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On a Product Related to the Cubic Gauss
Sum, III
Hiroshi Ito

Abstract. We have seen, in the previous works [5], [6], that the argument of a certain product is closely
connected to that of the cubic Gauss sum. Here the absolute value of the product will be investigated.

1 Introduction

Let ρ = e2πi/3 and ω be the generator of a prime ideal of degree one in Q(ρ) which
satisfies the congruence ω ≡ 1 (mod 3). Let p be the norm of ω. Define two real
analytic functions g(z) and G(z) on the complex plane C by

g(z) = e(z) + ρe(ρz) + ρ2e(ρ2z),

G(z) = e(z) + e(ρz) + e(ρ2z).

Here,

e(z) = exp
(

2πi(z − z̄)/λ
)
, λ = ρ− ρ2 = i

√
3

and z̄ denotes the complex conjugate of z. These functions are periodic with respect
to Z[ρ], the integer ring of Q(ρ). Take a 1

3 -representative system modulo ω and
denote it by S; S consists of (p − 1)/3 elements of Z[ρ] and the numbers

s, ρs, ρ2s (s ∈ S),

together with 0, form a complete representative system modulo ω. Define the cube
root α(S) of−1 by the congruence

α(S) ≡
∏
s∈S

s (mod ω).

The existence of α(S) is a consequence of Wilson’s theorem. Let us consider the
products

δ(ω) = α(S)
∏
s∈S

g
( s

ω

)
, ∆(ω) =

∏
s∈S

G
( s

ω

)
.
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These are independent of the choice of S and ∆(ω) is a positive rational integer. In
our previous papers, we studied the connection between these products and the cubic
Gauss sum which is defined by

τ (ω) =

p−1∏
a=1

( a

ω

)
3

e2πia/p.

Here, ( a
ω

)3 is the cubic residue symbol of Q(ρ).

Theorem 1 ([5], [6]) For any positive real number ε, we have

( a

ω

)−1

3
τ (ω)

δ(ω)

∆(ω)
= CeO(p−

1
2 +ε) as p →∞

with a positive absolute constant C. In particular, we have

arg

{( a

ω

)−1

3
τ (ω)δ(ω)

}
= O(p−

1
2 +ε) as p →∞.(1.1)

Now, as is well known, the absolute value of the Gauss sum τ (ω) is
√

p and it is
natural to ask about the absolute value of the product δ(ω) which is closely connected
to the Gauss sum. The main purpose of this paper is to answer this question. Denote
by D a fundamental domain of C/Z[ρ] and µ the Lebesgue measure of C.

Theorem 2 Let

I =
2
√

3

∫
D

log |G(z)| dµ.

(i) For any positive real number ε, we have

|δ(ω)| = e
pI
3 +O(pε), |∆(ω)| = e

pI
3 +O(pε) as p →∞.

(ii) The constant I is positive.

We see from Theorem 1 that two estimates in (i) above are equivalent to each
other.

Let ζ = e2πi/p, N = Q(ζ), K be the subfield of N of degree (p− 1)/3 and ON and
OK be the integer rings of N and K respectively. Take an integer f satisfying

f ≡ ρ (mod ω).

Then, as a special case of Theorem 2.1 (iii) of Brinkhuis [2], we see that

[ON : OKζ + OKζ
f + OKζ

f 2

] = ∆(ω)
δ(ω)

τ (ω)

(
δ(ω)

τ (ω)

)
(1.2)

and Theorem 2 gives the following assertion.
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Corollary 3 Notations being as above, we have, for any positive real number ε,

[ON : OKζ + OKζ
f + OKζ

f 2

] = epI+O(pε) as p →∞.

Note that the set {ζ, ζ f , ζ f 2

} is the full set of conjugates of ζ with respect to the
extension N/K. It is easy to see the facts corresponding to Theorem 2 and Corol-
lary 3 in the quadratic case and we understand that the situation is quite different
(cf. Fröhlich [3, pp. 221–222]). One of our fundamental interests lies in pursuing the
analogue of Theorem 1 in higher degree cases. Related to this problem, it would be
of some interest to investigate whether or not Theorem 2 and Corollary 3 can be ex-
tended to these cases. Computer calculation suggests the possibility of this extension.
We hope to discuss this topic in the future.

In the following, we prove Theorem 2(i) in Sections 2 and 3 and show Theo-
rem 2(ii) in Section 4. In Section 5, some comments related to the discussion in
Brinkhuis [1], [2] and remarks concerning further problems will be added.

2 Estimation of |δ(ω)| and |∆(ω)|

We shall prove (i) of Theorem 2. As is mentioned in Section 1, it is enough to show
the assertion about |δ(ω)|, and since

δ(ω)3 = −
∏

a mod ω
a�≡0

g
( a

ω

)

it suffices to prove the following:
√

3

2p

∑
a mod ω

a�≡0

log
∣∣∣g ( a

ω

)∣∣∣ = ∫
D

log |g(z)| dµ + O(p−1+ε) (p →∞).(2.1)

We note that ∫
D

log |G(z)| dµ =

∫
D

log |g(z)| dµ,(2.2)

which follows from the periodicity and G(z) = g(z − 1
3 ). Put, as in [5] and [6],

D = {z ∈ C ; |z| < |z − u| (0 
= u ∈ Z[ρ])},

D(v) = v +
1

ω
D (v ∈ C)

and R = 1
ω

Z[ρ] ∩ D. Then, since there is no point of 1
ω

Z[ρ] on the boundary ∂D of
D, R is a complete representative system of 1

ω
Z[ρ]/Z[ρ]. It follows that∑

a mod ω
a�≡0

log
∣∣∣g ( a

ω

)∣∣∣ = ∑
0 �=r∈R

log |g(r)|,

∫
D

log |g(z)| dµ =
∑
r∈R

∫
D(r)

log |g(z)| dµ.
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The integral
∫

D(r) log |g(z)| dµ exists by Lemma 1 of [6] and hence the integrals in
(2.2) also exist. We see that (2.1) is equivalent to

√
3

2p

∑
0 �=r∈R

log |g(r)| =
∑
r∈R

∫
D(r)

log |g(z)| dµ + O(p−1+ε) (p →∞).(2.3)

As in [6], let

M1 =

{
0,±

1

λ
,
ρ j

3
( j = 0, 1, 2)

}
,

M = {z ∈ C ; z ≡ m (mod Z[ρ]) for some m ∈ M1}.

The function g(z) vanishes if and only if z is contained in M. Set

d(z,M) = inf
m∈M
|z −m| (z ∈ C),

U =

{
z ∈ C ; d(z,M) <

1

12

}
, V =

{
z ∈ C ; d(z,M) ≥

1

12

}
,

RU = R ∩U , RV = R ∩V

and, for z with d(z,M) < 1
6 , define m(z) to be the point of M which is nearest to z.

Also, for every m in M1, put

RU ,m = {r ∈ RU ; m(r) ≡ m (mod Z[ρ])}.

One has

R = RU ∪ RV , RU =
⋃

m∈M1

RU ,m (disjoint unions).(2.4)

Furthermore, as in (2.13), (2.14) and (2.16) of [6], let

E(v) =

∫
D(v)

(
log |g(z)| − log |g(v)|

)
dµ,

E0(u) =

∫
D(u)

{(
log |g(z)| − log |z −m(u)|

)
−
(

log |g(u)| − log |u−m(u)|
)}

dµ,

F(u) =

∫
D(u)

(
log |z −m(u)| − log |u−m(u)|

)
dµ.

Here, u and v are complex numbers with 0 < d(u,M) < 1
6 and v /∈ M. As is seen in

(2.12) of [6], we have, for each m in M,

log |g(m + z)| − log |z| = log(2
√

3π) + O(|z|) as |z| → ∞.

https://doi.org/10.4153/CJM-2001-013-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-013-1


314 Hiroshi Ito

This is the motivation to introduce E0(u). Because the area of D(v) is
√

3
2p , we see that

√
3

2p
log |g(v)| =

∫
D(v)

log |g(z)| dµ− E(v),

√
3

2p
log |g(u)| =

∫
D(u)

log |g(z)| dµ− F(u)− E0(u).

It follows that the left hand side of (2.3) is equal to the following:

√
3

2p

∑
0 �=r∈R

log |g(r)| =
∑

0 �=r∈RU

{∫
D(r)

log |g(z)| dµ− F(r)− E0(r)

}

+
∑
r∈RV

{∫
D(r)

log |g(z)| dµ− E(r)

}

=
∑
r∈R

∫
D(r)

log |g(z)| dµ−

∫
D(0)

log |g(z)| dµ

−
∑

0 �=r∈RU

F(r)−
∑

0 �=r∈RU

E0(r)−
∑
r∈RV

E(r).

(2.5)

From Lemma 2 of [6],

∫
D(0)

log |g(z)| dµ = −

√
3

4p
log p +

1

p
I1 +

√
3

2p
log(2

√
3π) + O(p−

3
2 )(2.6)

with I1 =
∫

D log |z| dµ. Here, the implied constant is absolute. Therefore, to prove
(2.3) it suffices to show that∑

0 �=r∈RU

F(r) +
∑

0 �=r∈RU

E0(r) +
∑
r∈RV

E(r) = O(p−1+ε) (p →∞).(2.7)

Now, from Lemma 6 of [6], we have, for every m in M1,

p
∑

0 �=r∈RU ,m

F(r) =
∑

0 �=a∈Z[ρ]−m

∫
D

log
∣∣∣1 +

z

a

∣∣∣ dµ + O(p−2),(2.8)

where the summation over a is absolutely convergent. Therefore, from (2.4),

∑
0 �=r∈RU

F(r) =
1

p

∑
m∈M1

∑
0 �=a∈Z[ρ]−m

∫
D

log
∣∣∣1 +

z

a

∣∣∣ dµ + O(p−3)

= O(p−1).

(2.9)

Hence, we see from the following lemma that the estimate (2.7) holds and this implies
that we have proved (2.3), (2.1) and Theorem 2(i).
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Lemma 1 We have ∑
r∈RV

E(r) = O(p−1)

and ∑
0 �=r∈RU

E0(r) = O(p−1+ε)

for any positive real number ε.

We shall prove the above lemma in the next section.

Remark The estimate∑
0 �=r∈RU

F(r) +
∑

0 �=r∈RU

E0(r) +
∑
r∈RV

E(r) = O(p−
1
2 ) (p →∞),(2.10)

which leads to the estimates

|δ(ω)| = e
pI
3 +O(p

1
2 ), |∆(ω)| = e

pI
3 +O(p

1
2 ) (p →∞),

follows directly from results in [6]. Namely, by Lemma 3 of [6], we have

E(v) = O(p−
3
2 ) (v ∈ V ),

E0(u) = O(p−
3
2 ) (0 < d(u,M) <

1

6
),

(2.11)

and the trivial estimates

#RU ≤ #R = p, #RV ≤ #R = p(2.12)

give ∑
0 �=r∈RU

E0(r) = O(p−
1
2 )

∑
r∈RV

E(r) = O(p−
1
2 ),

establishing (2.10). The point of the next section is that we are trying to make the
error terms as small as possible, partly because we hope to compare the results with
an analogue of Theorem 2 in higher degree cases.

3 Proof of Lemma 1

Let us first introduce some notation. Taking an integer K greater than one, define Uk

(1 ≤ k ≤ K), as in (2.17) of [6], by

U1 = {z ∈ C ; d(z,M) < p−
1
2 + 1

2K },

Uk = {z ∈ C ; p−
1
2 + k−1

2K ≤ d(z,M) < p−
1
2 + k

2K } (2 ≤ k ≤ K − 1),

UK =

{
z ∈ C ; p−

1
2K ≤ d(z,M) <

1

12

}(3.1)
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and put
Rk = R ∩Uk (1 ≤ k ≤ K).

In the following, some of the arguments are valid only when p is sufficiently large
with respect to K. We assume this. All the implied constants depend at most on K.
We have

U =
K⋃

k=1

Uk, RU =

K⋃
k=1

Rk.(3.2)

Also, it is easy to see that

#Rk = O(pk/K ) (1 ≤ k ≤ K),(3.3)

cf. (2.18) of [6].
Now, from (2.11) and (3.3), we see that

∑
0 �=r∈R1

E0(r) = O(p−
3
2 + 1

K ).(3.4)

Next, let 2 ≤ k ≤ K, r ∈ Rk and m = m(r). Put

T(z) = T(z,m) = log |g(z)| − log |z −m|.

Then we have

E0(r) =

∫
D(r)

(
T(z)− T(r)

)
dµ.

Consider now the Taylor expansion of T(z) around r [6, (3.3)]. Note that log |g(z)|
is differentiable infinitely many times outside M and we have, for every pair (a, b) 
=
(0, 0) of non-negative integers,

∂a+b

∂za∂z̄b

(
log |g(m + z)| − log |z|

)
= O(|z|1−a−b) as |z| → 0,(3.5)

cf. (2.10) of [6]. Then, due to the cancellation arising from the fact that D(r) is a
regular hexagon [6, (3.4)], we get, as in (3.5) of [6], that

E0(r) = p−2

∫
D
|z|2 dµ ·

∂2T

∂z∂z̄
(r) + O(p−

3
2−

k−1
K ).(3.6)

Therefore, from (3.3) it follows that

∑
r∈Rk

E0(r) = p−2

∫
D
|z|2 dµ ·

∑
r∈Rk

∂2T

∂z∂z̄
(r) + O(p−

3
2 + 1

K ) (2 ≤ k ≤ K).
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From (3.2) and (3.4),

∑
0 �=r∈RU

E0(r) = p−2

∫
D
|z|2 dµ ·

K∑
k=2

∑
r∈Rk

∂2T

∂z∂z̄
(r) + O(p−

3
2 + 1

K ).(3.7)

For E(r) (r ∈ RV ) also, we get, in the same way as we get (3.6),

E(r) = p−2

∫
D
|z|2 dµ ·

∂2

∂z∂z̄
log |g(r)| + O(p−

5
2 ),(3.8)

cf. [6, p. 14]. Corresponding to the aid of (3.5) in deriving (3.6), we use in the above

the fact that ∂a+b

∂za∂z̄b log |g(z)| is continuous outside M and in particular is bounded on
V [6, p. 14]. We see from (2.12) that∑

r∈RV

E(r) = p−2

∫
D
|z|2 dµ ·

∑
r∈RV

∂2

∂z∂z̄
log |g(r)| + O(p−

3
2 ).(3.9)

Now, (3.1) says that

|r −m| ≥ p−
1
2 + k−1

2K

if k ≥ 2, r ∈ Rk and m = m(r) and from (3.5) we see that

∂2T

∂z∂z̄
(z) = O(|z −m|−1) as z→ m.

Hence,
∂2T

∂z∂z̄
(r) = O(p

1
2−

k−1
2K ).

By (3.3),

∑
r∈Rk

∂2T

∂z∂z̄
(r) = O(p

1
2 + k+1

2K ) =

{
O(p) if 2 ≤ k ≤ K − 1

O(p1+ 1
2K ) if k = K

(3.10)

and therefore,
K∑

k=2

∑
r∈Rk

∂2T

∂z∂z̄
(r) = O(p1+ 1

2K ).

We have from (3.7) that ∑
0 �=r∈RU

E0(r) = O(p−1+ 1
2K ).(3.11)

This proves the second assertion of the lemma since K can be arbitrarily large. Let us

consider the right hand side of (3.9). Because ∂2

∂z∂z̄ log |g(z)| is bounded on V , we see
from (2.12) that ∑

r∈RV

∂2

∂z∂z̄
log |g(r)| = O(p).

Hence we get from (3.9) that ∑
r∈RV

E(r) = O(p−1),(3.12)

which is the first assertion of the lemma. We have proved Lemma 1.
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4 The Integral
∫

D log |G(z)| dµ

Let us prove (ii) of Theorem 2. The point of the assertion is that the constant I is not
zero since it can not be negative by (i) of Theorem 2. We observe that e(−z) = e(z),
e(z̄) = e(z) and that

G(ρz) = G(z), G(−z) = G(z), G(z̄) = G(z).

Hence,
|G(−ρz)| = |G(z̄)| = |G(z)|

and it follows that ∫
D

log |G(z)| dµ = 12

∫
A

log |G(z)| dµ

with

A =

{
z = x + i y ; 0 < x <

1

2
, y > 0, x −

√
3y > 0

}
.

Writing z = x + i y, we see

e(z)−1G(z) = 1 + e
(

(ρ− 1)z
)

+ e
(

(ρ2 − 1)z
)

= 1 + e2πi(x−
√

3y) + e2πi(−x−
√

3y)

and

|G(z)|2 = 3 + 2
(

cos 2π(x −
√

3y) + cos 2π(x +
√

3y) + cos 4πx
)

= 1 + 4 cos 2πx(cos 2π
√

3y + cos 2πx)(4.1)

= 1 + 8 cos 2πx cosπ(x +
√

3y) cosπ(x −
√

3y).(4.2)

Let

A1 =

{
z ; 0 < x <

1

4
, y > 0, x −

√
3y > 0

}

A2 =

{
z ;

1

4
< x <

1

2
, y > 0, x +

√
3y <

1

2

}

A3 =

{
z ;

1

4
< x <

1

2
,

1

2
− x <

√
3y < x

}
.

Then, we see from (4.2) that

|G(z)|2 > 1 if z ∈ A1 ∪ A3,

|G(z)|2 < 1 if z ∈ A2.
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First, we shall estimate the integral of log |G(z)| over A1 ∪ A3. Here, 0 <
|G(z)|2 − 1 ≤ 8 and we have

2 log |G(z)| = log |G(z)|2

≥
log 8

8

(
|G(z)|2 − 1

)
=

log 8

2
cos 2πx(cos 2π

√
3y + cos 2πx)

by (4.1). It follows that

∫
A1

log |G(z)| dµ ≥
log 8

4

∫ 1
4

0
dx

∫ x√
3

0
cos 2πx(cos 2π

√
3y + cos 2πx) dy

=
(π2 + 4) log 8

256
√

3π2

and∫
A3

log |G(z)| dµ ≥
log 8

4

∫ 1
2

1
4

dx

∫ x√
3

− x√
3

+ 1
2
√

3

cos 2πx(cos 2π
√

3y + cos 2πx) dy

=
(π2 + 4) log 8

128
√

3π2
.

Hence, we have ∫
A1∪A3

log |G(z)| dµ ≥

√
3(π2 + 4) log 8

256π2
.(4.3)

In order to estimate the integral
∫

A2
log |G(z)| dµ, we expand G(z + 1

3 ) = g(z) into
a power series in z and z̄. Put, for j ∈ Z/3Z,

g j(z) = e(z) + ρ j e(ρz) + ρ2 j e(ρ2z).

Then,
∂

∂z
g j(z) =

2π
√

3
g j+1(z),

∂

∂z̄
g j(z) = −

2π
√

3
g j−1(z)

and so
∂a+b

∂za∂zb
g j(z) = (−1)b

(
2π
√

3

)a+b

g j+a−b(z).

In particular, for g(z) = g1(z), we see that

∂a+b

∂za∂zb
g(z) = (−1)b

(
2π
√

3

)a+b

g1+a−b(z)

and
∂a+bg

∂za∂zb
(0) =

{
3(−1)b( 2π√

3
)a+b, 1 + a− b ≡ 0 (mod 3)

0, otherwise.
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Hence, we have an expansion

g(z) = 3
∞∑

a,b=0

1

a! b!
(−1)b

(
2π
√

3

)a+b

zaz̄b (1 + a− b ≡ 0 (mod 3))

= −2π
√

3z̄
(

1− B(z)
)(4.4)

with

B(z) =
∑

a+b≥2

1

a! b!
(−1)b

(
2π
√

3

)a+b−1

zaz̄b−1 (1 + a− b ≡ 0 (mod 3)).

The power series converges absolutely for every z.
Assume that |z| ≤ R. Then, we see that

|B(z)| ≤
∑

a+b≥2

1

a! b!

(
2π
√

3

)a+b−1

Ra+b−1 (1 + a− b ≡ 0 (mod 3))

=

√
3

2πR

∑
a,b≥0

1

a! b!

(
2πR
√

3

)a+b

− 1 (1 + a− b ≡ 0 (mod 3))

= −1 +

√
3

2πR

2∑
j=0

∑
a≥0

a≡ j(3)

1

a!

(
2πR
√

3

)a ∑
b≥0

b≡1+ j(3)

1

b!

(
2πR
√

3

)b

= −1 +

√
3

2πR

1

9

2∑
j=0

(e
2πR√

3 + ρ− j e
2πR√

3
ρ + ρ−2 j e

2πR√
3
ρ2

)

× (e
2πR√

3 + ρ− j−1e
2πR√

3
ρ + ρ−2 j−2e

2πR√
3
ρ2

)

= −1 +

√
3

2πR

1

9
3(e

4πR√
3 + ρ−1e

2πR√
3

(ρ+ρ2) + ρ−2e
2πR√

3
(ρ+ρ2))

= −1 +
1

2
√

3πR
(e

4πR√
3 − e−

2πR√
3 ).

In particular, we have

|B(z)| ≤ c if |z| ≤
1

12

with

c = −1 +
2
√

3

π
(e

π

3
√

3 − e−
π

6
√

3 ) = 0.20344 · · · .(4.5)

It follows from (4.4) that

log |g(z)| ≥ log
(

2π
√

3(1− c)
)

+ log |z| if 0 < |z| ≤
1

12
.(4.6)
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Now, set

A20 =

{
z ∈ A2 ;

∣∣∣∣z − 1

3

∣∣∣∣ < 1

12

}
,

A21 =

{
z ∈ A2 ;

∣∣∣∣z − 1

3

∣∣∣∣ < 1

12
,

1

4
< x <

5

12

}
,

A22 =

{
z ∈ A2 ;

5

12
< x

}

=

{
z ;

5

12
< x <

1

2
, y > 0, x +

√
3y <

1

2

}
.

It holds that ∫
A2

log |G(z)| dµ =
2∑

k=0

∫
A2k

log |G(z)| dµ.

By (4.6), we see that

∫
A20

log |G(z)| dµ =

∫
|z|≤ 1

12
y>0

log |g(z)| dµ

≥

∫
|z|≤ 1

12
y>0

(
log
(

2π
√

3(1− c)
)

+ log |z|
)

dµ

= log
(

2π
√

3(1− c)
)
· π

1

1222
+

∫ 1
12

0
dr

∫ π
0

r log r dθ

=
π

288
log
(

2π
√

3(1− c)
)
− π

(
log 12

288
+

1

576

)

=
π

288
log

(
π(1− c)

2
√

3

)
−
π

576
.

(4.7)

By (4.1), |G(z)| is monotonically increasing with respect to y in A2. Therefore, from
(4.6) we have in A21 that

log |G(z)| ≥ log
(

2π
√

3(1− c)
)

+ log
1

12
= log

π(1− c)

2
√

3
.

In the same way, since −1 < cos 2πx < −
√

3
2 in A22, we have by (4.1) that

|G(z)|2 ≥ 1 + 4 cos 2πx(1 + cos 2πx) > 4− 2
√

3,

log |G(z)| ≥
1

2
log(4− 2

√
3).
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Since the area of A21 is 1
36
√

3
− π

288 , we get

∫
A21

log |G(z)| dµ ≥

(
1

36
√

3
−
π

288

)
log
π(1− c)

2
√

3
.(4.8)

Also, the area of A22 is 1
288
√

3
and

∫
A22

log |G(z)| dµ ≥
log(4− 2

√
3)

576
√

3
.(4.9)

From (4.7), (4.8) and (4.9) follows that

∫
A2

log |G(z)| dµ ≥ −
π

576
+

1

36
√

3
log
π(1− c)

2
√

3
+

log(4− 2
√

3)

576
√

3

and together with (4.3) we conclude that

∫
A

log |G(z)| dµ ≥

√
3(π2 + 4) log 8

256π2
−
π

576
+

1

36
√

3
log
π(1− c)

2
√

3
+

log(4− 2
√

3)

576
√

3
.

By (4.5), we can see that

∫
A

log |G(z)| dµ ≥ 0.008476 · · · > 0,

which proves (ii) of Theorem 2.

Remark Computer calculation by J. Sato shows that

I = 0.32306593 · · · ,

although we have no information on the accuracy of the computation.

5 Remarks

1. We mention a consequence of Theorem 2. Because p ≡ 1 (mod 3), the multi-
plicative group F×p of the finite field Fp contains the subgroup of order 3, which we
denote by µ3. Put, for j = 0, 1,

b j = #{T ; T is a complete representative system for F×p /µ3 and
∑
t∈T

t = j}.

It is known that
b0 − b1 = ∆(ω) > 1,
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cf. [2, Theorem 3.2 (iii), Corollary 4.7 (ii), Proposition 6.1 (iii) and Remark 6.2]. On
the other hand, the number of complete representative systems for F×p /µ3 is 3(p−1)/3

and from this follows that

b0 + (p − 1)b1 = 3(p−1)/3,

cf. also Remark 6.3 of [2]. Hence, Theorem 2 implies the following.

b0 =
1

p
3

p−1
3 +

p − 1

p
e

pI
3 +O(pε) as p →∞,

b1 =
1

p
3

p−1
3 −

1

p
e

pI
3 +O(pε) as p →∞.

2. A comment on (1.2). We can see easily that the right hand side of (1.2) can be
written as p−1 NormK/Q(a) with some a in OK . Also, it is known that the right hand
side is prime to p [2, Proposition 7.1]. Now, because Norm(q)3 ≡ 1 (mod p) for
any prime ideal q of K prime to p, we see the following: decompose the index (1.2)
as the product of prime numbers and write

[ON : OKζ + OKζ
f + OKζ

f 2

] =
∏

q

qeq ;

then it holds that
(qeq )3 ≡ 1 (mod p)

for each q. This can be extended to a more general situation. Namely, let n be an odd
prime number and p be a prime number with p ≡ 1 (mod n). Let ζ = e2πi/p, N =
Q(ζ) and K be the subfield of N with [N : K] = n. Let ν be an arbitrary integer of N .
Then, if a prime power qeq exactly divides the index [ON :

∑
τ∈Gal(N/K) OKν

τ ] and
q 
= p, the congruence (qeq )n ≡ 1 (mod p) holds. Now, it is known [1, Theorem 2]
that the integer ring ON does not have normal integral basis over K. It follows that[

ON :
∑

τ∈Gal(N/K)

OKν
τ
]
> p

1
n .

3. Finally, we shall point out some problems related to the topic discussed in this
paper. First problem is to make clear the relation between the uniform distribution
of the argument of the cubic Gauss sum (Heath-Brown and Patterson [4]) and the
product approximation (Theorem 1) or a product expression (Matthews [8]) of the
Gauss sum. A result of McGettrick [9] is helpful. However, finding some nice way for
taking a 1

3 -representative system modulo ω becomes a problem. Second, our proof
of Theorem 1 (or of (1.1)) essentially depends on the result of [8]. It is desirable, if
possible, to give a direct proof for Theorem 1 (or for (1.1)). The result of [8] and
(1.1) lie approximately at the same depth, and the former follows rather easily from
the latter. Thirdly, because τ (ω)3 = −pω, it follows from (1.1) that

arg
{
−ω

p−1∏
a=1

(ζa + ρζa f + ρζa f 2

)
}
= O(p−

1
2 +ε) as p →∞(5.1)
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with ζ and f being the same as in (1.2). This is a result of Loxton [7]. The proof
for (5.1) is at present essentially unique and it is done by approximating the loga-
rithm of the ω-division value g( a

ω
) by a suitable integral. To find a different way for

proving (5.1) will be of interest. The treatment of Reshetukha [10], for example, may
deserve some attention. All these problems are related to the problem of extending
Theorem 1 to higher degree cases.
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