,)e<. 1 consistent and ¢ ;= ¢, is a
projective limit of (¢y )y < O

The result (2) of the above theorem has been proven for arbitrary (possibly
incomplete) probability spaces and for densities in [24, Section 2, Proposition 1] by a
different way.

4. Convergence of systems of strong liftings. In case of arbitrary directed sets we
have the following result:

LEMMA 4.1. Let be given a projective system (2o, Ty, X, o> fup. 1) of complete
topological probability spaces converging to (2, T, X, 1) and a consistent family {0y ) el
of liftings p, € A(uy) converging to p € A(n). Then p € A(w) is strong if and only if
each p, is strong. The same for densities instead of liftings. In both cases we have

T C projeelimT,, €T, € B(22,T,) = .

If for each a € I the topological space (2, 1) is completely regular, then the same is
true for linear liftings.

Proof. Since (py)qer 18 a consistent family of densities it follows from Lemma 2.1
that for each @ < B the map fup is 7,, — 7, -continuous and since p is a projective limit
of (0y)aer We have again by Lemma 2.1 that for each o € I the map f, is 7, — 7, -
continuous.

But for each « € I the density p, is strong hence 7, € 7, and therefore we get

T C projailimT,, €T, S B(2,T,)= 5.

Consequently p is strong for (2, 7, 2, ).
Assume now that p is strong. Then for each & € I and for each U € 7, we have

L) € o(£710) = £ (pa(U)).

Since all £, are surjections we then get

U gfot(ﬁ;l(pa(U))) = pa(U),

that is p, is strong.

Suppose that for each « € I the topological space (€2,, 7,) is completely regular
and that (o,)qes 1S a consistent family of strong linear liftings. It follows in the same
way as in the proof of Theorem 3.2 that (P, )aer is a consistent family of densities
p, € ?(y). To show that for each o € I the density P, is strong, let U € 7,. Since
each p, is strong, it follows in the same way as in [14, page 105], that xy < p.(xv),
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which implies
P (U)={w e Q: p(xu)w) =1} 2{w e Q: xulw) =1} =U.

Consequently, p € #(w) is strong hence 7 C 3 as above.

To show that p is strong, let U € 7. Since [ is directed, the family
U:={f"(U):ael U, €T}

is a basis for the topology 7 (cf. [5]), it follows that U = U, Jfojl(Ua) for some U, € 7,
and J C I. So, we get

p(xv) = p(x-1w.) = P(Xu, ©fa)
= pa(XU,) 0 fa = XU, O fa = Xf-1(UL)

for each @ € J. Hence p(xy) > xu, 1.e. p is strong. O

PROPOSITION 4.2. Let « be an infinite ordinal and (24,7Ty, o, o, fup, k)
be a continuous projective system of topological probability spaces. Assume that
(82,7, 2, 1, {fa)a<) is the projective limit of the above projective system and (@ )y <
is a consistent family of strong densities ¢, € 9(lty). Then there exists a strong density
@ € B(11) such that the system {py)q < is convergent to @.

If all densities @, are liftings, then ¢ can be taken to be a strong lifting. Moreover,

(a) lf’Z\‘a = B\(.Qa)for all o < k, then ¥ = g(.Q);

(b) if for each a < k we have that 2, is compact, X, = By(82,) and that p, is
completion regular, then X = By(§2) and w is completion regular (consequently, ¢ is
completion Baire).

If for each a < « the topological space (2, 1) is completely regular and ¢, is a strong
linear lifting, then ¢ can be taken to be a strong linear lifting.

Proof. The proof for densites and lifting can be found in [27, Theorem 3.1].

If for each o < « the space (24, 7,) is completely regular, then it follows by
Proposition 3.1 that there exists a ¢ € G(X) N projy.limg, which is strong according
to Lemma 4.1.

In particular,

R (a) if f‘a = B(QQ for /gach o < k, then relation 7 C ¥ and the obvious one
X C B(£2) imply that X' = 5(£2).

(b) Ifforeach o < « the measure p, is completion regular, X, = By(£2,) and €,
is compact, then it follows by [3, Theorem 2.3] that X' = By(£2) hence 3= l”j’\o(Q).
Consequently, applying (a) we get X = B(£2) = By(£2), which means that x is
completion regular and ¢ is completion Baire. O

In Theorem 3.2 and in Proposition 4.2 it is crucial to have a well ordering of the
index set (see [27, Example 3.2]). Below is still another example.

EXAMPLE 4.3. Let £ :=[0, 1], where I is an index set with the cardinality of
the continuum. Gryllakis and Grekas have constructed in [11] a Radon probability
measure 1 on §2, which supports £ and is not completion regular. Denote again
by w the restriction of u to By(§2). Clearly we have that (£2, Bo(£2), i, (fu)ecrm) 15
the projective limit of the system (2, Bo(£24), ita, fap. F (1)), where 2, := [0, 1]* and
Ko = 1| go(Qa). In particular, we set 2 := §2(3 = [0, 1]and ) := pu; foreachi e 1.
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It follows from [11, Remark 2.9], that for each a € F(I) the measure ji, is
equivalent to the Lebesgue measure A*.

According to [20, Theorem 2.1], the Lebesgue measure A on [0, 1] admits an
admissible strong density ¢;, and since A is equivalent to i1, we get ¢; € A% (). For
the definition of an admissible (strong) density or linear lifting we refer to [18] (and
[20]) or [19], respectively.

Applying now [18, Theorem 2.6] we find a density @ for the completion of 11/ such
that ¢ respects coordinates and

P(f3' (D) =13 (@i(4)) foreach iel and A e By(s2)). (15)

Since ¢ respects coordinates, for each o € F(I) there exists exactly one ¢, € ¥ (iy)
such that

(f7UE) = £ ulE)) foreach E € By($2,), (16)

which implies that (¢, )qecr () is a consistent family of densities.

Since ¢ is strong, it follows by (15) that ¢ is strong. So applying (16) we get that
@ 18 strong.

Suppose that Proposition 4.2 is true for the directed index set F (/) instead of «.
Then there exists a strong ¢ € ©¥(u) such that @ is a projective limit of (@o)aer(), and
consequently, E)(Q) = g(.Q) should be true, which means that u should be completion
regular, contradicting to [11].

The following Claim has been proven also in [11] without using strong densities
or liftings.

Claim. There is a countable subset a of I such that the completion of the image
measure Ly of 1 under the canonical projection f, from [0, 117 onto [0, 1]* is not equivalent
to the Lebesgue measure Ly on [0, 1]*.

Proof of claim. Assume that the assertion is false. Then applying the same
arguments as above for I = w; we would find a consistent family (py)a<w, Of strong
densities p, € ¥(ity). Applying Proposition 4.2 we would get then the completion
regularity of u, contradicting its properties. O

Taking into account Lemma 4.1 and Proposition 4.2 one can pose the following
question (see also [27, Question 3.4]).

QUESTION 4.4. For which projective systems of topological probability spaces with
well-ordered index sets do there exist consistent families of strong liftings?

The next result gives a partial answer to Question 4.4,

THEOREM 4.5. Let k be an infinite ordinal, (2o, 1, X, Mo, fup, k) be a continuous
projective system of topological probability spaces and (2,7, X, i, {fu)a<c) be its
projective limit. Assume that for all a with 1 < o < k the measure [y, Supports $2q,
(24, Ty, X, 1he) has USLP, and Ty has a strong lifting py. If for each successor ordinal
8 =a+1 <« (o« > 0)and each strong lifting p, € A(lly) we have

fius (pa(B) NG # 0 => s (f5'(B)NG) > 0, (17)
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when B € X} and G € 15 are arbitrary, then the system admits a consistent family
of strong liftings py € A(lig), a > 0, converging to a strong p € A(JX) N projy < limp,
which is strong w.r.t. T* = projo <, [im7T,,.

Proof- We construct by induction on § < « a consistent family (ps)s~, of strong
liftings p5s € A(j1s). We start the induction with pg € A(1o).

(a) Inductive step to a successor ordinal § = o + 1. Assume that p, € A(jiy) has
been defined. It then follows by Proposition 2.4 that there exists a strong lifting p5 €
A(jts) being an inverse image of p, under fys.

(b) Inductive step to a limit ordinal §. 1t follows from Proposition 4.2 that there
exists a strong p-lifting ps € A(s) N proju<slimp,. When § = «, we get the result.

(c) Since (py)e<« 18 a consistent family of strong liftings, it follows by
Proposition 4.2 that there exists a strong lifting p € A(ix) being a projective limit
of (poz>a<x-

(d) It follows from Lemma 2.1 that for each o < p <« the map fus is
Tpﬁ — 7,,-continuous hence (£2,, 7,,, fo,, Mo Jag, k) 18 a projective system of complete
topological probability spaces. So, applying Lemma 4.1 we get that p is strong with
respect to 7* and that 7 C 7% C 7, C 3. O

QUESTION 4.6. Assume that (£2,, 7o, Xy, o, fag, k) 1S a continuous projective
system of arbitrary not necessarily complete topological probability spaces such that
o has a strong density and for each 1 < o < « the measure u, supports §2, and has
the USDP, i.c. each density for u, is almost strong. Does there exist a consistent family
(Vo )a<i Of strong densities ¥, € ¥ (ig)?

REMARK 4.7. In Theorem 4.5 we have in general that T # T = projy < [im7, # T,.
In fact, for each § <« let S_s,f.s and ps be as in Theorem 5.2, and let 4 €
Sp\S<s. Then f;;l (A) € S*, where S* denotes the projective limit of the projective
system (S,,)s<c, but f;;l(A) ¢ Sy, since if we assume that f;gl(A) € §; we should
have f_s( f;;(A)) = A € S_s because f_; is surjective and open, a contradiction.
Consequently, 7 # 7*.

To show that in general 7* # 7, consider the continuous projective system (D,
T, P(Dy), tns fom, NY, where D, := {0, 1}" endowed with the discrete topology 7,
w1({0}) = wi({1}) = 1/2, w, := pf and f,,, is the canonical projection from D, onto
D,, for each m < n € N. Denote by (2, 7, 2, i, {fu)neN) its projective limit. Then u is
the usual product measure 1 on Q := {0, I}N.

For each n € N put p, :=idp, € A(u,). Then (p,),eN 1S a consistent sequence
of strong liftings, and so by Theorem 4.2 there exists a strong lifting p € A()
being a projective limit of (p,).en. Clearly for all n € N we have 7, = 7,, hence
T* =7T. Suppose that 7* =7,. Then the topological space (€2,7) should be
extremally disconnected (cf. [14, Chapter V, Section 3]), a contradiction, because €2 is
homeomorphic to the Cantor set A € R endowed with the subspace topology (see e.g.
[5, Chapter IV, Section 4]) which is not extremaly disconnected.

5. Measures on product spaces. Throughout this section 7 is an arbitrary index
set, k = k(I), (Xi, S;))ier and (&;);c; are families of topological spaces (X;, S;) and
o-algebras Z; on X;, respectively, v is a probability measure on Z; and v; the image
measure of v under f; for each J € [I]=*. To prove the next result, we need first the
following lemma.
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LEMMA 5.1. Let ((Xi, Si))ier be a family of topological spaces and . a probability
measure on B(Xy) supporting Xy and being t-additive. Assume that

Bo(X)) = icsBo(X;) for each finite J C 1. (18)

Then By(X7) = QicrBo(X).

Proof. (a) Since u has full support the space X; satisfies the ccc, i.e. every pairwise
disjoint family of open sets in X; is countable, and so every element of By(X;) is
determined by countably many coordinates; in fact the elements of By(X;) have the
form f J_I(C), where C € By(X;) and J is countable (see [31]). Thus / = N may be
assumed without loss of generality.

(b) Incasel =N, letf : Xn —> R be a continuous function. Fix y = (y,,),en In
X~ and define f,, : Xy — R by means of

Ja({Xn)nen) i= f({X1, -+ oy Xny Yut1s Vg2, ) for neN.

Then each f, is a continuous function and lim,,_, », f,,(x) = f(x). Since the function f,
depends only on the first n coordinates, without loss of generality the result can be
reduced to the case where [/ is finite. So the result follows. O

The condition (18) in the above lemma is satisfied if for each i € I the space (X, S))
is locally compact (see [3, lemma on page 326]), or it has a countable network consisting
of elements of B(X;) (see Lemma 2.6), or it is second countable or a Suslin space (see
[16]).

The condition (/T) of the next theorem corresponds to (/7) from Theorem 2.7
but now for infinite products.

THEOREM 5.2. Let I be an arbitrary infinite index set and let k = «(I). Foreachi € 1
let (X;, S;) be a topological space and let E; be a o-algebra on X;. If v is a probability
measure on Ey, then for every J € [I]=* denote by vy the image measure on E; of u under
the canonical projection f;. For every J € [I|™* assume that S; C Z; and vy SUppOrts
X;. Fix an index iy € I and assume that v;, admits a strong lifting and that for every
J € [I1™\{io} the measure vy has the USLP. Then the following conditions are equivalent:

() IfJe[I1*, ieI\J, Be Byand U € S; then
T)\Ju{i}(B X U) =0= /\)\J(B)/\)\{i}(U) =0. (IT)

(1) For every J € [I17%, i€ I\J, Be€ Z, for every elementary open set U € Sy,
and for every strong lifting py € A(Vy) we have

FitonesB) N U # 8 = V0 (/70 (B) N U) > 0. (GIT)

If one of the above is satisfied, then there exists a | strong_ lifting p € A(V). Moreover,

(a) lfu] = B(XJ) for every J € [I]°*, then B} = B(XI)

(b) if Ex = Bo(Xk) for every finite K C I and vy is completion regular for every
J € [I17F, then B; = By(Xy) for every J C I and v is completion regular (hence p is
completion Baire).
The whole thesis remains true when card(l) = wy and all spaces (X;, T )iz, satisfy the
second axiom of countability.
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Proof. The equivalence of (i) and (ii) follows in the same way as in Theorem 2.7.
Fix an index i € I and a strong lifting p;, € A(V;,), where V;, := Vy;,). Assume that [ =
k :=«(l)and ip = 0. Then (X_y, S<y. E<a, Vo fi<a)<p), k) 18 @ continuous projective
system of topological probability spaces, (X7, S;, E7, v, {f<a)a<c) 18 its projective limit
and the existence of a strong p € A(t) follows exactly as in Theorem 4.5.

The assertion (@) follows in the same way as in the proof of Theorem 2.7.

(h) Since Ex = By(Xk) for every finite K C I, it follows by Lemma 5.1 that
Z; = By(Xy) for every J C I. On the other hand, the completion regularity of v, for
every J € [[]° and assertion (a) imply that Z; = BO(X 1) = B(X7) hence v is completion
regular and p is completion Baire. O

It remains an open question if assertion () in the above corollary remains true
under the assumption "vg is completion regular for every finite K C I" instead of "v,
is completion regular for every J € [1]<*".

THEOREM 5.3. Fix an index iy € I and assume that the inclusion S;, € E;, holds
true, the measure vj, = v, admits a strong lifting p;,, and that for each i € I\{iy} the
topological space (X;, S;) has a countable network consisting of sets in Z; and the measure
v; supports X;. Assume also that for every J € [I]<* we have S; C Z). Ifv is a probability
measure on 5y, then the following conditions are equivalent:

(1) Condition (IT) for V.

(ii) Condition (GIT) for V.

Each of them yields

(ii) There exists a strong lifting p € A(D).
If (iii) is sansﬁed then:

(a) &y = B(XJ)fOV every J € [IT** implles Er = B(XI)

(b) If 8; = By(X)) for every i € I and (X;, S;) has a countable network consisting of
sets in B(X;), then v; is completion regular for every i € I, E; = Bo(X)) for every J C I
and v is completion regular (hence p is completion Baire).

Proof. If I is finite then the result follows by Theorem 2.7 and a finite induction. So
we may assume without loss of generality that [ is infinite. Moreover we may assume
that / =« :=«(I) and iy = 0. Then (X_o, S<a, T<a, Va, fi<a)(<p), k) 15 a continuous
projective system of topological probability spaces and (X7, S, &7, V, {(f<a)a<i) 18 its
projective limit.

The equivalence (i) <= (ii) follows in the same way as in the proof of Theorem 5.2.
It remains to show that (ii) = (iii). To this aim we construct by induction on § < «
a consistent family (ps)s. of strong liftings ps € A(vVs). The induction starts with
Pig € A(T;IO)

(A) Inductive step to a limit ordinal ordinal §. It follows by Proposition 4.2 that
there exists a strong lifting p5 € A(Vs) N projy<slimp,.

(B) Inductive step to a successor ordinal § = a + 1 < « (¢ > 0). Assume that p, €
A(V,) has been constructed. It then follows by Theorem 2.7 that there exists a strong
inverse image p; € A(Vs) of p, under fys.

(C) Since (ps)s<« 1s a consistent family of strong liftings, it follows by
Proposition 4.2 that there exists a strong lifting p € A(V) N projs . limps. This completes
the proof of the implication (i1) = (ii1).

If the condition (iii) holds true, then the assertion () follows in the same way as
in the proof of Theorem 5.2.
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If &; = By(X;) for every i € I then this fact combined with the assumption S; C §,<
implies that v; is completion regular for every i € /. From Lemma 2.6 and a finite
induction we get that By(Xr) = Q;erBo(X;) for each finite subset F of 1. So we may
apply Lemma 5.1 to get By(X)) = E; = ®iesBo(X;) foreach J C I, hence Bo(X)) = &,
which combined with (@) implies that By(X;) = B(X;) and therefore v is completion
regular and p is completion Baire. O

The following immediate consequence of Theorem 5.3 is a result of A. and C.
Tonescu Tulcea [14, Chapter VIII, Section 2, Theorem 5 and its corollary].

COROLLARY 5.4. Let (X;)icr be a family of compact topological spaces and let v be

a positive Radon measure on X supporting X;. Suppose that
(1) X; is metrizable for eachi € I,

(1) v satisfies condition (IT).
Then v has a strong lifting.

The next immediate consequence of Theorem 5.3 is a result of Fremlin [9, Proposition
4531].

COROLLARY 5.5. Let {(X;, Si, &, vi)ier be a family of complete topological
probability spaces such that every (X;, S;) has a countable network consisting of
measurable sets and every v; has full support. Let vy be the product measure on Xj.
Then vy is a T-additive measure and has a strong lifting.

COROLLARY 5.6. Let (2,7, X, u) be a topological probability space such that 1
admits a vtrong lifting p, and assume that each (X;, S;) has a countable network consisting
of sets in &; and each v; supports X;. Assume also that ;n ® v, as a measure on the product
of the o-algebras X and all B;, i € I, satisfies condition (IT). Then u & v admits a
strong lifting ¢ being an inverse image of p under the canonical projection from 2 x X;
onto §2.

In particular, if ¥ = By($2), for each i € I the equality E; = By(X;) holds true
and (X;, S;) has a countable network consisting of sets from B(X;), then ¥ ® By =
Bo(£2 x Xp), n ® v is completion regular and ¢ is in addition completion Baire.

Proof. Let J be an arbitrary index set, ip € J\I and (X;,S,, &, Vi) =
(2,7, %, ). Put Iy :=1U{ip}. Then the families ((X;, S))ics, and (Z;);cs, together
with the probability measure u ® v on & satisfy the assumptions of Theorem 5.3 and
so the result follows. O

The above corollary contains Theorem 3 of [4].

THEOREM 5.7. Fix an index iy € I and assume that the measure vj, admits a strong
lifting p;,. Assume that for everyi € N\{io} there exzsls a family (X], Sj’) jer, of topological
spaces and a family ((uj jer, of o-algebras B on X’ respectively, such that for every
jel the space (XJ’ §;) has a countable network conszmng of sets in & "'j’ Assume that
X = ®_,E, , Si= ®,€18 and B = Qjer, & oF ! Assume also that for every J € [I]°* and
for every i E I \J the measure Vyuy, as a measure on the completed product of the o-
algebras By and &' ' for all j € I, satisfies condition (IT). Then the measure v vV admits a

strong lifting.

Proof. If I is finite then the result follows from Theorem 5.3 and finite induction.
So we may assume that / is infinite. We may also assume that / = « := «(I) and iy = 0.
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Then (X.o, S<a, <o, Va, fl<a)(<p), k) 1s @ continuous projective system of topological
probability spaces and (X, Sy, E7, v, (f<a)a<«) 18 its projective limit.

We construct by induction on § < « a consistent family (pos)s-. of strong liftings
ps € A(Vs). The induction starts with p;, € A(V;,). The rest of the proof follows in the
same way as in Theorem 5.3, proof of the implication (i) = (iii). We have only to
replace Theorem 2.7 by Theorem 5.3. O

The first result on completion regularity is the following classical theorem of
Kakutani [15]: If (X;);c; is a family of compact metric spaces and foreveryi € I, v;is a
Radon probablhty measure on X; with full support, then the Radon product measure
of (v;)ie; on X; is completion regular. An immediate consequence of Theorem 5.7 is
the following generalization of the above classical result of [15].

COROLLARY 5.8. Under the assumptions of T heorem 5.7 and the assumptions that

= Bo(Xj,), for every i € I\{io} the equality & BO(X’) holds true and (X‘ ') has
a countable network consisting of sets from B(X h, it follows that for every J - I the
equality Ey = Bo(X) holds true, the measure v is completion regular and there exists a
strong completion Baire lifting for V.

Proof. According to Theorem 5.3 we have that for each i € I the equality &; =
By(X;) holds true, the measure v; is completion regular and v; admits a strong lifting.
Again by Theorem 5.3 and finite induction we get that By(Xr) = ®;crBo(X;) for every
finite F C I. On the other hand, according to Theorem 5.7 the measure v admits a
strong p-lifting p, it is t-additive, and the inclusion S; C Z; holds true. So we may
apply Lemma 5.1 to get the equality BO(X 7) = ®iesBo(X;) for each J € I, hence &; =
®,€IBO(X )= BO(X 7). Consequently, Er = BO(X 1) which combined with the inclusion
S; C & implies B(X 1) C BO(X 7) hence B(X 1) = BO(X 7). Thus, v is completion regular
and p is in addition completion Baire. O

The following result, which is a consequence of Theorem 5.7 and of [12
Theorem 3.1], is related with Question 5.5.

COROLLARY 5.9. Let (£2, 7, E(.Q), w) be a complete topological probability space
such that (2, T) is completely regular and  is completion regular and t-additive. Assume
that for every i € I there exists a family (X, S; ))jel, of separable metric spaces and v;
has full support, and that for every J € [I<* cmd Sor every i € I\J the measure Vyy,
as a measure on the completed product of £y and B(Xj’) for all j € I, satisfies condition
(IT). Then the t-additive product measure (see [12, page 331] for the definition) of u and
®icrVi Is completion regular.

Proof- By Corollary 5.8 it follows that v; is completion regular. So the result follows
from [12, Theorem 3.1]. O

REMARKS 5.10. (a) It should be noted that according to [14, page 120], a measure
w satisfying the property (/T) as in Theorem 5.2 is not in general equivalent with a
product measure.

(b) The measure u of Example 4.3 does not satisfy condition (/7)) of Theo-
rems 5.2 and of 5.3.

In fact, assuming that u satisfies condition (/7') and that the continuum hypothesis
(CH) is satisfied, we get from the above corollary the completion regularity of u, a
contradiction.
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It should be noted that subject to (CH) the measure p admits a strong lifting (see

[7] or [28]).
(¢) Subject to (CH), t?e Wiener measure W defined on the completion of the
Borel o-algebra of Q := R"Y = R” where R = [+00, —o0] does not satisfy condition

(IT). In fact, let @, := ia,fa be the canonical projection of R” onto R for every
o < w; and, W, be the completed image of W under f,.

Since each W, has the USLP, supports 2,, and is completion regular but W is
not completion regular, it follows by Corollary 5.6 that u does not satisfy condition
(IT). The measure W has the USLP because the support of W is the polish space
C(R). Q is not second countable, because if 2 were second countable then W should be
completion regular, a contradiction. Moreover, 2 has no countable network (see [13]
for the definition) since for compact spaces €2 the net weight, i.e. the least cardinality of
anetwork for Q, is equal to the weight of Q (see Gruenhage [13, Chapter 10, Section 1)].
So (X, B(2), W) is an example of a topological probability space with the USLP but
without countable base and without countable network.

(d) Fremlin’s simplification [8] of Losert’s counter-example to the strong lifting
conjecture gives a Radon probability measure x on £2 := {0, 1}* supporting £2, being
completion regular and having no a strong lifting. It follows by Theorem 5.3 and above
that the measure u does not satisfy condition (7).

6. Consequences. We recall the following definition taken from [32, Chapter I,
Section 6, page 46]. Let v be a Radon measure on a topological space (O, S). A v-
concassage of @ is a partition of @ into N U | J,_; K;, where N is a v-null set and K; are
pairwise disjoint compact sets such that every point of @ has a neighbourhood which
meets at most a countable number of K;.

Let « be an infinite ordinal. We say that (®, v) is locally of order «, if there exists
a concassage {(K;)ic;, N) of ® such that the topology induced on every K; has a basis
of cardinality not exceeding « (see [2]).

The following result has been proved in [2, page 22] for Radon measures of full
support on a locally compact Hausdorff topological space, but we extend it to general
(Hausdorff) topological spaces. Although the proof essentially repeats the arguments
of [2] we give it for completeness.

LEMMA 6.1. Let k be an infinite ordinal. In order that every (completion regular and)
Radon measure v of full support on a (normal) topological space ©, such that (®, v) is
locally of order k., has a strong (completion Baire) lifting it is necessary and sufficient that
every (completion regular and) Radon measure v of full support on [0, 1° has a strong
(completion Baire) lifting.

Proof. The necessity is obvious. Let v be a Radon measure of full support on
©®. Suppose that (O, v) is locally of order «. Applying [32, Chapter I, Section 6,
Theorem 13], we may choose a concassage ((K;);cs, N) of ® such that the restriction
v | K;of v to each K; is of full support. Indeed, let ({L;);c;, N) be a concassage of ®. For
every i € I let K; € L; be the support of v|L;. Since each L; has a basis of cardinality
less or equal to «, the same holds true for K;. Exactly as in Schwartz [32] one proves
that ®\ |, K; is v-measurable. We want to prove that v(@\ |J; K;) = 0. So take a
compact H C O\ | J; K; and take for every 6 € H a neighborhood Uy such that Uy has
non-empty intersection only with countably many sets Ly ;. Due to the compactness
of H there exist sets Uy, ..., U, € {Ly;:0 € ®,iel} covering H. Assume that
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UnNLyj#9, j=1,...and U, N L; = @ forother L;. Thus, U,, N (O\ Ui‘/ Li\N) =
¢ for every m < n. Consequently, H N (®\ Ui.j L;j\N) = @, what yields H C Ui,j Li;jU
N.Asv(H N L;j) = 0forall i j, we get v(H) = 0.

For each i € I there is a homeomorphism /; from K; onto a closed subset 4;(K;)
of [0, 1]. Denote by v; the image measure of v | K; under /; for i € I, and by A the
Lebesgue measure on [0, 1]. Then v; := A* + V; supports [0, 1] and by our assumption
there exists a strong lifting p; € A(v)).

Since v | K; supports K, it follows that v; | 4;(K;) supports hi(K;) for each i € 1,
hence we may apply [17, Lemma 2.3], to find a strong lifting in A(v; | B([0, 1]) N h;i(K})),
and again [17, Corollary 2.6], to find a strong lifting p; € A(V; | h:(K;)). Since h; is a
homeomorhism there exists an inverse image 7; € A(v | K;) of p; under A; for each
i € I, which is a strong lifting. It then follows from [17, Theorem 2.4], that there exists
a strong lifting in A(v).

If in addition @ is a normal topological space and v is completion regular then
it follows from [6, Lemma 2.3] that for each i € I we have By(K;) = By N K; according
to [6, Lemma 2.3], hence the measure v | K; is completion regular, and so applying [4,
Section 3, Lemma 1], we have that v; is completion regular, and again by [6, Lemma 2.3],
v; | hi(K;) is completion regular. Consequently, the above liftings p;, 0;, i, T; and 7 are
strong completion Baire and so the result follows. O

QUESTION 6.2. Can we eliminate the completeness assumption for the topological
measure spaces in Lemma 6.1?

DEFINITION 6.3. Let « be an infinite ordinal and let v be a Radon measure on a
topological space (@, S) such that (©, v) is locally of order k. Let (v;);c; be the family
of the measures v; on [0, 1]¢ associated with (&, v) as in the proof of Lemma 6.1. We
say that the measure v satisfies the property (GP*), if for every i € I the measure v;
satisfies the property (/7).

THEOREM 6.4. Let v be an arbitrary (completion regular and) Radon measure of full
support on a (normal) toplogical space © satisfying the property (GP*). Then v admits a
strong (completion Baire) lifting.

Proof. Let (©, v) be of locally order «, where « is an infinite ordinal. Then the
result follows by Lemma 6.1 and by Theorem 5.3. O

THEOREM 6.5. Let u and v be Radon measures of full support on the topological
spaces (82, T) and (©, S) respectively such that (®, v) is locally of order k, where k is an
arbitrary infinite ordinal. Let (v;);cy be the family of the measures v; on [0, 1] associated
with (O, v) as in the definition 6.2. Assume that w admits a strong lifting p and Qv
has the property (GP*). Then u ® v admits a strong lifting being an inverse image of p
under the canonical projection.

In particular, if u and v are completion regular and (©, S) is a normal topological
space, then the measure u ® v admits a strong completion Baire lifting being an inverse
image of p under the canonical projection.

Proof. Let « be an infinite ordinal such that (©, S) is locally of order «. As in
the proof of Lemma 6.1, there exists a concassage ((K;);c;, N) of @ such that the
restriction v | K; of v to each K; is of full support and each topology S N K; has a
basis not exceeding «. For each i € I there is a homeomorhism /; from K; onto a
closed subset /;(K;) of [0, 1]°. According to Corollary 5.6, for each i € I the measure
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,u@v, has a strong p-lifting, and by [17, Lemma 2.3], the restriction of u® v; to
B(.Q x hi(K;)), has a strong lifting. But again by [17, Corollary 2.6], the restriction of
w7 to B(.Q x hi(K; )) has a strong lifting, and so since /; is a homeomorphism we
get that the measure u ® (v | K;) admits a strong lifting for each i € 1.

Consequently, applying [17, Theorem 2.4] we get a strong lifting for u ® v being
an inverse image of p .

In particular, if 4« and v are completion regular and (©, S) is a normal topological
space, then according to Corollary 5.6, for each i € I the measure u & vi has a strong
completion Baire p-lifting, and by [17, Lemma 2.3], the restriction of u ® v; to B(.Q X
hi(K;)), which according to [6, Lemma 2.3], is completlon regular, has a strong lifting.
But again by [17, Corollary 2.6], the restriction of u ®7; to B(Q x h;(K;)), which is
completion regular, has a strong lifting, and so since /; is a homeomorphism we get
that the measure 1 ® (v | K;) admits a strong completion Baire lifting for each i € 1.

Consequently, applying [17, Theorem 2.4] we get a strong completion Baire lifting
for  ® v being an inverse image of p. This completes the proof. O

The above theorem extends Corollary 5.6, while Theorem 6.4 improves
Theorem 5.3.

Theorem 6.5 gives a positive answer to Kupka’s problem for a wide class of
topological probability spaces. The same theorem answers Question 2.3 to the positive
for Radon measure spaces (©, S, B(®), v) and

(Q,T,B(Q),n) =(®,8,BO),v)&(®,S,BO),),

where (6, S, E(@), V) is as in Theorem 6.4.
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