
Adv. Appl. Probab. 56, 464–494 (2024)
doi:10.1017/apr.2023.25

ORDERING AND AGEING PROPERTIES OF DEVELOPED SEQUENTIAL
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Abstract

Developed sequential order statistics (DSOS) are very useful in modeling the lifetimes
of systems with dependent components, where the failure of one component affects the
performance of remaining surviving components. We study some stochastic comparison
results for DSOS in both one-sample and two-sample scenarios. Furthermore, we study
various ageing properties of DSOS. We state many useful results for generalized order
statistics as well as ordinary order statistics with dependent random variables. At the
end, some numerical examples are given to illustrate the proposed results.
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1. Introduction

Order statistics play a significant role in probability, statistics, finance, economics, reliabil-
ity theory, and many other fields. In reliability theory, they have a one-to-one relationship with
the lifetimes of k-out-of-n systems. A system of n components is said to be a k-out-of-n system
if it functions as long as at least k of its n components function. If X1, X2, . . . , Xn represent the
lifetimes of the n components of a k-out-of-n system, then the system lifetime is represented
by the (n − k + 1)th order statistic, namely, Xn−k+1:n. Two special cases of k-out-of-n systems
are the parallel system (k = 1) and the series system (k = n). There are many real-life systems
that are structurally the same as k-out-of-n systems (see [4, 32, 35]).

In conventional modeling of the lifetimes of k-out-of-n systems, it is generally assumed
that the failure of one component does not have any impact on the lifetimes of the remaining
surviving components. However, in most cases, this assumption oversimplifies any given real-
life scenario. For example, the load of an aircraft engine, when it fails, is transferred to the
remaining surviving engines, and consequently the lifetimes of the remaining engines decrease.
To model such phenomena, we need more generalized models that can capture the impact of the
failure of one component on the others. To deal with this problem, Kamps [25] introduced the
notion of sequential order statistics (SOS) (see the definition in [25]), which is an extension
of that of ordinary order statistics (OS). Subsequently, Cramer and Kamps [17] introduced
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sequential k-out-of-n systems as an extension of the usual k-out-of-n systems. As before, the
lifetime of a sequential k-out-of-n system is the same as the (n − k + 1)th-order sequential
order statistic of the lifetimes of the components of the system. In a sequential k-out-of-n
system, when a component fails, the distributions of the residual lifetimes of the remaining
components are assumed to be different from the distributions that they had previously. This
distributional change can be viewed as failure-related damage or an increment of pressure
imposed on the surviving components. Numerous papers have been written on this topic; see,
e.g., [1, 11, 12, 13, 17, 18, 19, 25] and the references therein.

Sequential order statistics (or equivalently, sequential k-out-of-n systems) are defined based
on the assumption that the remaining components in each step (i.e., after each failure) are
independent. However, most real-life systems, given their complex structures, consist of
components whose lifetimes are not necessarily independent. Below we discuss two examples.

Example 1.1. Assume that the manager of an oil transmission pipeline intends to build a new
station with five pumps to raise the oil pressure throughout the pipeline. If three out of the
five pumps are operational, then the station functions effectively. Here, the lifetimes of the five
pumps are indeed dependent. Again, the failure of a pump increases the load on the remain-
ing pumps, because proper transmission requires a certain level of oil pressure (i.e., there is
a load-sharing effect). This is an example of a sequential 3-out-of-5 system with dependent
component lifetimes (see [3]).

Example 1.2. Consider a four-engine jet aircraft that functions as long as at least two of its
engines function. Here, the lifetimes of the four engines are interdependent. Moreover, when
an engine fails, the load on the remaining engines increases to provide sufficient power to
comfortably reach a diversion airport or continue the journey. This system can be viewed as a
sequential 2-out-of-4 system with dependent component lifetimes.

Given the interdependency structure between components of a system, the SOS model may
not be appropriate to describe these scenarios. Recently, Baratnia and Doostparast [3] have
introduced an extended SOS model, known as developed sequential order statistics (DSOS), to
describe the lifetimes of systems with dependent components. The definition of DSOS can be
found in [3].

The study of the ordering and ageing properties of order statistics is one of the important
problems in reliability theory. A large volume of research on various aspects of the ordering
and ageing properties of ordinary order statistics can be found in the literature (see [2, 4, 6,
21, 22, 23, 28], to name a few). Furthermore, various ordering properties of generalized order
statistics (see the definition in [26]) have been studied by [7, 8, 20, 24] and many others.
One may note that, if the underlying distribution functions follow the proportional hazard rate
model, then generalized order statistics and sequential order statistics are the same. However,
in general, sequential order statistics and generalized order statistics are conceptually different.
The ordering properties of sequential order statistics have been considered in [14, 15, 16, 31,
39, 40] and the references therein. Furthermore, Burkschat and Navarro [13] studied closure
properties of different ageing classes under the formation of sequential k-out-of-n systems.
Later, Barmalzan et al. [5] studied various ordering and ageing properties of residual lifetimes
of live components in sequential k-out-of-n systems. One may note that all of the aforemen-
tioned studies were carried out for sequential k-out-of-n systems with independent components
(or equivalently, sequential order statistics with independent random variables). The ordering
and ageing properties of ordinary order statistics with dependent random variables, governed
by the Archimedean copula, were considered in [28, 37] and the references therein. To the
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best of our knowledge, no work in this direction has been done for sequential order statistics
with dependent random variables (i.e., for DSOS). Thus, in this paper, our goal is to study
the ordering and ageing properties of DSOS with the dependency structure modeled by the
Archimedean copula. It is worth mentioning that the proposed study on DSOS generalizes
many well established results available for sequential order statistics, generalized order statis-
tics and ordinary order statistics. The novelty of this paper is mainly in considering the DSOS,
which subsumes all of the special cases previously considered in the literature.

The rest of the paper is organized as follows. In Section 2, we discuss preliminaries
and some useful lemmas. In Section 3, we discuss the main results of this paper. We study
some stochastic comparison results for DSOS. Furthermore, we discuss closure properties of
different ageing classes for DSOS. In Section 4, we give some numerical examples to demon-
strate the sufficient conditions used in our theorems. Finally, concluding remarks are given in
Section 5. All proofs of theorems, propositions, lemmas, and corollaries, wherever given, are
deferred to the appendix.

2. Preliminaries and useful lemmas

Unless otherwise stated, we use the following notation throughout the paper. For an
absolutely continuous random variable X, we denote the probability density function, the
cumulative distribution function, the quantile function, the survival function, the hazard func-
tion, the reversed hazard function, the mean residual function, the cumulative hazard rate
function, and the cumulative reversed hazard rate function by fX , FX , F−1

X , F̄X , rX , r̃X , mX ,
�X , and �̃X , respectively; here rX ≡ fX/F̄X , r̃X ≡ fX/FX , �X ≡ −ln F̄X , �̃X ≡ −ln FX , and

mX(t) =
∞∫
t

F̄X(w)dw/F̄X(t), for t ≥ 0.

We use the following acronyms throughout the paper. We write ‘DID’, ‘OS’, ‘SOS’, and
‘DSOS’ for the phrases ‘dependent and identically distributed’, ‘ordinary order statistic(s)’,

‘sequential order statistic(s)’, and ‘developed sequential order statistic(s)’, respectively. By ‘
d=’

we mean equality in distribution. All random variables considered in this paper are assumed to
be absolutely continuous with strictly increasing cumulative distribution functions.

Copulas are a very effective tool for describing the dependency structure between random
variables. In the literature, a large variety of copulas have been introduced to describe different
dependency structures. Some of the best-known copulas are the Farlie–Gumbel–Morgenstern
copula, the extreme-value copula, the family of Archimedean copulas, and the Clayton–Oakes
copula. Among all of these, the family of Archimedean copulas has received the most attention
from the researchers because of its mathematical tractability and its ability to describe a wide
range of dependency structures. For an encyclopedic treatment of this topic, one may refer to
Nelsen [33]. Below we give the definition of an Archimedean copula (see [30]).

Definition 2.1. Let φ : [0,+∞] −→ [0, 1] be a decreasing continuous function such that
φ(0) = 1 and φ( + ∞) = 0, and let ψ ≡ φ−1 be the pseudo-inverse of φ. Then

C(u1, u2, . . . , un) = φ(ψ(u1) +ψ(u2) + · · · +ψ(un)) , for (u1, u2, . . . , un) ∈ [0, 1]n, (1)

is called the Archimedean copula with generator φ if (−1)kφ(k)(x) ≥ 0, for k = 0, 1, . . . , n − 2,
and (−1)n−2φ(n−2)(x) is decreasing and convex in x ≥ 0. �
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As an extension of SOS, Baratnia and Doostparast [3] introduced the notion of DSOS,
which is useful for describing the lifetimes of systems with dependent components. Below we
describe the notion of DSOS governed by the Archimedean copula (see [3, 31]).

Let F1, F2, . . . , Fn be n absolutely continuous cumulative distribution functions with
F−1

1 (1) ≤ · · · ≤ F−1
n (1). Consider a system of n components installed at time t = 0. Assume that

all components of the system are functioning at the time of inception. Let X(1)
1 , X(1)

2 , . . . , X(1)
n

be n DID random variables, with the distribution function F1, representing the lifetimes of
the n components. Assume that the dependency structure between these random variables is
described by the Archimedean copula with generator φ. Then the first component failure time
is given by

X�1:n = min
{

X(1)
1 , X(1)

2 , . . . , X(1)
n

}
.

Given X�1:n = t1, the residual lifetimes of the (n − 1) remaining components are equal in
distribution to the residual lifetimes of (n − 1) DID components with age t1 and with the
distribution function F2 (instead of F1) with the same dependency structure; here F2 is
assumed in place of F1 because the failure of the first component has an impact on the
performance of the other components. Let the lifetimes of these DID components be repre-
sented by X(2)

1 , X(2)
2 , . . . , X(2)

n−1. Then X(2)
j ∼ F2( · |t1), where F̄2(x|t1) = F̄2(x)/F̄2(t1) for x ≥ t1.

Moreover, X(2)
j ≥ t1, for j = 1, 2, . . . , n − 1. Furthermore, the second component failure time

is given by

X�2:n = min
{

X(2)
1 , X(2)

2 , . . . , X(2)
n−1

}
.

Proceeding in this manner, we assume that the ith failure occurs at time ti (> ti−1),
i.e., X�i:n = ti. Then the residual lifetimes of the (n − i) remaining components are equal in
distribution to the residual lifetimes of (n − i) DID components with age ti and the distri-
bution function Fi+1 with the same dependency structure. Let the lifetimes of these DID
components be represented by X(i+1)

1 , X(i+1)
2 , . . . , X(i+1)

n−i . Then X(i+1)
j ∼ Fi+1( · |ti), where

F̄i+1(x|ti) = F̄i+1(x)/F̄i+1(ti) for x ≥ ti. Moreover, note that X(i+1)
j ≥ ti, for j = 1, 2, . . . , n − i.

The (i + 1)th component failure time is then given by

X�i+1:n = min
{

X(i+1)
1 , X(i+1)

2 , . . . , X(i+1)
n−i

}
.

Finally, if the (n − 1)th component failure occurs at time tn−1 = X�n−1:n, then the last com-
ponent failure time is given by X�n:n with the reliability function F̄n(x|tn−1) = F̄n(x)/F̄n(tn−1)
for x ≥ tn−1. The random variables X�1:n ≤ X�2:n ≤ · · · ≤ X�n:n are called the developed sequen-
tial order statistics (DSOS) based on F1, F2, . . . , Fn, where the dependency structure is
described by the Archimedean copula with generator φ. For brevity, we denote them by(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ).

Remark 2.1. If F1
d= F2

d= · · · d= Fn
d= F (say), then the DSOS,

(
X�1:n, X�2:n, . . . , X�n:n

)∼
DSOS(F1, F2, . . . , Fn; φ), reduce to OS of DID random variables with the common distri-
bution function F and the dependency structure described by the Archimedean copula with
generator φ. We denote these OS by (X1:n, X2:n, . . . , Xn:n) ∼ OS(F; φ).
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Remark 2.2. One may note that if (X�1:n, X�2:n, . . . , X�n:n) ∼ DSOS(F1, F2, . . . , Fn; φ), then
{X�1:n, X�2:n, . . . , X�n:n} forms a Markov chain with transition probabilities given by

P
(
X�r:n > t|X�r−1:n = x

)= φ

(
(n − r + 1)ψ

(
F̄r(t)

F̄r(x)

))
, t ≥ x> 0, (2)

where F̄(x)> 0 and ψ ≡ φ−1. �
Below we give an alternative definition of DSOS (see [19]).

Definition 2.2. Let F1, . . . , Fn be cumulative distribution functions with F−1
1 (1) ≤ · · · ≤

F−1
n (1), and let (

Y (r)
j

)
1≤r≤n,1≤j≤n−r+1

be dependent random variables with Y (r)
j ∼ Fr, r = 1, 2, . . . , n, j = 1, 2, . . . , n − r + 1, where

the dependency structures are described by the same Archimedean copula with generator φ. Let

X(1)
j = Y (1)

j , j = 1, 2, . . . , n, and X�1:n = min
{

X(1)
1 , X(1)

2 , . . . , X(1)
n

}
. For r = 2, 3, . . . , n, let

X(r)
j = F−1

r

{
Fr

(
Y (r)

j

)[
1 − Fr

(
X�r−1:n

)]+ Fr
(
X�r−1:n

)}
, j = 1, 2, . . . , n − r + 1,

and X�r:n = min
{

X(r)
1 , X(r)

2 , . . . , X(r)
n−r+1

}
. Then

(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ).

Two equivalent representations of DSOS are given in the following two lemmas. The proofs
of these lemmas can be carried out along the same lines as in [13, 19] and are therefore omitted.

Lemma 2.1. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). Then

X�1:n = F̄−1
1

(
V (1)

)
,

X�i:n = F̄−1
i

(
V (i)F̄i

(
X�i−1:n

))
, for i = 2, 3, . . . , n,

where

V (i) = max
{(

1 − U(i)
1

)
, . . . ,

(
1 − U(i)

n−i+1

)}
and U(i)

j ∼ Unif (0, 1), for i = 1, 2, . . . , n and j = 1, 2, . . . , n − i + 1, and, for each i ∈
{1, 2, . . . , n}, the U(i)

j are dependent random variables governed by the Archimedean copula
with generator φ.

Lemma 2.2. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). Furthermore, let
Di ≡ −ln F̄i be the cumulative hazard rate function of Fi, for i = 1, 2, . . . , n. Then

X�1:n = D−1
1

(
W(1)

)
, (3)

X�i:n = D−1
i

(
W(i) + Di

(
X�i−1:n

))
, for i = 2, 3, . . . , n, (4)
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where

W(i) = −ln
(

V (i)
)

= min
{

−ln
(

1 − U(i)
1

)
, . . . ,−ln

(
1 − U(i)

n−i+1

)}
, i = 1, 2, . . . , n,

and the U(i)
j are the same as in Lemma 2.1. Moreover, {W(j), j = 1, 2, . . . , n} are independent

random variables with

F̄W(j) (t) = φ
(
(n − j + 1)ψ

(
e−t)), t> 0, j = 1, 2, . . . , n, (5)

where ψ ≡ φ−1. �.

Stochastic orders are widely used to compare two or more random variables/vectors. In the
literature, numerous types of stochastic orders have been introduced, e.g., the usual stochas-
tic order, the hazard rate order, etc. (see [36, 37]). Below we give the definitions of several
stochastic orders that are used in subsequent sections.

Definition 2.3. Let X and Y be two absolutely continuous random variables with non-negative
supports. Then X is said to be smaller than Y in the

(a) usual stochastic order, denoted by X ≤st Y or FX ≤st FY , if F̄X(x) ≤ F̄Y (x) for all x ∈
[0,∞);

(b) hazard rate order, denoted by X ≤hr Y or FX ≤hr FY , if F̄Y (x)/F̄X(x) is increasing in
x ∈ [0,∞);

(c) reversed hazard rate order, denoted by X ≤rh Y or FX ≤rh FY , if FY (x)/FX(x) is
increasing in x ∈ [0,∞);

(d) likelihood ratio order, denoted by X ≤lr Y or FX ≤lr FY , if fY (x)/fX(x) is increasing in
x ∈ (0,∞);

(e) mean residual life order, denoted by X ≤mrl Y or FX ≤mrl FY , if∫∞
x F̄Y (u)du/

∫∞
x F̄X(u)du is increasing in x over {x :

∫∞
x F̄X(u)du> 0};

(f) ageing-faster order in terms of the hazard rate, denoted by X ≤c Y or FX ≤c FY , if �X ◦
�−1

Y is convex on [0,∞), or equivalently, rX/rY is increasing on [0,∞);

(g) ageing faster in average order in terms of the cumulative hazard rate, denoted by
X ≤∗ Y or FX ≤∗ FY , if �X ◦�−1

Y is star-shaped on [0,∞), or equivalently, �X/�Y

is increasing on [0,∞);

(h) ageing faster in quantile order in terms of the cumulative hazard rate, denoted by X ≤su Y
or FX ≤su FY , if �X ◦�−1

Y is superadditive on [0,∞). �

Like stochastic orders, stochastic ageings are also very useful tools for describing how a
system behaves over time. In the literature, numerous ageing classes (e.g., IFR, IFRA, DFR,
DLR, etc.) have been introduced to characterize different ageing properties of a system (see
[4, 27, 38] and the references therein). Below we give the definitions of some ageing classes
that are used in this paper.

Definition 2.4. Let X be an absolutely continuous random variable with nonnegative support.
Then X is said to have the
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(a) increasing likelihood ratio (ILR) (resp. decreasing likelihood ratio (DLR)) property
if f ′

X(x)/fX(x) is decreasing (resp. increasing) in x ≥ 0 (here f ′
X(·) represents the first

derivative of fX(·));
(b) increasing failure rate (IFR) (resp. decreasing failure rate (DFR)) property if rX(x) is

increasing (resp. decreasing) in x ≥ 0;

(c) decreasing reversed failure rate (DRFR) property if r̃X(x) is decreasing in x ≥ 0;

(d) increasing failure rate in average (IFRA) (resp. decreasing failure rate in average
(DFRA)) property if −ln F̄X(x)/x is increasing (resp. decreasing) in x ≥ 0;

(e) multivariate increasing failure rate in average (MIFRA) property if
E
(
ξ
(
X1, X2, . . . , Xn

))≤ E1/α
(
ξα
(
X1/α, X2/α, . . . , Xn/α

))
for all continuous

nonnegative increasing functions ξ and for all α ∈ (0, 1);

(f) new better than used (NBU) (resp. new worse than used (NWU)) property if�X is super-
additive (resp. subadditive) in x ≥ 0, or equivalently, F̄X(x + t) ≤ (resp. ≥ ) F̄X(x)F̄X(t)
for all x, t ≥ 0. �

Below we give a list of lemmas that are used in the next section. The proofs of Lemmas 2.4,
2.5, and 2.6 are omitted for the sake of brevity.

Lemma 2.3. Let X and Y be independent random variables with nonnegative supports. If ζ is
a strictly increasing, continuous, and superadditive function, then ζ (X) + ζ (Y) ≤st ζ (X + Y).

Lemma 2.4. Let X be a nonnegative random variable, and let a ≥ 1 be a constant.

(a) If X is IFR then X ≤hr aX.

(b) If ur̃X(u) is decreasing in u> 0, then X ≤rh aX.

(c) If fX(eu) is log-concave in u> 0, then X ≤lr aX.

Lemma 2.5. Let Z be a nonnegative random variable, and let X and Y be absolutely continuous
nonnegative random variables such that X ≥c Y . If Z is DRFR, then �Y ◦�−1

X (Z) is DRFR.

Lemma 2.6. Let Z be a nonnegative random variable, and let X be an absolutely continuous
nonnegative random variable. If X is DFR and Z is DRFR, then �−1

X (Z) is DRFR. �
The proportional hazard rate model (PHR) model is one of the commonly used semi-

parametric models. This model has many applications in survival analysis, reliability theory,
and many other fields (see [29]). A set of random variables {Z1, Z2, . . . , Zn} is said to follow
the PHR model if, for i = 1, 2, . . . , n,

F̄Zi (t) = (F̄(t))αi, for some αi > 0 and for all t> 0,

where F̄ is the baseline survival function. We denote this PHR model by FZi ∼ PHR(F; αi), for
i = 1, 2 . . . , n.

3. Main results

In this section we discuss the main results of this paper. First we give some stochas-
tic comparison results for DSOS. We consider both one-sample and two-sample scenarios.
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Furthermore, we study some ageing properties of DSOS. In what follows, we introduce some
notation.

Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). For i = 1, 2, . . . , n − 1, let

Y (i+1)
1:n−i = min

{
Y (i+1)

1 , Y (i+1)
2 , . . . , Y (i+1)

n−i

}
,

where Y (i+1)
1 , Y (i+1)

2 , . . . , Y (i+1)
n−i are DID random variables with the distribution function Fi+1

and the dependency structure described by the Archimedean copula with generator φ. Here,
Y (i+1)

k is the random variable corresponding to the parent distribution of the kth remaining
component at the ith step (i.e., after the ith failure), for k = 1, 2, . . . , n − i. For the sake of
convenience, we call this the kth parent random variable at the ith step. Consequently, Y (i+1)

1:n−i
represents the minimum order statistic of all parent random variables at the ith step. Intuitively,
what this means is as follows. Suppose that all surviving components at the ith step are replaced
by a set of new components (i.e., with age zero) with lifetimes having the same distributions
as the remaining surviving components have, i.e., Fi+1. Then Y (i+1)

1:n−i represents the first failure
time for this set of new components.

Furthermore, for an Archimedean copula with the generator φ, we use the following
notation:

H(u) = uφ′(u)

1 − φ(u)
, R(u) = uφ′(u)

φ(u)
and G(u) = uφ′′(u)

φ′(u)
, u> 0.

Note that H(·), R(·) and G(·) are all negative-valued functions, because φ(·) is a decreasing
and convex function.

3.1. Stochastic comparisons of DSOS in one-sample scenario

In this subsection we study some stochastic comparison results for DSOS.
In the following theorem, we compare two consecutive DSOS with respect to the hazard

rate, reverse hazard rate, likelihood ratio, and mean residual life orders. We prove these results
under some sufficient conditions that are given in terms of ith-order DSOS and the minimum
order statistic of the parent random variables at the ith step. The proof of the second part of the
theorem can be carried out along the same lines as that of the first part and is therefore omitted.

Theorem 3.1. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). For a given i ∈
{1, 2, . . . , n − 1}, the following results hold true:

(a) Assume that uR′(u)/R(u) is increasing in u> 0. If X�i:n ≤hr Y (i+1)
1:n−i, then X�i:n ≤hr X�i+1:n.

(b) Assume that uH′(u)/H(u) is decreasing in u> 0. If X�i:n ≤rh Y (i+1)
1:n−i, then X�i:n ≤rh X�i+1:n.

(c) Assume that G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0. If X�i:n ≤lr

Y (i+1)
1:n−i, then X�i:n ≤lr X�i+1:n.

(d) Assume that uR′(u)/R(u) is increasing in u> 0. If X�i:n ≤mrl Y (i+1)
1:n−i, then X�i:n ≤mrl

X�i+1:n. �

In the following theorem, we give slightly more generalized results than in the previous
theorem. Here, we compare the first (i + 1) consecutive DSOS with respect to the hazard rate,
reverse hazard rate, and likelihood ratio orders. These results are proved under some sufficient
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conditions that are given in terms of an ordering relation between distributions at different
steps. These sufficient conditions are easier to verify than those in the previous theorem. The
proof of the first part of the theorem can be carried out along the same lines as that of the
second part and is therefore omitted.

Because of its mathematical complexity, the result given in Theorem 3.2(c) cannot be
proved under a general setup. Thus, we state this result for the PHR model. One may note that,
when the underlying distributions follow the PHR model, SOS are the same as generalized
order statistics.

Theorem 3.2. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). For a given i ∈
{1, 2, . . . , n − 1}, the following results hold true:

(a) Assume that uR′(u)/R(u) is increasing in u> 0. If F1 ≤c F2 ≤c · · · ≤c Fi+1, then
X�1:n ≤hr X�2:n ≤hr . . . ≤hr X�i+1:n.

(b) Assume that uH′(u)/H(u) is decreasing in u> 0. If F1 ≥c F2 ≥c · · · ≥c Fi+1, then
X�1:n ≤rh X�2:n ≤rh . . . ≤rh X�i+1:n.

(c) Let Fj ∼ PHR(F;αj), for j = 1, 2, . . . , i + 1. Assume that G(nu)/R(u) − G(u)/R(u) is
positive and increasing in u> 0. Then X�1:n ≤lr X�2:n ≤lr . . . ≤lr X�i+1:n. �

The corollary below follows immediately from Theorem 3.2 and Remark 2.1. Furthermore,
note that the results given in this corollary generalize the results stated in Theorems 3.1(i)–(iii),
3.3, 3.4, 3.7(i)–(iii), 3.8, and 3.9 of Li and Fang [28].

Corollary 3.1. Let (X1:n, X2:n, . . . , Xn:n) ∼ OS(F; φ). Then the following results hold true:

(a) Assume that uR′(u)/R(u) is increasing in u> 0. Then X1:n ≤hr X2:n ≤hr . . . ≤hr Xn:n.

(b) Assume that uH′(u)/H(u) is decreasing in u> 0. Then X1:n ≤rh X2:n ≤rh . . . ≤rh Xn:n.

(c) Assume that G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0. Then X1:n ≤lr

X2:n ≤lr . . . ≤lr Xn:n. �

Remark 3.1. (Sahoo and Hazra [37], Remark 3.1(a).) If uG′(u)/G(u) is positive and increas-
ing in u> 0, and G(u)/R(u) is increasing in u> 0, then (G(nu) − G(u))/R(u) is positive and
increasing in u> 0. �

In the following theorem, we compare the first-order DSOS with the DSOS of other orders
with respect to the hazard rate, reverse hazard rate, and likelihood ratio orders. The results
given in this theorem may be obtained from Theorems 3.1 and 3.2. However, the sufficient
conditions given in this theorem are different from those given in Theorems 3.1 and 3.2. The
proof of this theorem can be carried out along the same lines as that of Theorem 3.1 and is
therefore omitted.

Theorem 3.3. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). For a given i ∈
{1, 2, . . . , n}, the following results hold true:

(a) Assume that uR′(u)/R(u) is increasing and positive for all u> 0. If F1 ≤hr Fi, then
X�1:n ≤hr X�i:n.

(b) Assume that uH′(u)/H(u) is decreasing and negative for all u> 0. If F1 ≤rh Fi, then
X�1:n ≤rh X�i:n.
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(c) Assume that G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0. If F1 ≤lr Fi,
then X�1:n ≤lr X�i:n.

3.2. Stochastic comparisons of DSOS in two-sample scenario

In this subsection, we study some stochastic comparison results for DSOS in a two-sample
scenario.

In the following theorem, we compare two DSOS, formed from two different samples, with
respect to the usual stochastic order.

Theorem 3.4. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ) and
(
Z�1:n, Z�2:n, . . . ,

Z�n:n

)∼ DSOS(G1,G2, . . . ,Gn; φ). For a given i ∈ {1, 2, . . . , n}, suppose that one of the
following conditions holds:

(a) Fj ≤st Gj for all j = 1, 2, . . . , i, and Fj ≤su Gj for all j = 2, 3, . . . , i;

(b) Fj ≤hr Gj for all j = 1, 2, . . . , i.

Then X�k:n ≤st Z�k:n for all k = 1, 2, . . . , i. �
The corollary below follows from Theorem 3.2 and Remark 2.1. Note that the result given

here is also mentioned in Sahoo and Hazra [37]. However, the set of sufficient conditions used
in the latter paper is different from the one that is given here.

Corollary 3.2. Let
(
X1:n, X2:n, . . . , Xn:n

)∼ OS(F; φ) and
(
Z1:n, Z2:n, . . . , Zn:n

)∼ OS(G; φ).
If F ≤st G and F ≤su G, or F ≤hr G holds, then Xk:n ≤st Zk:n for all k = 1, 2, . . . , n. �

In the following theorem, we prove the same result as in Theorem 3.2 for the hazard rate,
reversed hazard rate, and likelihood ratio orders. The second part of this theorem can be proved
along the same lines as the first part, so its proof is omitted.

Theorem 3.5. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ) and
(
Z�1:n, Z�2:n, . . . ,

Z�n:n

)∼ DSOS(G1,G2, . . . ,Gn; φ). Furthermore, let Fj ∼ PHR(F; αj) and Gj ∼ PHR(F; βj),
for j = 1, 2, . . . , n. For a given i ∈ {1, 2, . . . , n}, the following results hold true:

(a) Assume that uR′(u)/R(u) is increasing in u> 0. If αj ≥ βj for all j = 1, 2, . . . , i, then
X�k:n ≤hr Z�k:n for all k = 1, 2, . . . , i.

(b) Assume that uH′(u)/H(u) is decreasing in u> 0. If αj ≥ βj for all j = 1, 2, . . . , i, then
X�k:n ≤rh Z�k:n for all k = 1, 2, . . . , i.

(c) Assume that G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0. If αj ≥ βj for
all j = 1, 2, . . . , i, then Xk:n ≤lr Zk:n for all k = 1, 2, . . . , i. �

The corollary below follows immediately from Theorem 3.5 and Remark 2.1.

Corollary 3.3. Let
(
X1:n, X2:n, . . . , Xn:n

)∼ OS(F; φ) and
(
Z1:n, Z2:n, . . . , Zn:n

)∼ OS(G; φ).
Furthermore, let F ∼ PHR(Q; α) and G ∼ PHR(Q; β). Then the following results hold true:

(a) Assume that uR′(u)/R(u) is increasing in u> 0. If α ≥ β, then Xk:n ≤hr Zk:n for all k =
1, 2, . . . , n.

(b) Assume that uH′(u)/H(u) is decreasing in u> 0. If α ≥ β, then Xk:n ≤rh Zk:n for all
k = 1, 2, . . . , n.
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(c) Assume that G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0. If α ≥ β, then
Xk:n ≤lr Zk:n for all k = 1, 2, . . . , n.

3.3. Ageing properties of DSOS

In this subsection, we study some ageing properties of DSOS.
In the following theorem, we provide various sets of sufficient conditions to show that

the IFR, the DRFR, the IFRA, and the NBU classes are preserved under the formation of
(n − k + 1)-out-of-n systems with lifetimes described by DSOS. The proofs of the first, third,
and fourth parts of this theorem are similar to that of the second part and are therefore omitted.

Theorem 3.6. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). For a given i ∈
{1, 2, . . . , n}, the following results hold true:

(a) Assume that uR′(u)/R(u) is increasing in u> 0. If F1 ≤c F2 ≤c · · · ≤c Fi and Fi is IFR,
then X�k:n is IFR for all k = 1, 2, . . . , i.

(b) Assume that uH′(u)/H(u) is decreasing in u> 0. If F1 ≥c F2 ≥c · · · ≥c Fi and Fi is DFR,
then X�k:n is DRFR for all k = 1, 2, . . . , i.

(c) Assume that uR′(u)/R(u) is increasing in u> 0. If F1 ≤∗ F2 ≤∗ · · · ≤∗ Fi and Fi is IFRA,
then X�k:n is IFRA for all k = 1, 2, . . . , i.

(d) Assume that uR′(u)/R(u) is increasing in u> 0. If F1 ≤su F2 ≤su · · · ≤su Fi and Fi is
NBU, then X�k:n is NBU for all k = 1, 2, . . . , i. �

The corollary below follows immediately from Theorems 3.6 and Remark 2.1. Some special
cases of this corollary are mentioned in Sahoo and Hazra [37].

Corollary 3.4. Let
(
X1:n, X2:n, . . . , Xn:n

)∼ OS(F; φ). Then the following results hold true:

(a) Assume that uR′(u)/R(u) is increasing in u> 0. If F is IFR (resp. IFRA, NBU), then Xk:n
is IFR (resp. IFRA, NBU) for all k = 1, 2, . . . , n.

(b) Assume that uH′(u)/H(u) is decreasing in u> 0. If F is DFR, then Xk:n is DRFR for all
k = 1, 2, . . . , n. �

In the following theorem, we study the MIFRA property of DSOS. The proof of the first
part is omitted for the sake of brevity.

Theorem 3.7. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). Assume that uR′(u)/
R(u) is increasing in u> 0. For a given i ∈ {1, 2, . . . , n}, the following results hold true:

(a) If F1 ≤∗ F2 ≤∗ · · · ≤∗ Fi and Fi is IFRA, then
(
X�1:n, X�2:n, . . . , X�i:n

)
is MIFRA.

(b) If F1 is IFRA and F2, . . . , Fi are IFR, then
(
X�1:n, X�2:n, . . . X

�
i:n

)
is MIFRA and X�i:n is

IFRA. �

The corollary below follows immediately from Theorem 3.7 and Remark 2.1.

Corollary 3.5. Let
(
X1:n, X2:n, . . . , Xn:n

)∼ OS(F; φ). Assume that uR′(u)/R(u) is increasing
in u> 0. If F is IFRA, then

(
X1:n, X2:n, . . . , Xi:n

)
is MIFRA for all i = 1, 2, . . . , n. �
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In the following theorem, we prove the same result as in Theorem 3.6(d) under a different
set of sufficient conditions.

Theorem 3.8. Let
(
X�1:n, X�2:n, . . . , X�n:n

)∼ DSOS(F1, F2, . . . , Fn; φ). Furthermore, let i ∈
{1, 2, . . . , n}. Assume that uR′(u)/R(u) is increasing in u> 0. If F1 is NBU and urj(u) is super-
additive for u> 0 for all j = 1, 2, . . . , i, then X�k:n is NBU for all k = 1, 2, . . . , i; here rj is the
hazard rate function of Fj. �
Remark 3.2. It should be noted that the condition ‘urj(u) is superadditive for u> 0’ is satisfied
by many well-known distributions (see [23]).

4. Examples

In this section, we discuss some examples to demonstrate the sufficient conditions given in
the theorems of the previous section. Note that these sufficient conditions are satisfied by many
popular Archimedean copulas (with specific choices of parameters), including the Clayton
copula

C(u1, u2, . . . , un) =
(

n∏
i=1

u−θ
i − n + 1

)−1/θ

with the generator φ(t) = (θ t + 1)−1/θ , for θ ≥ 0, the Ali–Mikhail–Haq (AMH) copula

C(u1, u2, . . . , un) =
(

(1 − θ )
n∏

i=1

ui

)
/

(
n∏

i=1

(1 − θ + θui) − θ

n∏
i=1

ui

)

with the generator φ(t) = (1 − θ )/(et − θ ), for θ ∈ [0, 1), and the Gumbel–Hougaard copula

C(u1, u2, . . . , un) = exp

(
−
[

n∑
i=1

( −ln ui)
θ

]1/θ)

with the generator φ(t) = exp
(−t1/θ

)
, for θ ∈ [1,∞), among others. For the sake of complete-

ness, below we give six examples. More examples can be found in [37].
The first four examples illustrate the condition given in Parts (a) and (d) of Theorem 3.1,

Theorem 3.2(a), Theorem 3.3(a), Theorem 3.5(a), Parts (a), (c), and (d) of Theorem 3.6,
Theorem 3.7, and Theorem 3.8. The first two examples are borrowed from [37].

Example 4.1. Consider the Archimedean copula with generator

φ(u) = e−u
1
δ1
, δ1 ∈[1,∞) , u> 0,

which gives

uR′(u)

R(u)
= 1

δ1
, u> 0.

It is trivially true that uR′(u)/R(u) is positive and increasing in u> 0. Thus, the required
condition is satisfied.

Example 4.2. Consider the Archimedean copula with generator

φ(u) = e1−(1+u)
1
δ2
, δ2 ∈(0,∞) , u> 0.
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From this, we have

R(u) = − 1

δ2
u(1 + u)

1
δ2

−1
, u> 0,

and

uR′(u)

R(u)
= 1 +

(
1

δ2
− 1

)
u

u + 1
, u> 0.

Let us fix 0< δ2 ≤ 1. It can easily be shown that uR′(u)/R(u) is positive and increasing in
u> 0. Thus, the required condition is satisfied.

Example 4.3. Consider the Archimedean copula with generator

φ(u) = 1 − (1 − e−u)
1
δ3 , δ3 ∈[1,∞) , u> 0,

which gives

uR′(u)

R(u)
= 1 − u + (1 − δ3)ue−u

δ3(1 − e−u)
+ ue−u(1 − e−u)

1
δ3

−1

δ3

(
1 − (1 − e−u)

1
δ3

) , u> 0.

Writing n1(u, δ3) = uR′(u)/R(u) and n2(u, δ3) = ∂/∂u(uR′(u)/R(u)), u> 0, δ3 ∈ [1, 10], we
plot n1(−ln(v), δ3) and n2(−ln(v), δ3) against (v, δ3) ∈ (0, 1] × [1, 10]. From Figures 1a and
1b, we see that n1(−ln(v), δ3) and n2(−ln(v), δ3) are positive in (v, δ3) ∈ (0, 1] × [1, 10], and
hence uR′(u)/R(u) is positive and increasing in u> 0 for 1 ≤ δ3 ≤ 10. Thus, the required
condition is satisfied.

Example 4.4. Consider the Archimedean copula with generator

φ(u) = − 1

δ4
ln
(
1 + e−u(e−δ4 − 1

))
, δ4 ∈ (−∞,∞) \ {0}, u> 0,

which gives

uR′(u)

R(u)
= u − eδ4 u + (1 − eδ4 − eu+δ4 (−1 + u)) ln

(
1 + e−u(e−δ4 −1)

)
(
1 − eδ4 + eu+δ4

)
ln
(
1 + e−u(e−δ4 −1)

) , u> 0.

Writing n3(u, δ4) = uR′(u)/R(u) and n4(u, δ4) = ∂/∂u(uR′(u)/R(u)), u> 0, δ4 ∈ [−40,
−30], we plot n3(−ln(v), δ4) and n4(−ln(v), δ4) against (v, δ4) ∈ (0, 1] × [ − 40,−30]. From
Figures 1c and 1d, we see that n3(−ln(v), δ4) and n4(−ln(v), δ4) are positive in (v, δ3) ∈
(0, 1] × [−40,−30], and hence uR′(u)/R(u) is positive and increasing in u> 0 for −40 ≤ δ4 ≤
−30. Thus, the required condition is satisfied.

The next two examples demonstrate the condition given in Theorem 3.1(b), Theorem 3.2(b),
Theorem 3.3(b), Theorem 3.5(b), and Theorem 3.6(b).

Example 4.5. Consider the Archimedean copula with generator

φ(u) = e−u
1
δ5
, δ5 ∈[1,∞) , u> 0,
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(a) (b)

(c)
(d)

(e)
(f)

(g)
(h)

FIGURE 1. Plots of n1, n2, n3, n4, n5, n6, n7, and n8.
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which gives

uH′(u)

H(u)
= 1

δ5

(
1 − u

1
δ5

)
− u

1
δ5 e−u

1
δ5

δ5

(
1 − e−u

1
δ5
) , u> 0.

Writing n5(u, δ5) = uH′(u)/H(u) and n6(u, δ5) = ∂/∂u(uH′(u)/H(u)), u> 0, δ5 ∈ [13, 19],
we plot n5(−ln(v), δ5) and n6(−ln(v), δ5) against (v, δ5) ∈ (0, 1] × [13, 19]. From Figures 1e
and 1f, we see that n5(−ln(v), δ5) and n6(−ln(v), δ5) are negative in (v, δ5) ∈ (0, 1] × [13, 19],
and hence uH′(u)/H(u) is negative and decreasing in u> 0 for 13 ≤ δ5 ≤ 19. Thus, the required
condition is satisfied.

Example 4.6. Consider the Archimedean copula with generator

φ(u) =(δ6u + 1)
− 1
δ6 , δ6 ∈[−1,∞) \ {0}, u> 0,

which gives

uH′(u)

H(u)
= −1 +(δ6u + 1)

1
δ6 − u(δ6u + 1)

1
δ6(

δ6u + 1
)((

δ6u + 1
) 1
δ6 − 1

) , u> 0.

Writing n7(u, δ6) = uH′(u)/H(u) and n8(u, δ6) = ∂/∂u(uH′(u)/H(u)), u> 0, δ6 ∈ [0.2, 0.9],
we plot n7(−ln(v), δ6) and n8(−ln(v), δ6) against (v, δ6) ∈ (0, 1] × [0.2, 0.9]. From Figures 1g
and 1h, we see that n7(−ln(v), δ5) and n8(−ln(v), δ6) are negative in (v, δ6) ∈ (0, 1] ×
[0.2, 0.9], and hence uH′(u)/H(u) is negative and decreasing in u> 0 for 0.2 ≤ δ6 ≤ 0.9. Thus,
the required condition is satisfied.

Below we cite two examples that illustrate the condition given in Theorem 3.1(c),
Theorem 3.2(c), Theorem 3.3(c), and Theorem 3.5(c).

Example 4.7. Consider the Archimedean copula with generator

φ(u) = e
1
δ7
(1−eu)

, δ7 ∈(0, 1] , u> 0.

Then

uG′(u)

G(u)
= δ7 − eu − ueu

δ7 − eu
,

G(u)

R(u)
= 1 − δ7

eu
, u> 0,

and

n9(u)
def.= ∂

∂u

(
uG′(u)

G(u)

)
= eu (eu − δ7(1 + u))

(δ7 − eu)2
, u> 0.

It can easily be shown that uG′(u)/G(u) is positive, n9(u) is positive, and G(u)/R(u) is
increasing in u> 0. Thus, uG′(u)/G(u) is positive and increasing and G(u)/R(u) is increasing
in u> 0. Consequently, the required condition holds from Remark 3.1.

Example 4.8. Consider the Archimedean copula with generator

φ(u) = e1−(1+u)
1
δ8
, δ8 ∈(0,∞) u> 0.
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(a) (b)

FIGURE 2. Plots of n10 and n11.

From this, we have

G(u) = − 1

δ8
u(1 + u)

1
δ8

−1 + u(1 + u)−1
(

1

δ5
− 1

)
, u> 0,

R(u) = − 1

δ8
u(1 + u)

1
δ8

−1
, u> 0,

G(u)

R(u)
= 1 − 1 − δ8

(1 + u)
1
δ8

, u> 0.

Writing n10(u, δ8) = uG′(u)/G(u) and n11(u, δ8) = ∂/∂u(uG′(u)/G(u)), u> 0, δ8 ∈ [0.5,
0.9], we plot n10(−ln(v), δ8) and n11(−ln(v), δ8) against (v, δ8) ∈ (0, 1] × [0.5, 0.9]. From
Figures 2a and 2b, we see that n10(−ln(v), δ8) and n11(−ln(v), δ8) are positive in (v, δ8) ∈
(0, 1] × [0.5, 0.9], and hence uG′(u)/G(u) is positive and increasing in u> 0 for 0.5 ≤ δ8 ≤ 0.9.
Furthermore, it can easily be shown that G(u)/R(u) is increasing in u> 0 for 0.5 ≤ δ8 ≤ 0.9.
Thus, the required condition is satisfied. Consequently, the required condition holds from
Remark 3.1.

5. Concluding remarks

Most systems used in real life are very complex in nature; consequently, the components
of these systems are interdependent, and the failure of one component affects the perfor-
mance of the remaining working components. One effective way to model these systems is
by using developed sequential order statistics (DSOS). In this paper, we study ordering and
ageing properties of DSOS, and discuss some numerical examples. Our study generalizes
many well-known results that are available for generalized order statistics and ordinary order
statistics.

The main idea of this paper is to study systems with dependent components where depen-
dency structures are modeled by Archimedean copulas. Among all existing copulas, the family
of Archimedean copulas is the most popular one because of its mathematical tractability and
ability to capture a wide spectrum of dependency structures. Thus, the proposed ordering
results for DSOS, governed by the Archimedean copula, may be useful for comparing fail-
ure times of different components of a given system. Moreover, we can use these results to
compare the lifetimes of two or more systems with dependent components in a given scenario.
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The proposed results on stochastic ageings may be helpful for understanding how a system
ages as time progresses.

In this paper, some of the results are developed for a specific model. For example, all of
the results given in Theorem 3.5 are derived for the proportional hazard rate model. The study
of the same problem in a general setup (i.e., with arbitrary cumulative distribution functions)
would be an interesting topic for future work.

Appendix A.

Proof of Lemma 2.3: We have

P(ζ (X) + ζ (Y)> t)= F̄ζ(X)(t)+
∫ t

0
F̄Y

(
ζ−1(t − x)

)
dFζ (X)(x), t> 0,

P(ζ (X + Y) > t)= F̄ζ(X)(t)+
∫ t

0
F̄Y

(
ζ−1(t) − ζ−1(x)

)
dFζ (X)(x), t> 0.

Since ζ is a strictly increasing, continuous, and superadditive function, we have that ζ−1 is
a subadditive function (see Proposition 1 of Østerdal [34]). Consequently, we have ζ−1(x)+
ζ−1(t − x)≥ ζ−1(t) for all t ≥ x> 0. This implies that

F̄Y

(
ζ−1(t − x)

)
≤ F̄Y

(
ζ−1(t) − ζ−1(x)

)
for all t ≥ x> 0,

which further implies∫ t

0
F̄Y

(
ζ−1(t − x)

)
dFζ (X)(x) ≤

∫ t

0
F̄Y

(
ζ−1(t) − ζ−1(x)

)
dFζ (X)(x) for all t> 0,

and hence the result is proved. �
Proof of Theorem 3.1(a): From Remark 2.2, we have

F̄X�i+1:n
(t) = F̄X�i:n

(t) +
∫ t

0
φ

(
(n − i)ψ

(
F̄i+1(t)

F̄i+1(z)

))
fX�i:n(z)dz, t> 0, (6)

which gives

rX�i:n
(t)

rX�i+1:n
(t)

= fX�i:n(t)∫
t

0

R

(
(n−i)ψ

(
F̄i+1(t)

F̄i+1(z)

))

R

(
ψ

(
F̄i+1(t)

F̄i+1(z)

)) φ
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
ri+1(t)fX�i:n(z) dz

+
rX�i:n

(t)

∫
t

0
φ
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
fX�i:n(z) dz∫

t

0

R

(
(n−i)ψ

(
F̄i+1(t)

F̄i+1(z)

))

R

(
ψ

(
F̄i+1(t)

F̄i+1(z)

)) φ
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
ri+1(t)fX�i:n(z)dz

(7)

for all t> 0, where ri+1 is the hazard rate function of Fi+1. Now, from the given condition
X�i:n ≤hr Y (i+1)

1:n−i, we get

ri+1(t)
R
(
(n − i)ψ

(
F̄i+1(t)

))
R
(
ψ
(
F̄i+1(t)

)) ≤ rX�i:n
(t) for all t> 0. (8)
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Furthermore, note that F̄i+1(t) ≤ F̄i+1(t)/F̄i+1(z) for all t ≥ z> 0. This implies that

ψ
(
F̄i+1(t)

)≥ψ( F̄i+1(t)

F̄i+1(z)

)
for all t ≥ z> 0. (9)

Again, from the condition that uR′(u)/R(u) is increasing in u> 0, we get

R ((n − i)u)

R(u)
is increasing in u> 0. (10)

Thus, from (9) and (26), we get

R
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
R
(
ψ
(

F̄i+1(t)
F̄i+1(z)

)) ≤ R
(
(n − i)ψ

(
F̄i+1(t)

))
R
(
ψ
(
F̄i+1(t)

)) for all t> 0.

On using the above inequality and (8), we get

rX�i:n
(t)
∫ t

0 φ
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
fX�i:n(z) dz∫

t

0

R

(
(n−i)ψ

(
F̄i+1(t)

F̄i+1(z)

))

R

(
ψ

(
F̄i+1(t)

F̄i+1(z)

)) φ
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
ri+1(t)fX�i:n(z) dz

≥ 1 for all t> 0. (11)

Furthermore, we have

fX�i:n(t)∫
t

0

R

(
(n−i)ψ

(
F̄i+1(t)

F̄i+1(z)

))

R

(
ψ

(
F̄i+1(t)

F̄i+1(z)

)) φ
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
ri+1(t)fX�i:n(z) dz

≥ 0 for all t> 0. (12)

On using (11) and (12) in (7), we get rX�i:n
(t) ≥ rX�i+1:n

(t) for all t> 0. Hence the result is
proved. �

Proof of Theorem 3.1(c): From (6), we get

fX�i+1:n
(t)

fX�i:n(t)
=

f
Y(i+1)

1:n−1
(t)

fX�i:n(t)

×

∫
t

0

R

(
(n−i)ψ

(
F̄i+1(t)

F̄i+1(z)

))

R

(
ψ

(
F̄i+1(t)

F̄i+1(z)

)) φ
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
ri+1(t)fX�i:n(z) dz

f
Y(i+1)

1:n−1
(t)

for all t> 0, where ri+1 is the hazard rate function of Fi+1. Now, from the condition X�i:n ≤rh

Y (i+1)
1:n−i, we get

f
Y(i+1)

1:n−1
(t)

fX�i:n(t)
is increasing in t> 0.

https://doi.org/10.1017/apr.2023.25 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.25


482 T. SAHOO AND N. K. HAZRA

Thus, to prove the result, it suffices to show that∫
t

0

R

(
(n−i)ψ

(
F̄i+1(t)

F̄i+1(z)

))

R

(
ψ

(
F̄i+1(t)

F̄i+1(z)

)) φ
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
ri+1(t)fX�i:n(z) dz

f
Y(i+1)

1:n−1
(t)

is increasing in t> 0, or equivalently,

φ′(0) (n − i)ψ ′(1) 1
F̄i+1(t)

fX�i:n(t)∫
t

0
φ′
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
(n − i)ψ ′

(
F̄i+1(t)
F̄i+1(z)

)
1

F̄i+1(z)
fX�i:n(z) dz

+

∫
t

0

∂
∂t

(
φ′
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
(n − i)ψ ′

(
F̄i+1(t)
F̄i+1(z)

))
1

F̄i+1(z)
fX�i:n(z) dz∫

t

0
φ′
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
(n − i)ψ ′

(
F̄i+1(t)
F̄i+1(z)

)
1

F̄i+1(z)
fX�i:n(z) dz

≥
∂
∂t

(
φ′((n − i)ψ

(
F̄i+1(t)

))
(n − i)ψ ′(F̄i+1(t)

))
φ′((n − i)ψ

(
F̄i+1(t)

))
(n − i)ψ ′(F̄i+1(t)

) for all t> 0. (13)

Note that F̄i+1(t) ≤ F̄i+1(t)/F̄i+1(z) for all t ≥ z> 0. Then, from the condition that
G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0, we get

∂
∂t

(
φ′
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
(n − i)ψ ′

(
F̄i+1(t)
F̄i+1(z)

))
φ′
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
(n − i)ψ ′

(
F̄i+1(t)
F̄i+1(z)

)

≥ ri+1(t)

(
G
(
ψ
(
F̄i+1(t)

))
R
(
ψ
(
F̄i+1(t)

)) − G
(
(n − i)ψ

(
F̄i+1(t)

))
R
(
ψ
(
F̄i+1(t)

))
)

for all t> 0, which implies that∫
t

0

∂
∂t

(
φ′
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
(n − i)ψ ′

(
F̄i+1(t)
F̄i+1(z)

))
1

F̄i+1(z)
fX�i:n(z) dz∫

t

0
φ′
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
(n − i)ψ ′

(
F̄i+1(t)
F̄i+1(z)

)
1

F̄i+1(z)
fX�i:n(z) dz

≥
∂
∂t

(
φ′((n − i)ψ

(
F̄i+1(t)

))
(n − i)ψ ′(F̄i+1(t)

))
φ′((n − i)ψ

(
F̄i+1(t)

))
(n − i)ψ ′(F̄i+1(t)

) for all t> 0. (14)
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Furthermore, we have

φ′(0) (n − i)ψ ′(1) 1
F̄i+1(t)

fX�i:n(t)∫
t

0
φ′
(

(n − i)ψ
(

F̄i+1(t)
F̄i+1(z)

))
(n − i)ψ ′

(
F̄i+1(t)
F̄i+1(z)

)
1

F̄i+1(z)
fX�i:n(z) dz

≥ 0 for all t> 0. (15)

On combining (14) and (15), we get (13), and hence the result is proved. �
Proof of Theorem 3.1(d): The mean residual lifetime function of

(
X�i+1:n|X�i:n = z

)
is

given by

mX�i+1:n
(t|z)=

⎧⎨
⎩

z − t + m
X(i+1)

1:n−i
(z|z) if 0< t ≤ z<∞

m
X(i+1)

1:n−i
(t|z) if 0< z ≤ t<∞,

where m
X(i+1)

1:n−i
(·|z) is the mean residual lifetime function of X(i+1)

1:n−i, given X�i:n = z. Note

that F̄i+1(t) ≤ F̄i+1(t)/F̄i+1(z) for all t, z> 0. Then, from the condition that uR′(u)/R(u) is
increasing in u> 0, we get

φ
(

(n − i)ψ
(

F̄i+1(u)
F̄i+1(z)

))
φ
(
(n − i)ψ

(
F̄i+1(u)

)) is increasing in u> 0.

This implies that Y (i+1)
1:n−i ≤hr X(i+1)

1:n−1, which further implies that Y (i+1)
1:n−i ≤mrl X(i+1)

1:n−1.
Consequently, we have

m
Y(i+1)

1:n−i
(t) ≤ m

X(i+1)
1:n−i

(t|z)

for all t> 0. On using this and the condition X�i:n ≤mrl Y (i+1)
1:n−i, we get

mX�i:n
(t) ≤ m

Y(i+1)
1:n−i

(t) ≤ mX�i+1:n
(t|z),

for 0< z ≤ t<∞. Furthermore, for 0< t ≤ z<∞ we have

mX�i:n
(t)≤z − t + mX�i:n

(z)

≤z − t + m
Y(i+1)

1:n−i
(z)

≤mX�i+1:n
(t|z),

where the first inequality follows from the fact that t + m(t) is increasing in t> 0, for any
mean residual lifetime function m(·); the second inequality follows from the condition that
X�i:n ≤mrl Y (i+1)

1:n−i; and the third inequality follows from the fact that

m
Y(i+1)

1:n−i
(t) ≤ m

X(i+1)
1:n−i

(t|z).

Finally, by combining the two cases, we get

mX�i:n
(t) ≤ mX�i+1:n

(t|z) for all t> 0,

which further implies mX�i:n
(t) ≤ mX�i+1:n

(t) for all t> 0. Hence, the result is proved. �
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Proof of Theorem 3.2(b): Note that the reverse hazard rate order is closed under increas-
ing transformations. Thus, X�i:n ≤rh X�i+1:n holds if and only if Di+1

(
X�i:n

)≤rh Di+1
(
X�i+1:n

)
;

here Di+1 is the cumulative hazard rate function of Fi+1. Furthermore, from Lemma 2.2,
we have X�i+1:n = D−1

i+1

(
W(i+1) + Di+1

(
X�i:n

))
. Thus, the above inequality holds if and only if

Di+1
(
X�i:n

)≤rh W(i+1) + Di+1
(
X�i:n

)
. Now, we have that Y (i+1)

l , l = 1, 2, . . . , n − i, and X�i:n are
independent, which implies that W(i+1) and Di+1

(
X�i:n

)
are independent. Moreover, W(i+1) is a

non-negative random variable. Thus, in view of Theorem 1.B.44 of Shaked and Shanthikumar
[36], the result follows (i.e., the above inequality holds) provided that Di+1

(
X�i:n

)
is DRFR. We

now proceed to prove the statement ‘Di+1
(
X�i:n

)
is DRFR’ using induction. Note that

�̃D2(X�1:n)(t) = −ln

(
1 − φ

(
nψ

(
e
−
(

D1◦D−1
2

)
(t)

)))
, t> 0,

which gives

∂2

∂t2

(
�̃D2(X�1:n)

(t)
)

= −
(
∂u

∂t

)2
∂

∂u

(
H
(
nψ(e−u)

)
H
(
ψ(e−u)

) × e−u

1 − e−u

)

−
(

H
(
nψ(e−u)

)
H
(
ψ(e−u)

) × e−u

1 − e−u

)
∂2u

∂t2
, t> 0, (16)

where u =
(

D1 ◦ D−1
2

)
(t). Now, from the condition that uH′(u)/H(u) is decreasing in u> 0,

we get that H(nu)/H(u) is positive and decreasing in u> 0. This further implies that

H
(
nψ(e−u)

)
H
(
ψ(e−u)

) is positive and decreasing in u> 0. (17)

In addition, we have

e−u

1 − e−u
is positive and decreasing in u> 0. (18)

Thus, from (27) and (28), we get

H
(
nψ(e−u)

)
H
(
ψ(e−u)

) × e−u

1 − e−u
is positive and decreasing in u> 0. (19)

Again, from the condition F1 ≥c F2 and the fact that D−1
2 (·) is increasing, we get

∂2u

∂t2
= ∂

∂t

⎛
⎝ r1

(
D−1

2 (t)
)

r2

(
D−1

2 (t)
)
⎞
⎠≤ 0 for all t> 0, (20)

where ri is the hazard rate function of Fi, i = 1, 2. Using (19) and (20) in (16), we get that
D2
(
X�1:n

)
is DRFR. Thus, the statement is true for i = 1. Next we assume that the statement

is true for i = j − 1, i.e., Dj

(
X�j−1:n

)
is DRFR. Now, from Lemma 2.2, we get Dj+1

(
X�j:n

)
=(

Dj+1 ◦ D−1
j

)(
Q(j)

)
, where Q(j) = W(j) + Dj

(
X�j−1:n

)
. Then we have

�̃
Dj+1

(
X�j:n

)(t) = �̃Q(j)

((
Dj ◦ D−1

j+1

)
(t)
)

. (21)
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Again, by using (5) and the condition that uH′(u)/H(u) is decreasing in u> 0, we get

∂2

∂t2
�̃W(j) (t) = − ∂

∂t

(
H
(
(n − j + 1) ψ

(
e−t
))

H
(
ψ
(
e−t
)) × e−t

1 − e−t

)
≥ 0 for all t> 0,

which implies that W(j) is DRFR. Consequently, Q(j) is DRFR, and hence �̃Q(j) (t) is decreasing
and convex in t> 0. Again, proceeding in a similar manner as in the i = 1 case, one can easily
obtain that Dj ◦ D−1

j+1(t) is concave in t> 0. Applying these facts in (21), we get that �̃Di+1(X�i:n)

is convex in t> 0. Consequently, Dj+1

(
X�j:n

)
is DRFR, and hence the statement is proved for

i = j. Thus, by induction, we get that Di+1
(
X�i:n

)
is DRFR for all i. Hence the result is proved.�

Proof of Theorem 3.2(c): Note that the likelihood ratio order is closed under increas-
ing transformations. Thus, X�i:n ≤lr X�i+1:n holds if and only if Di+1

(
X�i:n

)≤lr Di+1
(
X�i+1:n

)
;

here Di+1 is the cumulative hazard rate function of Fi+1. Furthermore, from Lemma 2.2,
we have X�i+1:n = D−1

i+1

(
W(i+1) + Di+1

(
X�i:n

))
. Thus, the above inequality holds if and only if

Di+1
(
X�i:n

)≤lr W(i+1) + Di+1
(
X�i:n

)
. Now, we have that Y (i+1)

l , l = 1, 2, . . . , n − i, and X�i:n are
independent, which implies that W(i+1) and Di+1

(
X�i:n

)
are independent. Moreover, W(i+1) is a

non-negative random variable. Thus, in view of Theorem 1.C.9 of Shaked and Shanthikumar
[36], the result follows (i.e., the above inequality holds) provided that Di+1

(
X�i:n

)
is ILR. We

now proceed to prove the statement ‘Di+1
(
X�i:n

)
is ILR’ using induction. We have

f ′
D2(X�1:n)

(t)

fD2(X�1:n)
(t)

=−α1

α2

⎡
⎢⎢⎣

nψ

(
e
− α1
α2

t
)
φ′′
(

nψ

(
e
− α1
α2

t
))

φ′
(

nψ

(
e
− α1
α2

t
)) e

− α1
α2

t
ψ ′
(

e
− α1
α2

t
)

ψ

(
e
− α1
α2

t
)

+
e
− α1
α2

t
ψ ′′
(

e
− α1
α2

t
)

ψ ′
(

e
− α1
α2

t
) + 1

⎤
⎥⎥⎦

=−α1

α2

⎡
⎢⎢⎣

G

(
nψ

(
e
− α1
α2

t
))

R

(
ψ

(
e
− α1
α2

t
)) −

G

(
ψ

(
e
− α1
α2

t
))

R

(
ψ

(
e
− α1
α2

t
)) + 1

⎤
⎥⎥⎦ , t> 0.

Note that ψ(·) is a decreasing function. Thus, from the condition that G(nu)/R(u) −
G(u)/R(u) is positive and increasing in u> 0, we get that f ′

D2(X�1:n)
(t)/fD2(X�1:n)

(t) is decreas-

ing in t> 0, and hence D2
(
X�1:n

)
is ILR. Thus, the statement is true for i = 1. Now we assume

that the statement is true for i = j − 1, i.e. Dj

(
X�j−1:n

)
is ILR. Next, by using this, we proceed

to show that Dj+1

(
X�j:n

)
is ILR. From Lemma 2.2, we get

Dj+1

(
X�j:n

)
= αj+1

αj
Q(j),

where Q(j) = W(j) + Dj

(
X�j−1:n

)
. Furthermore, we have that Y (j)

l , l = 1, 2, . . . , n − j + 1, and

X�j−1:n are independent. This implies that W(j) and Dj

(
X�j−1:n

)
are independent. Again, by
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using (5) and the condition that G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0,
we get

∂

∂t

(
f ′

W(j) (t)

fW(j)(t)

)
=− ∂

∂t

[
G
(
nψ
(
e−t
))

R
(
ψ
(
e−t
)) − G

(
ψ
(
e−t
))

R
(
ψ
(
e−t
)) + 1

]

≤0 for all t> 0,

which implies that W(j) is ILR. Furthermore, from the induction hypothesis, we have that

Dj

(
X�j−1:n

)
is ILR. On combining these two facts, we get that Q(j) is ILR. This implies that

Dj+1

(
X�j:n

)
is ILR, and hence the statement is proved for i = j. Thus, by induction, we get that

Di+1
(
X�i:n

)
is ILR for all i. Hence, the result is proved. �

Proof of Theorem 3.4(a): We prove the result using induction. It can easily be shown
that the result is true for k = 1. Next, we assume that the result is true for k = j − 1,

i.e., X�j−1:n ≤st Z�j−1:n. Now, from (4), we have X�j:n = D−1
j

(
W(j) + Dj

(
X�j−1:n

))
and Z�j:n =

B−1
j

(
T (j) + Bj

(
Z�j−1:n

))
, where Dj and Bj are the cumulative hazard rate functions of Fj and

Gj, respectively, and T (j) st= W(j). Again, the usual stochastic order is closed under increasing
transformations. Thus, to prove that X�j:n ≤st Z�j:n, it suffices to show that

W(j) + Dj

(
X�j−1:n

)
≤st

(
Dj ◦ B−1

j

)(
T (j) + Bj

(
Z�j−1:n

))
.

Now, we have that Y (j)
l , l = 1, 2, . . . , n − j + 1, and X�j−1:n are independent. This implies

that W(j) and Dj

(
X�j−1:n

)
are independent. Similarly, T (j) and Bj

(
Z�j−1:n

)
are also indepen-

dent. From the condition Fj ≤st Gj, we get D−1
j (t)≤ B−1

j (t) for all t> 0, which, in view

of Theorem 1.A.2 of Shaked and Shanthikumar [36], implies W(j) ≤st

(
Dj ◦ B−1

j

)(
W(j)

)
, or

equivalently, W(j) ≤st

(
Dj ◦ B−1

j

)(
T (j)
)
. Furthermore, from the inductive hypothesis, we have

that X�j−1:n ≤st Z�j−1:n, which implies that Dj

(
X�j−1:n

)
≤st Dj

(
Z�j−1:n

)
. Then, by combining

these two facts, we get

W(j) + Dj

(
X�j−1:n

)
≤st

(
Dj ◦ B−1

j

)(
T (j)
)

+
(

Dj ◦ B−1
j

)(
Bj

(
Z�j−1:n

))
. (22)

Furthermore, from the condition Fj ≤su Gj, we get that
(

Dj ◦ B−1
j

)
(u) is strictly increasing

and superadditive in u> 0. Therefore, from Lemma 2.3, we get

(
Dj ◦ B−1

j

)(
T (j)
)

+
(

Dj ◦ B−1
j

)(
Bj

(
Z�j−1:n

))
≤st

(
Dj ◦ B−1

j

)(
T (j) + Bj

(
Z�j−1:n

))
. (23)

By combining (22) and (23), we get

W(j) + Dj

(
X�j−1:n

)
≤st

(
Dj ◦ B−1

j

)(
T (j) + Bj

(
Z�j−1:n

))
,
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and hence the result X�k:n ≤st Z�k:n is proved for k = j. Thus, by induction, we conclude that the
result is true for all k = 1, 2, . . . , i. �

Proof of Theorem 3.4(b): We prove the result using induction. It can easily be shown that
the result is true for k = 1. Next, we assume that the result is true for k = j − 1, i.e., X�j−1:n ≤st

Z�j−1:n. From Remark 2.2, we have

F̄X�j:n
(t) =

∫ ∞

0
k1(t, z) fX�j−1:n

(z)dz and F̄Z�j:n
(t) =

∫ ∞

0
k2(t, z) fZ�j−1:n

(z)dz, t> 0,

where

k1(t, z)=
⎧⎨
⎩φ
(

(n − j + 1)ψ
(

F̄j(t)
F̄j(z)

))
if t ≥ z,

1 if t< z,

k2(t, z)=
⎧⎨
⎩φ
(

(n − j + 1)ψ
(

Ḡj(t)
Ḡj(z)

))
if t ≥ z,

1 if t< z.

Now, from the fact that φ is decreasing, we have that k1(t, z) is increasing in z> 0, for
all t> 0. By using this and the induction hypothesis (that X�j−1:n ≤st Z�j−1:n), from Theorem
1.A.3(a) of Shaked and Shanthikumar [36] we get that k1(t, X�j−1:n) ≤st k1(t, Z�j−1:n), which
further implies∫ ∞

0
k1(t, z) fX�j−1:n

(z) dz ≤
∫ ∞

0
k1(t, z) fZ�j−1:n

(z) dz for all t> 0. (24)

Again, from the condition Fj ≤hr Gj, we have F̄j(t)/F̄j(z) ≤ Ḡj(t)/Ḡj(z) for all 0 ≤ z ≤ t,
which further implies k1(t, z)≤ k2(t, z) for all z, t> 0. Again, this implies∫ ∞

0
k1(t, z) fZ�j−1:n

(z)dz ≤
∫ ∞

0
k2(t, z) fZ�j−1:n

(z)dz for all t> 0. (25)

Finally, by combining (24) and (25), we get F̄X�j:n
(t) ≤ F̄Z�j:n

(t) for all t> 0, and hence
X�k:n ≤st Z�k:n is proved for k = j. Thus, by induction, we conclude that X�k:n ≤st Z�k:n is true
for all k = 1, 2, . . . , i. Hence, the result is proved. �

Proof of Theorem 3.5(a): We prove the result using induction. We have

rX�1:n
(t) = r1(t)

R
(
nψ
(
F̄1(t)

))
R
(
ψ
(
F̄1(t)

)) and rZ�1:n
(t) = h1(t)

R
(
nψ
(
Ḡ1(t)

))
R
(
ψ
(
Ḡ1(t)

)) , t> 0,

where r1 and h1 are the hazard rate functions of F1 and G1, respectively. From the condition
α1 ≥ β1 and the fact that φ is decreasing, we have that r1(t)≥ h1(t) and ψ

(
F̄1(t)

) ≥ ψ
(
Ḡ1(t)

)
for all t> 0. Then, from the assumption that uR′(u)/R(u) is increasing in u> 0, we get that

R (nu)

R(u)
is increasing in u> 0,

which further implies that

R
(
nψ
(
F̄1(t)

))
R
(
ψ
(
F̄1(t)

)) ≥ R
(
nψ
(
Ḡ1(t)

))
R
(
ψ
(
Ḡ1(t)

)) for all t> 0,
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and hence X�1:n ≤hr Z�1:n. Thus, the result is true for k = 1. Next, we assume that
the result is true for k = j − 1, i.e., X�j−1:n ≤hr Z�j−1:n. Now, from (4), we have X�j:n =
D−1

j

(
W(j) + Dj

(
X�j−1:n

))
and Z�j:n = B−1

j

(
T (j) + Bj

(
Z�j−1:n

))
, where Dj and Bj are the cumu-

lative hazard rate functions of Fj and Gj, respectively, and T (j) st= W(j). Again, the hazard rate
order is closed under increasing transformations. Thus, to prove that X�j:n ≤hr Z�j:n, it suffices
to show that

W(j) + Dj

(
X�j−1:n

)
≤hr

(
Dj ◦ B−1

j

)(
T (j) + Bj

(
Z�j−1:n

))
.

Now, we have that Y (j)
l , l = 1, 2, . . . , n − j + 1, and X�j−1:n are independent, which implies

that W(j) and Dj

(
X�j−1:n

)
are independent. Similarly, T (j) and Bj

(
Z�j−1:n

)
are also independent.

Again, by using (5) and the condition that uR′(u)/R(u) is increasing in u> 0, we get that

R ((n − j + 1)u)

R(u)
is increasing in u> 0. (26)

This implies that

∂2

∂t2
�W(j) (t) = ∂

∂t

(
R
(
(n − j + 1) ψ

(
e−t
))

R
(
ψ
(
e−t
))

)
≥ 0 for all t> 0,

which implies that W(j) is IFR. By using these two facts and the condition αj ≥ βj, from

Lemma 2.4(a) we get that W(j) ≤hr

(
Dj ◦ B−1

j

)(
T (j)
)
. Furthermore, from the inductive hypoth-

esis, we get that Dj

(
X�j−1:n

)
≤hr

(
Dj ◦ B−1

j

)(
Bj

(
Z�j−1:n

))
. Again, the IFR property of W(j)

implies that
(

Dj ◦ B−1
j

)(
T (j)
)

is IFR. Furthermore, from the condition that uR′(u)/R(u) is

increasing in u> 0, we get that Dj

(
X�j−1:n

)
is IFR. Similarly we have that Bj

(
Z�j−1:n

)
is IFR,

which further implies that
(

Dj ◦ B−1
j

)(
Bj

(
Z�j−1:n

))
is IFR. Finally, using all these facts, from

Theorem 1.B.4 of Shaked and Shanthikumar [36] we get that

W(j) + Dj

(
X�j−1:n

)
≤hr

(
Dj ◦ B−1

j

)(
T (j)
)

+
(

Dj ◦ B−1
j

)(
Bj

(
Z�j−1:n

))
,

or equivalently,

W(j) + Dj

(
X�j−1:n

)
≤hr

(
Dj ◦ B−1

j

)(
T (j) + Bj

(
Z�j−1:n

))
,

and hence the result X�k:n ≤hr Z�k:n is proved for k = j. Thus, by induction, the result follows
for all k = 1, 2, . . . , i. Hence, the result is proved. �

Proof of Theorem 3.5(c): We prove the result using induction. We have

f ′
X�1:n

(t)

fX�1:n
(t)

= f1′(t)
f1(t)

− r1(t)

(
G
(
nψ
(
F̄1(t)

))
R
(
ψ
(
F̄1(t)

)) − G
(
ψ
(
F̄1(t)

))
R
(
ψ
(
F̄1(t)

))
)
, t> 0,

f ′
Z�1:n

(t)

fZ�1:n
(t)

= g1
′(t)

g1(t)
− h1(t)

(
G
(
nψ
(
Ḡ1(t)

))
R
(
ψ
(
Ḡ1(t)

)) − G
(
ψ
(
Ḡ1(t)

))
R
(
ψ
(
Ḡ1(t)

))
)
, t> 0,
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where f1 and r1 are respectively the probability density function and the hazard rate function of
F1, and g1 and h1 are those of G1. From the condition α1 ≥ β1 and the fact that φ is decreasing,
we have that f1′(t)/f1(t)≤ g1

′(t)/g1(t), r1(t) ≥ h1(t), and ψ
(
F̄1(t)

) ≥ ψ
(
Ḡ1(t)

)
for all t> 0.

Then, from the assumption that G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0,
we get

G
(
nψ
(
F̄1(t)

))
R
(
ψ
(
F̄1(t)

)) − G
(
ψ
(
F̄1(t)

))
R
(
ψ
(
F̄1(t)

)) ≥ G
(
nψ
(
Ḡ1(t)

))
R
(
ψ
(
Ḡ1(t)

)) − G
(
ψ
(
Ḡ1(t)

))
R
(
ψ
(
Ḡ1(t)

)) ≥ 0 for all t> 0,

and hence X�1:n ≤lr Z�1:n. Thus, the result is true for k = 1. Next, we assume that the result is true

for k = j − 1, i.e., X�j−1:n ≤lr Z�j−1:n. Now, from (4), we have X�j:n = D−1
j

(
W(j) + Dj

(
X�j−1:n

))
and Z�j:n = B−1

j

(
T (j) + Bj

(
Z�j−1:n

))
, where Dj and Bj are the cumulative hazard rate functions

of Fj and Gj, respectively, and T (j) st= W(j). Again, the likelihood ratio order is closed under
increasing transformations. Thus, to prove that X�j:n ≤lr Z�j:n, it suffices to show that

W(j) + Dj

(
X�j−1:n

)
≤lr

(
Dj ◦ B−1

j

)(
T (j) + Bj

(
Z�j−1:n

))
.

Now, we have that W(j) and Dj

(
X�j−1:n

)
are independent, and T (j) and Bj

(
Z�j−1:n

)
are inde-

pendent. Again, by using (5) and the condition that G(nu)/R(u) − G(u)/R(u) is positive and
increasing in u> 0, we get

∂

∂t

(
f ′

W(j) (t)

fW(j)(t)

)
= − ∂

∂t

(
G
(
nψ
(
e−t
))

R
(
ψ
(
e−t
)) − G

(
ψ
(
e−t
))

R
(
ψ
(
e−t
)) + 1

)
≤ 0 for all t> 0,

which implies that W(j) is ILR. Furthermore, note that fW(i) is a decreasing function. On com-
bining these two facts, we get that fW(i)

(
et
)

is log-concave in t> 0. Then, by using this and

the condition αj ≥ βj, from Lemma 2.4(c) we get that W(j) ≤lr

(
Dj ◦ B−1

j

)(
T (j)
)
. Furthermore,

from the inductive hypothesis, we have Dj

(
X�j−1:n

)
≤lr

(
Dj ◦ B−1

j

)(
Bj

(
Z�j−1:n

))
. Again, the

ILR property of W(j) implies that
(

Dj ◦ B−1
j

)(
T (j)
)

is ILR. Furthermore, from the condition that

G(nu)/R(u) − G(u)/R(u) is positive and increasing in u> 0, we get that Dj

(
X�j−1:n

)
is ILR.

Similarly we have that Bj

(
Z�j−1:n

)
is ILR, which further implies that

(
Dj ◦ B−1

j

)(
Bj

(
Z�j−1:n

))
is ILR. Finally, by using all these facts, from Theorem 1.C.9 of Shaked and Shanthikumar [36]
we get that

W(j) + Dj

(
X�j−1:n

)
≤lr

(
Dj ◦ B−1

j

)(
T (j)
)

+
(

Dj ◦ B−1
j

)(
Bj

(
Z�j−1:n

))
,

or equivalently,

W(j) + Dj

(
X�j−1:n

)
≤lr

(
Dj ◦ B−1

j

)(
T (j) + Bj

(
Z�j−1:n

))
,

and hence the result X�k:n ≤lr Z�k:n is proved for k = j. Thus, by induction, we conclude that the
result is true for all k = 1, 2, . . . , i. Hence, the result is proved. �

Proof of Theorem 3.6(b): Note that Fi is DFR if and only if Fi ≥c E, where E is the
cumulative distribution function of the standard exponential distribution. Then, by using the
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condition that F1 ≥c F2 ≥c · · · ≥c Fi, we get that Fk is DFR for all k = 1, 2, . . . , i − 1. In par-
ticular, F1 is DFR. Again, from the condition that uH′(u)/H(u) is decreasing in u> 0, we get
that H

(
nψ
(
F̄1(t)

))
/H
(
ψ
(
F̄1(t)

))
is decreasing in t> 0. On combining these two facts, we get

that

r̃X�1:n
(t) = r1(t)

F̄1(t)

F1(t)

H
(
nψ
(
F̄1(t)

))
H
(
ψ
(
F̄1(t)

)) is decreasing in t> 0,

and hence X�1:n is DRFR. Next, we prove that X�k:n is DRFR for all k = 2, 3, . . . , i. From
Lemma 2.2, we have X�k:n = D−1

k

(
W(k) + Dk

(
X�k−1:n

))
for all k = 2, 3, . . . , i. Again, by using

(5) and the condition that uH′(u)/H(u) is decreasing in u> 0, we get that H(nu)/H(u) is
positive and decreasing in u> 0. This further implies that

H
(
nψ(e−u)

)
H
(
ψ(e−u)

) is positive and decreasing in u> 0. (27)

Furthermore, we have

e−u

1 − e−u
is positive and decreasing in u> 0. (28)

Thus, from (27) and (28), we get

∂2

∂t2
�̃W(k) (t) = − ∂

∂t

(
H
(
(n − k + 1) ψ

(
e−t
))

H
(
ψ
(
e−t
)) × e−t

1 − e−t

)
≥ 0 for all t> 0, (29)

which implies that W(k) is DRFR. Furthermore, W(k) and Dk
(
X�k−1:n

)
are independent for all

k = 2, . . . , i. Consequently, the result that X�k:n is DRFR for all k = 2, 3, . . . , i follows from
Lemma 2.6 provided that Dk

(
X�k−1:n

)
is DRFR for all k = 2, . . . , i.

We now proceed to prove the statement ‘Dk
(
X�k−1:n

)
is DRFR for all k = 2, . . . , i’ using

induction. From (3), we have D2
(
X�1:n

)= (D2 ◦ D−1
1

)(
W(1)

)
. It can easily be verified that

W(1) is DRFR. Thus, by using this and the condition F1 ≥c F2, from Lemma 2.5 we get
that D2

(
X�1:n

)
is DRFR and hence the statement is true for k = 2. Next, we assume that the

statement is true for k = j, i.e., Dj

(
X�j−1:n

)
is DRFR. Now, from (4), we get Dj+1

(
X�j:n

)
=(

Dj+1 ◦ D−1
j

)(
W(j) + Dj

(
X�j−1:n

))
. Furthermore, we have that W(j) and Dj

(
X�j−1:n

)
are inde-

pendent. Again, by proceeding in a similar manner as in (29), we obtain that W(j) is DRFR.

Furthermore, from the induction hypothesis, we have that Dj

(
X�j−1:n

)
is DRFR. On combining

all these facts, we get that W(j) + Dj

(
X�j−1:n

)
is DRFR. Using this and the condition Fj ≥c Fj+1,

from Lemma 2.5 we get that Dj+1

(
X�j:n

)
is DRFR, and hence the statement is proved for

k = j + 1. Thus, by induction, we get that Dk
(
X�k−1:n

)
is DRFR for all k = 2, 3, . . . , i. Hence

the result is proved. �
Proof of Theorem 3.7(b): From the assumption that uR′(u)/R(u) is increasing in u> 0 and

the condition that F1 is IFRA, it can easily be shown that X�1:n is IFRA. Now, from Remark 2.2,
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we have

P
(
X�k:n > xk|X�1:n = x1, X�2:n = x2, . . . , X�k−1:n = xk−1

)

=
⎧⎨
⎩
φ
(
(n − k + 1) ψ

(
F̄k(xk)

F̄k(xk−1)

))
if xk ≥ xk−1,

1 if xk < xk−1,

for k = 2, 3, . . . , i. Since φ is a decreasing function, we get that P(X�k:n > xk|X�1:n = x1, X�2:n =
x2, . . . , X�k−1:n = xk−1) is continuous and increasing in xk−1 > 0. Now, from the condition that
Fk is IFR, we have that

(
F̄k(xk)

F̄k(xk−1)

)α
≤ F̄k(αxk)

F̄k(αxk−1)
for all xk ≥ xk−1 > 0 and 0<α < 1, k = 2, 3, . . . , i.

Again, by using the fact that φ is decreasing, the above inequality can equivalently be
written as

φ

(
(n − k + 1) ψ

((
F̄k(xk)

F̄k(xk−1)

)α))
≤ φ

(
(n − k + 1) ψ

(
F̄k(αxk)

F̄k(αxk−1)

))
, (30)

for all xk ≥ xk−1 > 0 and 0<α < 1, k = 2, 3, . . . , i. Furthermore, from the condition that
uR′(u)/R(u) is increasing in u> 0, we get that

−ln
(
φ(nψ(e−u))

)
is convex in u> 0,

which further implies that

−ln
(
φ(nψ(e−u))

)
is star-shaped in u> 0,

or equivalently,

−ln
(
φ
(
nψ
(
e−αu)))≤ −α ln

(
φ
(
nψ(e−u)

))
for all u> 0 and 0<α < 1.

This implies that

φ
(
nψ
(
uα
))≥(φ(nψ(u)))α for all 0< u< 1 and 0<α < 1,

which implies

(
φ

(
(n − k + 1) ψ

(
F̄k(xk)

F̄k(xk−1)

)))α
≤ φ

(
(n − k + 1) ψ

((
F̄k(xk)

F̄k(xk−1)

)α))
(31)

for all xk ≥ xk−1 > 0 and 0<α < 1, k = 2, 3, . . . , i. Finally, by combining (30) and (31), we
get

P
(
X�k:n > xk|X�1:n = x1, X�2:n = x2, . . . , X�k−1:n = xk−1

)
≤(P(X�k:n >αxk|X�1:n = αx1, X�2:n = αx2, . . . , X�k−1:n = αxk−1)

) 1
α ,
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for all x1, x2, . . . , xk > 0 and 0<α < 1, where xk ≥ xk−1, for all k = 2, 3, . . . , i. For xk < xk−1,
the above inequality trivially holds. Hence, the result that

(
X�1:n, X�2:n, . . . X

�
i:n

)
is MIFRA

follows from Corollary 4.8 of Block and Savits [9]. Consequently, X�i:n is IFRA. �
Proof of Theorem 3.8: We prove the result using induction. Since F1 is NBU, we get

φ
(
nψ
(
F̄1(x + t)

))≤ φ(nψ(F̄1(x)F̄1(t)
))

for all x, t> 0. (32)

Again, the assumption that uR′(u)/R(u) is increasing in u> 0 implies that −ln
(
φ
(
nψ(e−u)

))
is convex in u> 0, which further implies that −ln

(
φ
(
nψ(e−u)

))
is superadditive in u> 0, or

equivalently,

−ln
(
φ
(

nψ
(

e−(u+v)
)))

≥ −ln
(
φ
(
nψ(e−u)

))−ln
(
φ
(
nψ(e−v)

))
for all u, v> 0. Furthermore, this implies that

φ
(
nψ
(
F̄1(x)F̄1(t)

))≤ φ(nψ(F̄1(x)
))
φ
(
nψ
(
F̄1(t)

))
for all x, t> 0. (33)

On combining (32) and (33), we get φ
(
nψ
(
F̄1(x + t)

))≤ φ(nψ(F̄1(x)
))
φ
(
nψ
(
F̄1(t)

))
for

all x, t> 0, and hence X�1:n is NBU. Thus, the statement is true for k = 1. Next we assume that
the statement is true for k = j − 1, i.e., X�j−1:n is NBU. Now, from Remark 2.2, we have

F̄X�j:n
(t) =

∫ ∞

0
Ḡj(t|z) dFX�j−1:n

(z), t> 0,

where

Ḡj(t|z) =
⎧⎨
⎩φ
(

(n − j + 1)ψ
(

F̄j(t)
F̄j(z)

))
if t ≥ z,

1 if t< z.

Since φ is a decreasing function, we get that Ḡj(t|z) is increasing in z> 0, for all t> 0.
Again, from the fact that φ is decreasing and the condition that urj(u) is superadditive in u> 0,
we get

φ

(
(n − j + 1)ψ

(
F̄j(t)

F̄j(z)

))
≤ φ

(
(n − j + 1)ψ

(
F̄j(αt)

F̄j(αz)

F̄j(βt)

F̄j(βz)

))
(34)

for all t ≥ z> 0 and 0<α, β < 1 with β = 1 − α. From the condition that uR′(u)/R(u) is
increasing in u> 0, we get that

−ln
(
φ(nψ(e−u))

)
is convex in u> 0,

which further implies that

−ln
(
φ(nψ(e−u))

)
is superadditive in u> 0,

or equivalently,

−ln
(
φ
(

nψ
(

e−(u+v)
)))

≥ −ln
(
φ
(
nψ(e−u)

))−ln
(
φ
(
nψ(e−v)

))
for all u> 0.
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This implies that φ(nψ(uv))≤ (φ(nψ(u)))(φ(nψ(v))) for all 0< u, v< 1, which implies

φ

(
(n − j + 1)ψ

(
F̄j(αt)

F̄j(αz)

F̄j(βt)

F̄j(βz)

))

≤ φ
(

(n − j + 1)ψ

(
F̄j(αt)

F̄j(αz)

))
φ

(
(n − j + 1)ψ

(
F̄j(βt)

F̄j(βz)

))
(35)

for all t ≥ z> 0 and 0<α, β < 1 with β = 1 − α. Combining (34) and (35), we get Ḡj(t|z) ≤
Ḡj(αt|αz) Ḡj(βt|βz) for all t ≥ z> 0 and 0<α, β < 1 with β = 1 − α. For 0< t< z, the above
inequality trivially holds. Thus, from Theorem 3.2 of Block et al. [10], we get that X�j:n is NBU,
and hence the result is proved for k = j. Thus, using induction, we conclude that X�k:n is NBU
for all k = 1, 2, . . . , i. Hence, the result is proved. �
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