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Abstract

A sliding mode corrector is presented for disturbance rejection in position sensing using relatively accurate velocity
measurement. The corrector design is based on a robust second-order sliding mode (2-sliding mode), which makes
the fusion of position and velocity on a sliding surface to reject disturbance. Even when the frequency bands of
disturbance and actual position signal overlap, or large-magnitude disturbance exists, the corrector can still provide
the accurate and smoothed estimate of position. The proposed corrector is applied to a jet UAV navigation and
control. In the unmanned aerial vehicle (UAV) system, the disturbances exist in position and attitude measurements,
and the uncertainties exist in the system dynamics. For the UAV trajectory tracking control, the system model
is constructed in the earth-fixed frame, and the constructed model is fit for observer design to estimate system
uncertainties. The control laws are designed according to the correction of position and attitude by the correctors
and the estimation of system uncertainties by an existing observer. Finally, the flight experiment demonstrates the
effectiveness of the proposed method.

Nomenclature

Pu(®) position measurement

Do(t) actual position

d,(t) disturbance in position measurement

L, upper-bound of position disturbance

v, (£) velocity measurement

vo(?) actual velocity

d, (1) disturbance in velocity measurement

L, upper-bound of velocity disturbance

e upper-bound of sensor accuracy ratio

e sliding variable

e sliding variable

ky corrector parametre

ks corrector parametre

ks corrector parametre

w, position disturbance frequency

p(w)) disturbance rejection ratio

X position in earth-fixed frame x-direction
y position in earth-fixed frame y-direction
Z position in earth-fixed frame z-direction
¢ roll angle

% pitch angle

¥ yaw angle

o angle-of-attack

B sideslip angle
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U linear velocity in body frame axis x;

% linear velocity in body frame axis y,

w linear velocity in body frame axis z,

r the earth-fixed frame

A the body frame

m UAV mass

g gravity acceleration

Q4 angular rate vector

Qr Euler angle derivative vector

F total external force

F, thrust by jet engine

F, aerodynamic forces on the fixed wing

F; aerodynamic forces on the fuselage

F, forces created by the rudders

F, forces created by the elevators

F, uncertainties and external disturbances

T total moment

T, moments created by the fixed wings

T, moments created by the rudders

7, moments created by the elevators

T, moments due to the uncertainties and external disturbances
P air density

S, area of the half wing

Cro fixed wing lift coefficient when the angle-of-attack o equals zero
Cio fixed wing lift coefficient due to the angle-of-attack o
S; fixed wing aileron deflection

Cy, lift coefficient due to the aileron deflection §;
Cpo fixed wing drag coefficient when o« =6, =0
A, aspect ratio of the fixed wing

e, value of the Oswald’s efficiency factor

Ta fixed wing aerodynamic moment

Tye fixed wing control torque

S; fuselage equivalent cross-sectional area

L; lift force generated by the fuselage

D; drag force generated by the fuselage

Cy fuselage lift coefficient

C, fuselage drag coeflicient

Co fuselage constant in the coefficient of drag force

S, area of the elevator

3, elevator deflection

Croo eleviator lift coefficient due to the angle-of-attack « and the deflection §,
Cireo drag coefficient when o + 8§, =0

A, aspect ratio of the elevator

e, the Oswald’s efficiency factor

Toq elevator aerodynamic moment

Toe elevator control torque

S, area of the rudders

(o rudder lift coefficient due to the sideslip angle 8
S, rudder deflection

Cs, rudder lift coefficient due to the deflection §,
Cuo rudder drag coefficient when 8 =6, =0

A, aspect ratio of the rudder

e, rudder Oswald’s efficiency factor

Tra rudder aerodynamic moment

Ty rudder control torque
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A, uncertainty in x-direction

A, uncertainty in y-direction

A, uncertainty in z-direction

A, uncertainty in roll

Ay uncertainty in pitch

A, uncertainty in yaw

Vil measurement for position/angle

Vi measurement for velocity/angular velocity
Xy reference position in x-direction

Va reference position in y-direction

Z4 reference position in z-direction

o) desired roll angle

0, desired pitch angle

Yy desired yaw angle

At parametre of extended observer

Ao parametre of extended observer

o, parametre of extended observer

k1 controller parametre in position dynamics
ko controller parametre in position dynamics
k., controller parametre in attitude dynamics
ka> controller parametre in attitude dynamics

1.0 Introduction

This paper considers correction of stochastic disturbance in position sensing and application to jet UAV
navigation and control. This interest was motivated by the enormous civil and military applications of
such fixed wing UAVs. It is one of the most attractive research focuses because the dynamical system
of a jet UAV has many prominent features including powerful thrust provision, payload augmentation,
high-speed flight and a high manoeuverability [1-3]. UAV large-range flight needs information of global
position, attitude and dynamic model, also flying velocity and angular velocity are necessary. However,
in many cases, disturbances exist in position and attitude sensing, and uncertainties are inevitable in
system modelling. These bring challenge for control.

In flight control systems, rational desired attitude is important for safe flight, and the determination
of desired attitude needs the information of actual position and attitude [4]. However, disturbances in
position and attitude sensing render the incorrect desired attitude, and the unwanted control command is
generated. Constant sensing disturbance can be overcome through initial calibration. Comparing to con-
stant sensing disturbance, time-varying position disturbance is more likely to rend a serious mismatch
between desired attitude and actual position, and it causes dangerous flight. Furthermore, the frequency
bands of disturbance and actual position signal may overlap, and disturbance cannot be separated from
actual position signal using the usual low-pass filters.

GPS (global positioning system) can provide global position information with accuracy of several
metres or even tens of metres [5, 6]. Adverse environmental influences may contaminate GPS sig-
nals [6], and the position accuracy may become worse. Velocity is also important for UAV navigation
and control. GPS can measure device velocity with two different accuracies: (1) large-error velocity by
the difference method with accuracy of a metre per second due to position accuracy and noise effect;
(2) accurate velocity by Doppler shift measurement with accuracy of a few centimetres, or even the
accuracy approaching Smm/s is possible [7, 8]. Alternatively, accurate velocity of device can be mea-
sured by a Doppler radar sensor with accuracy of a few centimetres [9]. Hence, measuring Doppler
shift is a preferred way to get velocity. Except for sensing, velocity can be estimated from position
using the observers or differentiators [10, 11]. However, relatively accurate measurement of position is
required.

https://doi.org/10.1017/aer.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2023.29

40 Wang

INS (inertial navigation system) can estimate position and velocity through integrations from accel-
eration measurement. However, measurement error or non-zero mean noise in acceleration through
integrations cause velocity and position to drift over time. The observer-based INS methods were used to
estimate unknown variables in navigation [12, 13]. However, position signals are limited to be local, but
not global. For attitude information, an IMU (inertial measurement unit) can determine attitude angle
from accurate angular velocity through integration, but angle drift happens. Meanwhile, the outputs
of the accelerometres and the magnetometre in IMU can determine the large-error pitch, roll and yaw
angles [14].

Uncertainties in UAV flight dynamics include: aerodynamic disturbance, unmodelled dynamics and
parametric uncertainties. These uncertainties bring challenges for control system design. The uncer-
tainty in a system can be estimated by an extended state observer [15, 16]. However, accurate position
measurement is required as the input of observer. Even velocity can be use for estimation, disturbance in
position cannot still be corrected. For a jet UAV flight control system, an integral-uncertainty observer
was designed to estimate the attitude angles and attitude dynamic uncertainty, and an augmented
observer was used to estimate the flying velocity and position dynamic uncertainty [17]. However,
drift may happen for long-time flight due to effect of disturbance and actuator vibrations on the IMU.
Meanwhile, the augmented observer can only reduce high-frequency noise, low- or mid-frequency
disturbances still exist.

In order to reduce disturbances in position and attitude, the popular methods of GPS/INS based on
KF (Kalman filter) or EKF (extended Kalman filter) are used for signal fusion to overcome the limits of
individual measurements based on optimisation of a recursive least mean square error [18-21]. Thus,
measurement accuracy is improved. For KF or EKF, the relatively accurate system models are needed.
Furthermore, the uncertainty in noise statistics limits the performance. In addition, for EKF, system
model linearisation may cause filtering divergence, and the derivation of the Jacobian matrices are non-
trivial. A finite-time-convergent signal corrector was designed for position correction in a quadrotor
UAV control system [22]. The signal corrector is complex, and the finite-time convergence cannot be
implemented in engineering practice. Furthermore, the parametres’ selection is sensitive to the estimate
performance.

In this paper, a corrector based on robust 2-sliding mode is presented to correct position disturbance
using relatively accurate velocity measurement. The 2-sliding mode can reduce the estimate errors of
corrector and make the fusion of position and velocity on a linear sliding surface. Position disturbance
is reduced further on the sliding surface. Not only the corrector can reject high-frequency noise, but
also the low- and mid-frequency disturbances are reduced largely. Therefore, the corrector can reject
low/mid/high frequency disturbances, and it is unrelated to the types of actual position signals. Due to
the existence of linear sliding surface in the 2-sliding mode, the estimate outputs from the corrector are
accurate and smoothed.

The contributions of the proposed corrector include: (1) the corrector can reject position disturbance
in low/mid/high frequency bands; (2) due to the continuity of 2-sliding mode, the estimate outputs from
the corrector are smoothed and accurate, and they can be used directly for control without any additional
filters; (3) due to the robust sliding mode, the corrector parametres are highly inclusive to change of
disturbance and signal; (4) because only switch logic and linear functions are used in the corrector, the
corrector can be implemented easily in the current hardware of computational environments.

The proposed corrector is applied to navigation and control of a jet UAV. In the UAV flight test, the
following adverse conditions are considered: disturbances in the measurements of GPS position and
IMU attitude angles, and uncertainties in the UAV flight dynamics. For the UAV trajectory tracking
control, the UAV system model is constructed in the earth-fixed frame [23]. Furthermore, the model is
fit for observer design to estimate the system uncertainties. The correctors are adopted to correct the
disturbances in GPS position and IMU attitude angles. In addition, an existing extended state observer
[24] is used to estimate the uncertainties in the UAV flight dynamics. The performance of corrector
is compared to the KF-based signal fusion methods [21, 25]. Moreover, based on the correction and
estimation, the desired attitude is determined, and the control laws are designed to drive the UAV to
achieve the flight mission.
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2.0 Problem description

The problem considered in this paper is to reject disturbance in position and attitude sensing.

2.1 Position and velocity sensing

GPS provides position of a device, and accurate velocity can be determined by GPS with Doppler shift
measurement or by a Doppler radar sensor.

Define the position measurement: p,, () = po(t) + d, (), where, p,(¢) is the actual position; d, (¢) is the
disturbance in position measurement, and sup, ., [di(0)] < L, < oo.

Define the velocity measurement: v,,(f) = vy(f) + d»(t), where, v () is the actual velocity; d,(¥) is the
disturbance in velocity measurement, and Sup, o, |d2(0)| < L, < 00.

Remark 2.1: The accuracy L, of GPS position sensing is usually a metre, a few metres or even tens of
metres. Doppler shift measurement enables velocity accuracy L, of a few centimetres per second, even
the accuracy approaching Smm/s (i.e. 0.005m/s) is possible [8]. Therefore, L, < 1 holds. When using
the consistent unit standard, we can get L, < L,, i.e. the sensor accuracy ratio i—f < 1.

Furthermore, due to the reliability of Doppler measurement, velocity accuracy usually remains
unchanged. However, the position accuracy may become worse because of different environmental influ-
ences, i.e. L; may increase. Therefore, there exists a small constant ¢ > 0, i.e. the upper-bound of sensor

accuracy ratio, such that the sensor accuracy inequality max [i—f] <& < 1 holds.

2.2 Attitude sensing

The gyroscopes in IMU provide the relatively accurate angular velocities, e.g. their accuracy is about
L,=10°/hr = 0.003°/s. The accuracy of attitude angles from IMU is relatively large, e.g. about L;= 1.0°.

Therefore, Z—T = @ =0.003 « 1, and we can select an upper-bound of sensor accuracy ratio 0.003 <

£ =0.003 < 1 to satisfy max {i—f} <ekl.

2.3 Effect of sensing disturbance on safe flight

Sensing disturbance has a serious impact on safe flight. Disturbance in position sensing may generate
incorrect desired attitude angles, and they are mismatched to actual position trajectory. Therefore, the
determined attitude is unwanted, and it may be dangerous.

In addition, in position measurement, the frequency bands of actual position p,(¢) and sensing distur-
bance d, (1) may have intersections: the disturbance d,(f) may be in low-, mid- or high-frequency bands.
It is impossible for the usual filters to separate d,(f) from the actual position signal p,(?).

Questions: How to reject disturbance d(f) in position measurement p,,(¢) using the relatively accurate
velocity v,,(f)? Also, how to reject the disturbance in angle measurement using the relatively accurate
angular velocity?

3.0 Preliminary, corollary and notation
3.1 Preliminary
The related background is presented here.

Lemma 3.1 (sliding mode with prescribed convergence law) [26, 27]: The following system is
considered:

é‘] =€
e =@+ y@®u (1)
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where, e, and e, are the states; u is the controller, and 1t in the system; |¢ ()| <P, 0< T, <y (&) <Ty,
® > 0. A 2-sliding control algorithm is as follows:
—u, if L;
P u 1. lu| > ' @
—Vusign [ez +g(e,)], ifjlul <1

where, g(e,) is smooth everywhere except on e, = 0, for example, g(e,) = k|e,|“sign(e,), @ €[0.5, 1);

Vi > %W. Then, we get the finite-time convergence law e, = —g(e,) (i.e. sliding surface e, +
g(e)) =0), and there exists a finite time t, > 0, for t > t,, such that
e;=0and e, =0 3)

Remark 3.1: For system (1), when we select ¢ (f) =0 and y (f) = 1, it becomes

ep=e,

er=1u “)
Then, the 2-sliding control algorithm (2) is expressed by

—e,, if le;| > 1;

5
—Vusign [e; + g(e))], if les] <11 )

l:l:ézz

3.2 Corollary on 2-sliding mode system

Combining the system (4) and the 2-sliding control algorithm (5), we get the following corollary on a
2-sliding mode with prescribed convergence law.

Corollary 3.1 (sliding mode with prescribed finite-time convergence law): A 2-sliding mode system is
as follows:

él =ée
.| e, if]e] > 1;
= {_VM'Sign [6’2 +g(6’1)], if |e;| <1 ©

where, e, and e, are the sliding variables; g(e,) is smooth everywhere except on e, =0, for example,
g(e)) =ki|e |“sign(e;), a € [0.5,1); Vy; > sup [g’ (e) g (el)]. Then, we get the finite-time convergence
law é, = —g(e,) (i.e. sliding surface e, + g(e,) = 0), and there exists a finite time t, > 0, for t > t,, such
that

€|=Oand€2=O (7)

Remark 3.2: For system (6), the parametre selection condition V,, > sup [g/ (e) g (el)] is too strict. In
order to relax the parametre selection conditions, we can use a linear convergence law ¢, = —k, e, for
the nonlinear ¢, = —g(e;), and only V), > k; > 0 will be required. In the following section, we will give
a theorem on 2-sliding mode system with linear convergence law to be exponentially stable.

3.3 Notation

“a(w): b, — by as w : ¢, — ¢,” means that function a (w) varies monotonically increasing or decreasing
from b, to b, as w increases from c, to c,.

4.0 Robust 2-sliding mode system

Before we present the design of sliding mode corrector, we give a 2-sliding mode system, and a Theorem
is presented as follows.
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Figure 1. Sliding variables e, and e,.

Theorem 4.1 (sliding mode with prescribed linear convergence law): The 2-sliding mode system is as

follows:

é] =ée

.| ey, if]e] > 1;

“= { —lasign (e + ki), if lea] < 1 (82)
or

e =e

.| —kssign(ey), if|es| > 1;

“= { —lasign (2 + kiey) . if ea] < 1 (b)

where, e, and e, are the sliding variables; k, > k, > 0, and k3 > 0. Then, we get the linear convergence

law é, = —kie, (i.e. sliding surface e, + ke, =0), and the system (8a) or (8b) is exponentially
stable, i.e.
lime; =0and lime, =0 &)

The proof of Theorem 4.1 is presented in Appendix. B

In fact, for (8b), when |e,| > 1, we use e, = —k3sign (e,) for e, = —e, to speed up e, convergence and
overcome disturbance, where, k; > 0.

Simulation example (sliding mode with prescribed linear convergence law): For the sliding mode
system (8b), we select k; = 1, k, = 10, and k3 = 5. Then, we get e, and e, in Fig. 1. Figure 1 illustrates
the fast convergence of e, and e,.

In the following, we give a robust 2-sliding mode system considering existence of multiple distur-
bances, and a Theorem is presented as follows.
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Theorem 4.2 (robust 2-sliding mode): A 2-sliding mode system considering the unknown bounded
disturbances is as follows:
é] =€

o= { —kssign [e, — dy ()] — d5(1), if |e; — dr ()] > 1;

kosign ez — da(t) + ki(er — dy(D)] — dy(D). if |es — da(0)] < 1 (10)

where, e, and e, are the sliding variables; the unknown bounded disturbances d(t) satisfy
SUD,c(0.00) |di(t)| <L <oo(i=1,2,3,4); L, < 1, and there exists a constant ¢ > 0 such that max {i—f} <

e 1k, =2e""", wherer e (0, %] ky > k| + Ly, and ky > L;. Then, the effect of disturbances is rejected,
and the variables e, and e, of system (10) are in the bounds as follows:

lim |e,| < p(wy)Ly; lim |e;| < L, (1D
t—00 t—>00

where, w, is the angular frequency of disturbance d,(t); and the rejection ratio is expressed by

1
plw) = ———==
J 1+ 18707

The rejection ratio p(w,) is a monotonically decreasing function of w, € [0, 00), and it satisfies:

+ & 12)

N =

(i) In[wy, 00), p(wy) 1€ — 1€ as o : wy — o0, where, wy =4&'~ [1 — 1e¥;

.. - 2" /3= _1
(ii) In (w., w), p(w;): 1 — & as w; : w. — w,, where, w, = % <4e- L 1;
P

(iii) In [0, w.], p(w):1+ %8'—) 1 (ie. p(w)~1 due to 0<e<k1) as w,:0— w,, and this
Jfrequency band is sufficiently small due to v, <K 1.

The proof of Theorem 4.2 is presented in Appendix. B

Remark 4.1: From0O<e < 1landre (O, %], we can get that both the rejection ratio p(w; ) in frequency
band [w,, 00) and the frequency w, are small enough. Therefore, the disturbance d, (¢) is reduced at
very small rejection ratio in the large frequency band [wy, 00). In fact, the disturbance bound L, in
velocity sensing through Doppler effect is a few centimetres or a few millimetres, and the disturbance
bound L, in position sensing is usually about a few metres or even tens of metres. Thus, the sensing

accuracy inequality i—f <« 1 holds, and there exists ¢ > 0 such that max {i—f} < ¢ < 1. When disturbance

d, (t) becomes worse, i.e. L, increases, the inequality i—? < & « 1 still holds. Therefore, the frequency

band [w,, 00) covers the low/mid/high frequency bands, and the disturbance d, () in position sensing in
[wy, 00) is rejected sufficiently by the corrector. Furthermore, the disturbance d,(7) can still be rejected
largely in the other frequency bands.

In the following, we consider the position disturbance d,() is rejected to the maximum extent in a
given frequency band, and the disturbance in the other bands can still be rejected largely. We will deter-
mine the corrector parametre k; to get the minimum value of the rejection ratio in the given frequency
band [a),eq, oo), and a Theorem is presented as follows.

Theorem 4.3 (sufficient disturbance rejection in given frequency band): The sliding mode system
(10) is considered, where, the unknown bounded disturbances di(t) satisfy Sup, ., |d(H)| < L; <00

(i=1,2,3,4); L, < 1, and there exists a constant & > 0 such that max {i—f} <e K 1. For the a given
Wreq > 0, if we select ky > Ly, ky > k) + Ly and ky = 1 /Xy, Where, X, is the unique solution to
02 Xpn(1+ 02 2 ) —e=0 (13)

req req” min
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in the range L 0), then, the effect of disturbances is rejected, especially it is rejected sufficiently in
8e\ 7, ] 4 y ] y
reg

the frequency band [a)mq, oo), and the variables e, and e, of system (10) are in the bounds as follows:
lim |e;| < p(@)L;; lim |e,| < L, (14)
1—00 t—00

where, the rejection ratio is expressed by

1

plon) = ———
VT e

The rejection ratio p(w,) is a monotonically decreasing function of w, € [0, 00), and it satisfies:

+ € Xiin (15)

(i) In [wg, 00), p(@1) : Prmin = € * Xin GS O © Wyeg —> OO

2¢ [
1= 3 &Xmin

(ii) In (@, o), p(w1) 11— Puin S 01 : W —> Wyeq, Where, W = 20—
(iii) In [0, w.], p(w)):14¢€ - Xpin —> 1 as w, : 0 = w..
where,
+ € * Xmin (16)

1
Pmin = —F———
vV 1 + a))z‘eq'xzﬂn

The proof of Theorem 4.3 is presented in Appendix. B

5.0 Design of sliding mode corrector
According to Theorem 4.2, and considering disturbance in position sensing, a sliding mode corrector is
designed to reject the disturbance, and a theorem is presented as follows.

Theorem 5.1 (sliding mode corrector): Suppose position measurement is p,,(t) = po(t) + d,(t), and
velocity measurement is v,,(t) = vy(t) + d,(t); po(t) is the actual position, and vy(t) is the actual veloc-
ity; the unknown bounded disturbances d\(t) and dy(t) satisfy sup ..., |di(t)| < L; < 0o, where, i=1,2;
L, < 1, and there exists a constant & > 0 such that max {i—f} <eKl; SUP,e(0.00) [Vo(t)| < L; < 00. The
sliding mode corrector is designed as follows:

)‘C] =Xy

).C _ { —k3SigIl [-XZ - Vm(t)]9 lf |-x2 - Vm(t)| > 1’
)=

—osign [ — v(6) + k(51 — pu(®)]s i [ — (0] < 1 an

where, x; and x, are the corrector variables; the corrector parametres satisfy k, = 2&e'™" (where r €
(O, %] ), ko >k, + Ls and k; > L. Then, the disturbance d,(t) is rejected, and the corrector estimate
outputs satisfy:

lim |x; — po(®)] = p(@)Ly; lim |x, —vo()] < L, (18)

where, w, is the angular frequency of disturbance d,(t), and the rejection ratio is expressed by

1 1
+ g’ (19)

o) = ———nx 5
[1+ 167207

The rejection ratio p(w,) is a monotonically decreasing function of w, € [0, 00), and it satisfies:

(i) In [wy, 00), p(w;):€" — 1€ as wy : wy — 00, where, wy=4&'"" /1 — 1£¥;

1—

.. T Ja—er _1,
(ii) In (w., wy), p(w)): 1 — & as w; : w, — wy, where, w, = % <4k 1;
-2

=
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(iii) In[0, w.], p(w;): 1+ %e’ — 1 (i.e. p(w)) =~ 1)as w, : 0 — w.. This frequency band is sufficiently
small due to w, < 1.

The proof of Theorem 5.1 is presented in Appendix. B

Remark 5.1 (analysis of corrector (17)): The sensing accuracy inequality 0 <& <1 and r € (0, %]
guarantee that the rejection ratio p(w;) in frequency band [w,, 00) is small enough, and [w,, 00) covers
the low/mid/high frequency bands. Therefore, the disturbance d,(f) in [wy, 00) can be rejected suffi-
ciently by the corrector. Furthermore, the disturbance d,(¢) in the low frequency band (w,, @) is still
reduced largely. Only the approximate constant disturbances in the extreme low-frequency band [0, w,]
are not rejected. In fact, signals in the extreme low-frequency band [0, w.] is approximate constant due
to sufficiently small w, < 1. Therefore, the position disturbance d, () can be rejected sufficiently by the
corrector even when the disturbance frequency covers low/mid/high frequency bands.

From Theorem 4.3, considering sufficient disturbance rejection in a given frequency band, we get the
optimal sliding mode corrector, and a theorem is presented as follows.

Theorem 5.2 (optimal sliding mode corrector): The corrector (17) and the measurement sig-
nals in Theorem 5.1 are considered, where, the unknown bounded disturbances d(t) sat-
ISfY SUP,cipo0 il <L <00 (i=1,2); L, K1, and there exists a constant € >0 such that

max {i—f < e <K 1;8up,o00 Vo] < Ly < 00. For the a given w,., > 0, if we select ky > L3, ky > ky + Ls
and ky = 1/Xyn, Wwhere, X, is the unique solution to
W2 (L + @2 22T —e=0 (20)
in the range (ﬁ;wm;’ o0), then, the disturbance d,\(t) is rejected, especially it is rejected sufficiently in the
frequency band [a),eq, oo), and the corrector estimate outputs satisfy:
lim |x, = po(D)] = p(@)Li; im [x; —vo(D)] = L 2D

where, the rejection ratio is expressed by
1
p(w) = ————=+¢& X (22)
l + 'xrznina)%

The rejection ratio p(w,) is a monotonically decreasing function of w, € [0, 00), and it satisfies:

(i) I [@reqs 00), P(@1) T Prvin = € * Xinin AS W T Wy —> O

2e A/ 1—Lexmi
(ii) In (a)(,, wrel])’ p(@1): 1 = ppin aS ©) 1 O —> @, Where, v, = ¥ ~———— 2

1 —&-Xmin

(iii) In [0, w.], p(w)): 14+ € xXpn —> 1 as w; : 0 > w..

where,

1
Pmin = ———— — +é- Xmin (23)
1+ ? 22

req”¥min

According to Theorem 4.3 and the system error (123) in the proof of Theorem 5.1, we can get the
bounds of the correction errors in (21). This concludes the proof of Theorem 5.2. B

Remark 5.2 (parametres regulation of corrector (17)):

(1) The selection of k3 > L, k» > k; + L and k, = 2¢'~" (where, max {i—?} <e<landre(0,1]
makes the corrector stable: k; > L; and k, > k; + L; make the corrector estimate errors satisfy

the convergence law (90); k; = 2¢'~" makes the sliding surface stable, and it further reduces the
corrector estimate error.
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Figure 2. Jet UAV prototype.

(2) The upper-bound of sensor accuracy ratio) < e < l and r € (0, %] make the rejection ratio p(w,)
in frequency band [w,, 00) and the frequency w, sufficiently small, and the sufficiently rejectable
frequency w; € [wy, 00) may be in the low/mid/high frequency bands.

(3) Furthermore, the selection of parametre r affects the rejection ratio p(w;) and the sufficiently
rejectable frequency band [w,, 00). In fact:

(i) Due to 0 < € <« 1, the smaller r is, the bigger ¢” € (0, 1) is, and w, decreases. Therefore, the
frequency band [w,, 00) becomes relatively wider.

(ii) Conversely, the larger r is, the smallere” € (0, 1) is, and w, increases. Therefore, the frequency
band [w,, 00) is reduced.

(iii) Minimum range and minimum value of p(w,): From p(w,) = L

A e 2e?

that p(e;) € (3¢”, 1 + 1&"] when w, € [0, 00). Dueto 0 < ¢ < 1 and r € (0, 1], when we select
r= %, we can get the minimum value of min {¢'} = ¢ 3, Therefore, the minimum value of p(w;)

+ %s’, we know

is min {p(w;)} = %8%, and the minimum range is p(w,) € (%8%, 1+ %8%] when w, € [0, 00).

6.0 Application to jet UAV navigation and control

An RC-model-based F/A-18 Hornet prototype is used [17], which is shown in Fig. 2, and the forces and
torques of UAV are described in Fig. 3.

6.1 Modelling of jet UAV flight dynamics
For the UAV trajectory tracking control, the modelling is considered in the earth-fixed frame [23].
Furthermore, the constructed model is fit for observer design to estimate system uncertainties.

Let I' =(E,, E,, E,) denote the earth-fixed frame, and A = (E?, E;’, E?) denote the body frame of
the UAV. O =[¢0¢ |7 € R* describes the UAV roll, pitch and yaw angles (Euler angles), and Q =
[qSé Ip 17. We use s, for sin 6 and ¢, for cos 6. Ry, is the transformation matrix representing the orientation
of the body frame A with respect to the earth-fixed frame I':

CoCy  CySgSyp — SyCyp  CySeCy + Sy Se
Rrpa = | CoSy  SySoSy +CyCy  SySeCyp — Cy Sy (24)
—Sy S4Co CyCo

Let o and B be the angle-of-attack and the sideslip angle, respectively, we can get
a =60 —arctan™' (W/U), B = arcsin™' V/Vp) 25)
where, v, = (U, V, W) is the linear velocity in body frame A, and V; =/ U? 4+ V2 + W3.
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/
»

Figure 3. UAV aerodynamic mesh, forces and moments.

Define pr = (x, y, z) and vr = (&, y, z) as the position and velocity vectors of centre of gravity, respec-
tively, relative to the earth-fixed frame I'; €2, is the angular rate vector of the airframe expressed
in the body frame A; m € R is the UAV mass, and J = diag{J.;, J,», J,,} € R is the UAV inertia
matrix. Then, the dynamic equations for the jet UAV subjected to force F € 0* and torque T € R are
given by

Pr=ur
m- U =F+ mgE,
J Qu=—Qyx (UQ)+71 (26)

where, E, = [O 0 I]T. The relation between the angular rate vector 2, = [p A qa rA]T and the Euler
angle derivative vector Qr =[¢ 6 ] is given by

QA :ZQI‘ or QI‘ :Z_]QA (27)
where,
1 0 —S8y 1 S¢S9/C9 C¢S(;/C9
Z=10 Cy S4Co | 271 =10 Cy —Sy (28)
0 —S8p CpCy 0 S¢/C@ C¢/C9

The total external force F consists of the thrust F,, generated by the jet engine, acrodynamic forces on
the fixed wing F,,, aerodynamic forces on the fuselage Fy, the forces created by the rudders F,, the forces
created by the elevators F,, and uncertainties and external disturbances F,. These forces are expressed in
body frame A, and they are transformed by R, to be expressed in the earth-fixed frame I" as follows:

F:RFA(F}et+FW+Ff+Fr+Fe+Fd) (29)

The total moment t consists of the moments created by the fixed wings t,,, the moments created
by the rudders t,, the moments created by the elevators 7,, and moments due to the uncertainties and
external disturbances t,:

T=17,+7+7T.+71T, (30)

The aerodynamic parametres of the UAV are from [17]. The CFD (computational fluid dynamics)
simulation was performed, and the results from the wind tunnel tests were compared. For the boundary
conditions, the method of free-stream boundary condition based on Riemann invariants was utilised
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[28]: no-slip viscous flow condition; the linearised one-dimensional Euler equations; the free-stream
values for determination of the value of the Riemann invariants; and the symmetrical boundary condition
for the symmetrical UAV. The ANSYS Fluent was used for the CFD simulation, and the design steps
included meshing fluid field, fluent simulation and post-processing [29].

(1) Thrust by jet engine: The thrust of engine in body frame is expressed by
Fu=[F. 0 0] 31)
(2) Aerodynamics of fixed wings
Define ¢ = 0.50(U? + W?), where, p is the air density. The lift and drag forces generated by the fixed
wings are, respectively

L;i=¢S,C;, C,i=Cp+ Croa + Cps.6;

D; =qS,,Cp;, Cp;i = Cp + Cii/(ﬂAwew)

e, = 1.78(1 — 0.045A°%%) — 0.46 (32)
where i =1, 2; S, is the area of the half wing; C,, is the lift coefficient when the angle-of-attack « equals
zero; Cy, is the lift coefficient due to the angle-of-attack «; §; is the aileron deflection, and Ci, is the lift
coefficient due to the aileron deflection §;; Cp, is the drag coefficient when o = §; = 0; A,, is the aspect
ratio of the fixed wing; e,, is the value of the Oswald’s efficiency factor. The expression of lift and drag

coefficients is considered as valid for low angles of attack.
Then the aerodynamic force vector F,, on the fixed wings in body frame can be written as

(L + Ly)s, — (Dy + D))c,
F,= 0 (33)
—(Ly + Ly)cy — (D) + Dy)s,

The fixed-wing moment t,, includes the aerodynamic moment 7,, and control torque t,,. around the
body axis Ef ,i.e. T, = T, + T, Where,

LDy — Dy)s.,
Tya = | L[(La + Li)cy + (Dy + D))s,] (34)
L[(Ly — Ly)s, + (D, — Dy)c, ]
and
lquwCLELZ((Sl — 8,)c,
Tye = 0 35)
0

(3) Fuselage
The parametres of fuselage lift and drag are described as follows:
Ly = qS;Cy, Cy = Cyant,
Dy = qS;Cy, Cop = Capo + Copa® (36)

where, S; is the fuselage equivalent cross-sectional area; L, and Dy are the lift and drag forces generated
by the fuselage, respectively; Cy is the lift coefficient; Cy is the drag coefficient; Cyy is the constant in
the coefficient of drag force. Then the force vector F; on the fuselage in body frame is expressed by

LfSa — DfCDt
Fo— 0 (37)
_Lfca - DfSa
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(4) Elevator
The parametres of elevator lift and drag are described as follows:

Le = qSeClea C]e = Cleo((a + 86)

DE = qSeCdm Cd(' = Cde() + Clzg/(JTAeee)

e, = 1.78(1 — 0.045A%%) — 0.46 (38)
where S, is the area of the elevator, §, is the elevator deflection; C,,, is the lift coeflicient due to the
angle-of-attack « and the deflection §,; C, is the drag coefficient when o 4§, =0; A, is the aspect
ratio of the elevator; e, is the value of the Oswald’s efficiency factor. Then the force vector F, on the
elevator in body frame is expressed by

Lesot - D eCa
F,= 0 39)
—L.c, — D,s,
The elevator moment 7, includes the aerodynamic moment t,, and control torque 7. in the body axis
E_f, i.e. T, = T,, + T.., Where,

Tea = - leDesot (40)

and

Tee = _leqSeCl('ot(a + (Se)cot (41)
0

(5) Rudders
Define g = 0.50(U? + V?). The lift and drag forces generated by the rudders, respectively

Lr = éSrCIH Clr = C‘]rﬂl3 + C[ysyar
Dr = éServ’ Cdr = Cdr() + Clzr/(JTA,e,)

where, S, is the area of the rudders; C,; is the lift coefficient due to the sideslip angle B; &, is the
rudder deflection, and C,;, is the lift coefficient due to the deflection §,; C,, is the drag coefficient when
B =238,=0; A, is the aspect ratio of the rudder; e, is the value of the Oswald’s efficiency factor. Then the
aerodynamic force vector F, on the rudders in body frame can be expressed by

LrSﬂ — D,Cﬁ
F, = LrC/g + DrSﬁ (43)
0

The rudder moment 7, includes the aerodynamic moment t,, and control torque t,. in body axis E’, i.e.
T, = T,, + T,., Where,

0
tu=| 0 (44)
l rD S
and
0
Tpe = 0 (45)

1.gS(CipB + Cis,8,)cp
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(6) UAV motion equations in the earth-fixed frame considering system uncertainties
According to [23], from (27) and (26), we get
Qr=(Z"a +27',
= (2729 — 27U (29 x UZQD)]+ 27T 't (46)

The total moment t can be categorised into the control torque t., uncertain moment t, and other
moments Ty, i.€.

T="T.+ Toper + Tu (47)
From (35), (41) and (45), we get
To = Tye + Toe + Tre (48)
and from (34), (40) and (44), we get
Tother = Twa + Tea + Tra (49)

In system (46), considering (47), we define

ay (‘p? 9’ 1/” (ba é’ 1'#7 «a, :3)
ay (¢.0.v.6.0.v,a, p) (50)
ay (¢.6,¥,9.6,V,a, )

define

(27) 2@ = 2707 (295 x UZQO+ 27 T =

/e [t6 rd,]T (51)
In (29), we define
Fu(¢,0,V,a,B)
Ren(F+ Fy + F,+ F)m S| Fu(¢.6, 9.0, 8) (52)
F.u(9.0. 9. a,B)
Then, the jet UAV motion equations written in terms of the centre of mass C in the earth-fixed frame

are
X= Cng,FC/m + Fm(¢, 9’ w’ o, IB) + Ax
j} = cgstc/m +F'ya(¢7 9, 1//’ o, ﬂ) + A,V
E=—siFe/m+ Fu(¢.0, V.0, B)+ g + A, (53)

(b‘:a¢ (¢,9,1/f,¢‘5’é»¢,a’/3)+f¢+A¢
é ay (¢’9’ W,fb»é, ¢’a’ﬁ)+TQ+AH
{/}:(lw (¢"9’ Vf’ d”év 1‘0,01, ﬂ)+7¢+A¢ (54)

where, m is the mass of the UAV; g is the gravity acceleration; (A,, A,, A;) and (Ay, Ay, A,) are the
bounded uncertainties in the position and attitude dynamics, respectively; 74, 7, and 7, are the control
torques for roll, pitch and yaw dynamics, respectively, defined in (51).

6.2 Measurements

For the jet UAV, a GPS receiver provides the global position and the velocity. An IMU gives the attitude
angle and angular velocity. The measurement outputs are expressed by

Var =%+ dy (1), yio = % + dn(t) (55)
where, *; = {x,y,z,¢,0, v}, and *={x,y,z, q'b, é, 1,'0}; d, (t) denotes the disturbances in position

and angle measurements, and SUP,c(0.00) |d.(t)| < L, <o0; do(t) denotes the disturbances in the
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Figure 4. Scheme of control system.

measurements of flying velocity and angular velocity, and sup, ., |dw(D)| < L., < 00; L, < 1, and

L

max {ﬁ} < ¢, < 1. The corrector (17) is used to reject the measurement disturbances and to estimate

the actual (x, y, z, ¢, 0, V).

6.3 Controller design

In this section, the control laws are derived for UAV trajectory tracking and attitude stabilisation. The
position, attitude and system uncertainties are reconstructed by the presented corrector and an existing
extended state observer.

The scheme of control system with correction and estimation is shown in Fig. 4: (1) the correctors
estimate position and attitude angles, and the disturbances are rejected from the measurements; (2) the
extended state observers estimate the uncertainties in position and attitude dynamics, respectively; (3)
according to the reference trajectory and estimation from the correctors and observers, the position
controller drives the position dynamics; (4) from the estimation of position, attitude, uncertainties and
the reference trajectory, the desired attitude is determined; (5) according to the desired attitude and
estimation from the correctors and observers, the attitude controller drives the attitude dynamics.

(1) Error systems

Suppose the reference trajectory and its finite order derivatives are bounded, and can be generated
directly. For the reference trajectory X, = (x4, 4, 24), let e, =x — x4, e, =y — y,, and e, =z — z,, then
the system error for position dynamics (53) is

& =u,+E +A, (56)
where,
_ex Upx CoCy
e,=1|¢e |, u, Uy | =| coSy | Fe/m,
_ez Uy, —Sp
i an((]b, 9’ W7aa ﬁ)_:xd Ax
Ep: F‘ya(d)’ 9’ w»a’ ﬁ)_j;d 5 Ap: Ay (57)
_an(¢,9’ w,a, ,B)+g_.Zd Az
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For the desired attitude angle ®, = (¢4, 04, Va), let ey = ¢ — ¢y, ¢g =6 — 6,, and e, = — ¥, then
the system error for attitude dynamics (54) is

éo=u,+ 8, + A, (58)
where,
[ e Ty Ay ]
e.=|e [, u=|7% |, Aa=]| Ay |,
_e¢:| Ty Ay |
_%((15’9’1#’(]'5’9"1&’“,/3)—(}5(1_
Eo=| a5 (¢.0.9.6.0.9.a.8) — 0, (59)
L ay (6.6, 9.6.0.v. . B) — Viu

(2) Extended state observers for the uncertainties A, and A,

The extended state observers [24] are used to estimate the uncertainties in position dynamics (53) and
attitude dynamics (54). For the observers, the measurements of flying velocity and angular velocity y,, =
% -+ d,o(1) (Where, & = {x, , 2, ¢, 0, ¥/} are the input signals. Then, the uncertainty A, = [ A, A, A, ]T in
the position dynamics and the uncertainty A, = [ AgAgAy ]T in the attitude dynamics are estimated.

The continuous extended state observers can provide smooth and accurate estimations of the
uncertainties in the system dynamics, reducing high-frequency vibrations.

The following extended state observers are used [24]:

. Idas |
Xel = Xy2 — )\.*1 |x*1 — y*2| 2 Slgn(x*l - y*Z) + H*
Yoo = —halXa — Yl sign(x. — o) (60)
From Theorem 1 in, [24] there exist a finite time ¢, > O such that, for # > ¢,,
Xyl = >i<, Xy = A* (61)
where, * ={x,y,z, ¥, 0, ¢} and % = {x, y, z, ¢'5, 0, 1/'/}; Aits Ao > 0, and o, € (0, 1); The measurement y,,

defined in (55) is the observer input signal;

H, =y +F..($,0, ¥, B)

H, =y, + F,.($.0, V.0, )
H.=u, +F. $.0.0.0.8)— ¢
Hy=7,+a, (¢.0.V.6.0,9.,B)
Hy=1 +a (6.0,9.6,0,,aB)

Hy=1,+ay (6.0,9.6,0,v,a,p) (62)
and (a, 5, {ﬁ) are from the outputs of the sliding mode correctors. From (60) and (61), we get
Z], = [xxzxyzxzz ]T (63)
and
A, = [.XwQXQz.x(pz ]T (64)

(3) Controller design for position dynamics

For position dynamics (53), to track the reference trajectory X, = (x4, y4, 24), When we select the
following controller, the position system error (56) will converge asymptotically to zero:

u,=—8, — A, —k,&, — ke, (65)
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/‘yh T =X — X4, e _-x )'Cd,e _y ydsé _y )./dae =7— Zd9é —Z Zd’kpla 2>0'(\y,Z,x _)'}s
are

€ e,
Z, 5, @ Yr) are from the outputs of the correctors; A is from the outputs of the extended state observer;
an

[, 2,
=% ’2/72 /e\) >
e 2,
Fu(.0.9,0,B) —
B, = <$@$mm—m (66)
F@§$am—p@

From (57), we get the engine thrust
Fc:m”usz:m ), +u + (67)

(4) Desired attitude angles
From (56) and (65), we get
b= =5 Fofm+Fu(d.0,0,0,p)+8— %+ A, = —k,e. — ke, (68)
Then, the desired pitch angle is

F~0A§A — 27 ke k/'\w
9, = arcsin m(F, (9,0, ¥, a,B)+8—Zs+ A, +kye. +kye.) )

Also, from (56) and (65), we get

éx = Cechc/m + an(a /9\
é,=cysyFo/m+ F, (0.0, am+&;—ma ma (70)
Then, the desired yaw angle is

Fu(®, 0,9, B)+ A, + ki@, + ko,

Y, = arctan — (f = Yj\ Pt = + pl,ef i sz\" 71)
qu(¢, 9, 1/f, a, ﬂ) + Ax + kplex + kpZex

The combination of lift force from the wings, elevator and fuselage can provide the centripetal force.

The radius of curvature is

v2 2
-2 (72)
Xy — xy|
and the centripetal force is
m(G” +3%)
ﬁ'entri = f =m |x)’ - x)’| (73)
Also, the centripetal force can be expressed by
fcemr[ = Lwe/ Ccos ¢d (74)
where, L,; =—(L, + L,)c, — (Dy + Dy)s, — L.c, — D,s, — Lyc, — Dys,.. Then, we get the desired roll
angle
Q= arccosM (75)
‘wef
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(5) Controller design for attitude dynamics

For attitude dynamics (54), to track the desired attitude ®,= (¥, 6,, ¢;), when we select the
following controller, the attitude system error (58) will converge asymptotically to zero:

-~

U, = _:ja - Zu - kalal - ka2éa (76)

where, knl’ka2;?¢:¢_¢d7 é¢=¢—¢d7 ?929—@1, é9=9—9d,?¢/=1ﬁ—l/fd, él[le//_wd;?ﬂz

T~ A~ . s -~ S~ qT _~ .
[es @ e,,,]T; b, = [E¢ ¢y €y] 5 (9.0, ) are from the outputs of the correctors; A, is from the outputs
of the extended state observers; and

as (6,0,9.6.6, 9,0, 8) — ba
E.=| a(6.0,9.6,0,9,0,8)—6 (77)
a\/l( ’9"#,‘1’,9’1#’05, )_wd

7.0 Simulation examples
We use two examples to illustrate the sliding mode corrector presented in Theorems 5.1 and 5.2.

Example 1 (sliding mode corrector design from Theorem 5.1):

(1) Sensor outputs and actual values

Measurement signals for position and velocity: p,,(t) = po(t) + d,(t), v,.(t) = vo(t) + dy(?)
where, d,(t) and d,(t) are the disturbances in position and velocity measurements, respectively;
Suppose the actual position: p, (t) = 10 4 20 sin (7);

and the actual velocity: v, (t) = 20 cos (7).

(2) Disturbance in position measurement

Position sensing disturbance d,(t) = d,|(t) + d\,(¢) includes disturbance d,,(t) and stochastic noise
d»(t). We consider the following three types of disturbance d,(1):

(a) d, (t) =2 sin (4t) + cos (91);
(b) d, (t) = 6sin (4t) + 3 cos (91), and stochastic noise 3d,,(t) (disturbance magnitude increases, i.e.
L, increases)

(c) dy(t) =1.5cos (0.2¢) + 0.5 sin (0.67) + 2 sin (4t) + cos (9¢) (disturbance in low and mid fre-
quency bands)

(3) Disturbance in velocity measurement

Velocity sensing disturbance d,(t) = dy (t) + dn(t) + dos(t) includes time-varying disturbance
d,( (1), constant disturbance dy(t) and stochastic noise dy(t). We suppose dy (t) = 0.05 cos (0.3¢) +
0.03 sin (0.61) and d,,(t) = 0.02.

(4) Determination of upper-bound of sensor accuracy ratio

Fromthe sensor accuracy, we can get sup, i ., |di(®)] < Ly =3 (m), sup g ., |d2(D)| < L, = 0.1 (m/s).
The upper-bound of sensor accuracy ratio € =0.034 can be selected such that the sensor accuracy
inequality i—f =% <£=0.034 K 1 holds.
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(5) Corrector parametres’ selection

From the corrector parametre selection in the Remark 5.2 of Theorem 5.1, we select r = % to get
the minimum value and minimum range of rejection ratio p(w;): min {p(w,)} = %8%, and p(w,) €
(e4, 1+ Let | when , €10, 00)

Therefore, from ¢ =0.034 and r =}

E)
0.034'-9%5 =0.36.
According to sup, ., [Vo(H)| < L; =10, ky > k; + Ls and ks > Ls, we select k, = 100, k; = 100.

we can determine the corrector parametre k; =2¢'" =2 x

(6) Rejection ratio and disturbance frequency bands

From ¢ =0.034 and r = % the rejection ratio is expressed by

1 1
plon) =t e
1 + JTSZr—2wf

r

1
= —==+0.09
V1+73507

and we get:

1 1
Wy = 4812’\/1 — L= 4\/1 — 4 X 0.034=3.98 (rad/s)
e r A e 0.034"75/4—0.034"

=0.17 (rad/s
er 1-— % x 0.034°3 (rad/s)

w, =

—_—

1
2

Therefore, the rejection ratio in the different frequency bands of [0, 00) can be described by:

(i) In [3.98rad/s, 00), p(w;):0.18 = 0.09 as w, : 3.98 — oo (rad/s);
(ii) In (0.17,3.98rad/s), p(w;): 1 — 0.18 as w, : 0.17 — 3.98 (rad/s);,
(iii) In [0,0.17rad/s], p(w;): 1.09 — 1 (i.e. p(w)) ~ 1) as w; : 0 — 0.17 (rad/s).

Comparison with signal fusion based on Kalman filter:
We compare the sliding mode corrector with KF-based method. For this example, there are only
two measurement signals, and no system model is given, we use the direct KF-based signal fusion
method [25].

The position measurement is p,,(f) = po(t) + d,(¢), and the velocity measurement is v,,(f) = v,(?) +
d,(1). According to the Taylor’s expansion, position and velocity in discrete system can be expressed
approximately by

DPo(k) ~ pok — 1) +vo(k — 1) - AT
vo(k) &2 vo(k — 1) (78)

where, AT is the sampling time, and k is the sample step.

ImmX®=M®vMWA:FAT

0 1 ], the above relation can be described by a matrix system:

X()=A-X(k—1) (79)
For p,,(t) = po(?) + d,(?) and v,,(1) = vo(?) + d»(2), we get

Pu(k) = po(k) + di (k); v, (k) = vo(k) + da(k) (80)
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Define H = |:0 1

], V (k)= [d (k) dQ(k)]T, then the measurement outputs can be expressed by

Y(k)y=H-X (k) +V (k) (1)
Therefore, the Kalman filter for signal integration is designed as follows:

Xklk— 1) =A-X(k— 1]k — 1)
Pklk—1)=A Pk —1lk— DA" +Q
P(k|k — DHT
H-Pklk— DH" + R
X(k|k) = X(k|k — 1) + K(k)(Y (k) — H - X(k|k — 1))

K(k)=

P(klk)=(U — K(k)H)P(k|k — 1) (82)
10 1. AT 1q.AT?
— . | 34c 2Yc . . . . .
where, I = |:O 2= |: AT “gAT is the process noise covariance matrix, and g, is the power

spectral density of the input white noise; and R is the measurement noise covariance matrix. In the
. . . . . o 0.8 0
simulation, the power spectral density of the input white noise is selected as g. = 1, [25] R = |: 0 0 8] ,

P (0]0) = |:O(')1 001:|and the sampling time is AT = 0.008(sec).

Analysis of simulation results:

The disturbance rejections in position sensing are presented in Fig. 5. Figure 5(a) describes the dis-
turbance rejection when the disturbance d() is in the frequency band that is rejected sufficiently. In
fact, the frequency band of disturbance d, (¢) is w; € [4rad/s, 00), and [4rad/s, o0) C [3.98rad/s, ~+00).
We know that in frequency band [3.98rad/ s, 00), the minimum rejection ratio is obtained, i.e. p(w;) €

(%8%, e %] = (0.09, 0.18]. Therefore, the position disturbance is rejected sufficiently.

Figure 5(b) presents the disturbance rejection when the magnitude of disturbance d,(f) increases.
Even the position sensing accuracy becomes worse (L, : 3 m — 9 m), the corrector with the original
parametres can still reject the disturbance sufficiently.

Figure 5(c) shows the disturbance rejection when the position disturbance d,(f) covers the
low/min/high frequency bands. In the disturbance d,(¢), the mid/high frequency part is rejected suffi-
ciently. Even the low-frequency disturbance exists, the effect of disturbance can still be rejected largely.
In fact, in the position disturbance d,(t) = d,,(¢) 4+ d,,(¢) (where, d,,(t) = 1.5 cos (0.2¢) 4 0.5 sin (0.6¢) +
2 sin (4¢) + cos (9¢) and the high-frequency stochastic noise d},(?)):

(1) the part 2 sin (4¢) + cos (9¢) is within the frequency band [3.98rad /s, 00), and the rejection ratio
is minimum, i.e. p(w;) € (0.09, 0.18]; therefore, this part of disturbance is rejected sufficiently;
d(t) is also rejected sufficiently due to its high frequency.

(2) the part 1.5 cos (0.2¢) + 0.5 sin (0.6¢) is within the frequency band (0.17, 3.98rad/s], and the
rejection ratio is p(w,) € [0.18, Irad/s); therefore, this part of disturbance is still reduced.

From Fig. 5, we can also find that the estimate outputs of corrector are accurate and smoothed even
stochastic noise exists in position and velocity measurements. In addition, if initial calibration is done for
position sensing, the corrector error keeps small from the beginning; and if there is no initial calibration
for position sensing, the corrector error can still converge to the small bound. The corrector performance
is compared with the estimate results of the KF-based method. Comparing to the corrector, due to the
existence of widely frequency-band disturbance in position sensing, the obviously large estimate errors
exist in the outputs of the KF, although it can reduce the effect of disturbance to some extent.
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Figure 5. Example 1 — Simulation on position disturbance rejection. (a) Disturbance rejection
when L, =3. (b) Disturbance rejection when L; =9. (c) Disturbance rejection when low-frequency

disturbance is also included.

https://doi.org/10.1017/aer.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2023.29

The Aeronautical Journal 59

Example 2 (sliding mode corrector design from Theorem 5.2):

This example illustrates the position disturbance d,(t) is rejected to the maximum extent within a
given frequency band, and the disturbance in the other bands can still be reduced largely. The corrector
parametres are determined to get an optimal value of rejection ratio in the given frequency band.

(1) Sensor outputs and actual values

Sensing signals for position and velocity are p,,(t) = po(t) + d,(t) and v, (t) = v(t) + d,(2), respec-
tively, where, d\(t) and d,(t) are the disturbances in position and velocity sensing, respectively;

the actual position: p, (t) = 10 4+ 20 sin (7),

and the actual velocity: v, (t) =20 cos (7).

(2) Disturbance in position sensing

Position sensing disturbance d\(t) =d,,(t) + d\»(t) includes time-varying disturbance d,\(t) and
stochastic noise d,(t), and we suppose d,,(t) =2 sin (1.5) + cos (31).

(3) Disturbance in velocity sensing

Velocity sensing disturbance d,(t) =d, (t) 4+ dn(t) + dx(t) includes time-varying disturbance
dy (1), constant disturbance dy(t), and stochastic noise dy(t). We suppose d, (t) = 0.05 cos (0.37) +
0.03 sin (0.61) and d,,(t) = 0.02.

(4) Corrector parametres’ selection

In this example, we suppose the disturbance d,(t) is required to be rejected sufficiently in the given
frequency band [a),eq, oo) = [lrad/ s, 00), and a small rejection ratio is obtained in this frequency band.
From w,., = lrad/s, we can get the unique solution X, to

1Px(1+0.5%3 )73 —0.034 =0

in the range (ﬁ, 00), i.€. Xpn =5.26, and k; = 1 /X, = 0.19.
According to sup, .., [Vo(O)| < Ly =20, k; > ky + L3 and ks > Ls, we select k, = 100, k; = 100.

(5) Rejection ratio and disturbance frequency bands

From the sensor accuracy Ly =3 (m) and L, = 0.1 (m/s), the upper-bound of sensor accuracy ratio
& = 0.034 is selected such that the sensor accuracy inequality i—f = % <e=0.034 < 1 holds.
From ¢ = 0.034 and x,,;, = 5.26, the rejection ratio can be expressed by

1 1
pw) = —F———=+¢ Xpn=—F7—=——=+0.18
V1+x32, o V1+27.67w?

Therefore, the rejection ratio in the different frequency bands of [0, 00) can be described by:

(i) In [lrad/s, o0), p(w;):0.37 — 0.18 as w, : 1| — oo (rad/s);

v 2 A/ _lgxmin
(ii) In (0.13, Irad/s), p(w;):1— 0.37 as w,:0.13 — 1 (rad/s), in which, w.= Tlm,j =
0.13 (rad/s);

(iii) In [0,0.13rad/s], p(w;): 1.18 > 1 as w, : 0 — 0.13 (rad/s).

The disturbance rejection for Example 2 is presented in Fig. 6. Due to the relatively small rejection
ratio p(w,) € (0.18, 0.37] when w, € [lrad/s, 00), the disturbance d, (t) in position sensing is rejected
sufficiently in the given frequency band [lrad/ s, 00). Also, we can find that the corrector has strong
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Figure 6. Example 2 — Simulation on position disturbance rejection for the given frequency band.

robustness against stochastic noise from the measurements of position and velocity, and the estimate
output is smoothed. Thus, the plot performance confirms the results of numerical calculation.
For example 1, when w, = 1rad/s, we can get p(w,) = L +0.09 = 0.44 rad/s. Therefore,

1473507

in the given frequency band [lrad/s, 00), the rejection ratio p(w,) it satisfies p(w):0.44 — 0.09 as
w, : 1 = oo (rad/s). The rejection performance of Example 1 is a little worse than that of Example 2
near the frequency w, due to 0.44 > 0.37. However, in low frequency band, the method in Example 1
can get better performance because p(w;):1.09 — 1 (i.e. p(w,)~ 1) as w, : 0 — 0.17 (rad/s),; while,
for Example 2, we can get p(w;):1.18 — 1 as w,:0— 0.13 (rad/s). For the whole frequency range
[0, 00), the corrector in Example 1 can get p(w;) : 1.09 — 0.09 as w, : 0 — oo, while the corrector in
Example 2 can get p(w,):1.18 — 0.18 as w, : 0 — oo.

8.0 Experiment on jet UAV navigation and control

In this section, an experiment on a jet UAV flight is presented. The jet UAV prototype (an RC-model-
based F/A-18 Hornet) shown in Fig. 2 is used for the flight test [17]. A JetCat P200-SX jet engine is
adopted to provide the thrust, and the engine starter includes: Jet-tronic ECU for fuel control; electronic
valve; electronic starting gas valve; electronic fuel valve; fuel tubing, tubing connector set, filters and
cable set; 2-cell, 3,300mA LiPoly battery pack; and starting gas tank. The engine can provide 220N
(52 1bs) thrust for 112,000 RPM, and RPM range: 33000 ~ 112000 RPM. A Gumstix microcomputer is
used for data collection and signal processing from sensors. The flight control system implementation
on the hardware is shown in Fig. 7. An Arduino Mega 2560 is taken as the driver board, which has
multiple PWM output channels. The input voltage is 7~ 12 V. The control update time is Sms. The
FUTABA S3001 servos are adopted to control the deflections of ailerons, elevators and rudders. A
10Hz GPS MediaTek MT3329 is selected as the GPS receiver. A 9Hz VTI SCP1000 altimetre with
10cm resolution is utilised for above the sea level altitude measurements at higher altitudes. A 12Hz
SF02-F laser altimetre is used for altitude measurements at lower altitudes with 40m range. A 10kHz
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Figure 7. Control system hardware.

Xsens MTI AHRS provides the 3-axial accelerations, the angular rates and the earth’s magnetic field.
A 192kHz kpilot 32 digital air speed sensor is utilised to obtain the relative wind speed. A 100kHz
4239-01 AOA sensor is used to measure the angle-of-attack.

The jet UAV parametres are described in Table 1.

Measurements of position and velocity: A 10Hz GPS MediaTek MT3329 (without aid) provides
position at accuracy of 3m and velocity at accuracy of 0.1m/s.

Measurements of attitude angle and angular velocity: A 10kHz Xsens MTI AHRS provides attitude
angles and angular velocity, in which: roll/pitch accuracy: 0.5°, yaw accuracy: 1.0°; angular accuracy:
9°/hr = 0.0025°/s.

Desired flight trajectory: The desired flight trajectory consists of takeoff, climb, cruise in a circle
with the radius 500m and the height 300 m, and landing back, which is shown in Fig. §(a).

In the experiment, considering measurement disturbances and the uncertainties in the UAV flight
dynamics, the jet UAV is controlled to track the reference trajectory. The position and velocity are
obtained from the GPS receiver, and the attitude angle and the angular velocity are measured by the IMU.
The corrected positions from the correctors and the system uncertainty estimations from the extended
state observers are used for determination of the desired attitude and design of the controllers. The
controllers (65) and (76) drive the UAV to track the reference trajectory. The performance of position
correction by the correctors is compared with the EKF-based method [21].

8.1 Design of correctors

8.1.1 Determination of upper-bound of sensor accuracy ratio

From the position sensor accuracy, we get SUD,c(0.00) |d, ()| <L, =3 (m), SUDP ¢ (0.00) |do(D)| <L, =
0.1 (m/s), where, * = {x, y, z}. The upper-bound of sensor accuracy ratio ¢ = 0.034 can be selected such
that the sensor accuracy inequality i—? = (2—1 <e¢e,=0.034 <« 1 holds.

From the attitude sensor accuracy, we get Sup,., [da (@] < L,=0.5°, sup, ., [de@®] <
L,,=0.0025°/s, where, x={¢,0}; and SUD,c(0.00) |d1/,1(t)| SLy=1°  Supo0 |d¢,2(t)| <
L,,=0.0025°/s. For the roll/pitch, the upper-bound of sensor accuracy ratio e, =0.005 can be
selected such that the sensor accuracy inequality i—f = % <e,=0.005 <« 1 holds, where, * = {¢, 6}.
For the yaw, the upper-bound of sensor accuracy ratio ¢, = 0.0025 can be selected such that the sensor

accuracy inequality i—f =245 <¢, =0.0025 < 1 holds.
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Table 1. UAV parametres

Symbol Quantity Value
my Dry weight of UAV 22.5kg
g Gravity of acceleration 9.8m/s?
0 Air density 1.225 kg/m’
L, Wingspan 1.92m
Sy Fixed wing area 1.58 m?
Crino Fixed wing lift coefficient (o = 0) 0.3145
Chi0 Fixed wing drag coeflicient (o = 0) 0.1634
Clia Fixed wing lift coefficient due to o 0.5122
Cis1z Fixed wing lift coefficient due to §; 0.1634
Cps12 Fixed wing drag coeflicient due to §; 0.0025
A, Fixed wing aspect ratio 2.67

Iy Fuselage length 2.35m
Sy Fuselage equivalent area 0.69 m*
Cyo Fuselage lift coefficient due to « 0.1573
Cuipo Fuselage drag coefficient (¢ = 0) 0.0096
Cia Fuselage drag coeflicient due to o 0.0152
S, Elevator area 0.36 m?
Ciea Elevator lift coeflicient due to « 0.6103
Co Elevator drag coefficient (o = 0) 0.0046
A, Elevator aspect ratio 1.15

S, Rudder area 0.38 m?
Cip Rudder force coefficient due to S 0.3261
Crs, Rudder lift coefficient due to 8, 0.0075
Cuo Rudder drag coefficient (8 =6, =0) 0.0046
A, Rudder aspect ratio 1.56

J, Moment inertia about axis E? 18Nm
Jy Moment inertia about axis E” 18Nm
J, Moment inertia about axis E” 34Nm

8.1.2 Corrector parametres selection
For the position, we select r = % to get the minimum value and minimum range of rejection ratio
ple)): min {p(e,)} = LeZ = 10.034% = 0.09, and p(w,) € (geé 4 Lef ] = (0.09, 1.09] when w,, €
[0, 400), where, * = {x, y, z}.

Frome, =0.034 and r =
0.36.

According to sup, ., V()| <L,;=50, k., >k, + L and k5 > L5, we select k,, =100, k. =
100, where, * = {x, y, z}.

For the attitude, we know that ¢, = 0.005, &y = 0.005 and &, = 0.0025, we select r = % Then, we

%, we can determine the corrector parametre k,; = 2¢!™ =2 x 0.034!7%5 =

get the minimum rejection ratio min {p(w,;)} = sé = 10.005%° =0.035, and p(w,,) € (0.035, 1.035]

1
2 2
when ., € [0, 00), where, * = {¢,0}; and min {p(w,))} = %ef = 10.0025%° =0.025, and p(wy,) €
(0.025, 1.025] when wy, € [0, 00).
Therefore:
From ¢, =0.005 and r = % we can determine k,; = 2¢'™" =2 x 0.005'7%° = 0.14, where, x = {¢, 0}.
From ¢, =0.0025 and r = ;, we can determine k;; =2¢'~" =2 x 0.0025'~%° =0.1.
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Figure 8. UAV flight based on correction. (a) 3D navigation trajectories. (b) Position comparison in

the three directions.

For the other parametres, to overcome the effect of angular accelerations on the correctors, we select

the relatively large k,, = 10, k,; = 10, where, x = {¢, 6, V}.
Therefore, we get the corrector parametres.
Correctors for position: k,; = 0.36, k,, = 100, k,; = 100, where, * = {x, y, z};

Correctors for attitude: ky; =0.14, ky; =0.14, k,; =0.1; k,, = 10, k5 = 10, where, * = {¢, 60, V}.
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8.1.3 Rejection ratio and disturbance frequency bands

(1) Rejection ratios in the disturbance frequency bands for position

From e, =0.034 and r = % where, * = {x, y, z}, the rejection ratio is expressed by

1 1 1
ply) = e b= 4 0.09
T s gy, 2 1473502

Therefore, the rejection ratios in the different frequency bands of [0, 4-00) can be described by:

(i) In [3.98rad/s, 00), p(wy) :0.18 — 0.09 as w,, : 3.98 — oo (rad/s);
(i) In (0.17,3.98rad/s), p(w,;): 1 — 0.18 as w,, : 0.17 — 3.98 (rad/s);
(i) In [0,0.17rad/s], p(w,1): 1.09 = 1 (i.e. p(w,) ~ 1) as w,, : 0 — 0.17 (rad/s).

(2) Rejection ratios in the disturbance frequency bands for attitude (¢, 6)

From e, =0.005 and r = %, where, x = {¢, 0}, the rejection ratio is expressed by

1 1 1
plwg) = ———=+ ¢, = —=+0.035
: 1+ igirfzw% 2 V14 506021

Therefore, the rejection ratios in the different frequency bands can be described by:

(i) In [4rad/s, 00), p(w.): 0.07 — 0.035 as w,; : 4 — oo (rad/s);
(ii) In (0.04,4rad/s), p(w,;): 1 — 0.07 as w,, : 0.04 — 4 (rad/s);
>iii) In [O, 0.04rad/s] p(w,;):1.035 — 1 (i.e. p(w,) = 1) as w,; : 0 — 0.04 (rad/s).

(3) Rejection ratios in the disturbance frequency bands for attitude ()

From ¢, =0.0025 and r = % the rejection ratio is expressed by

1
plwy) = ——m—=oes+

1
£, = ——— +0.025
L+ ey o)

/1410007,

Therefore, the rejection ratios in the different frequency bands can be described by:

N =

(i) In [4rad/s, 00), p(wy1):0.05 — 0.025 as wy, : 4 — oo (rad/s);
(ii) In (0.023,4rad/s), p(wy;): 1 — 0.05 as wy, : 0.023 — 4 (rad/s);
(iii) In [O, 0.023rad/s], plwy1):1.025 = 1 (i.e. p(wy) ~ 1) as wy, : 0 — 0.023 (rad/s).

8.2 Parametres of observers and controllers

According to the selection rules of observer parametres [24], we select the extended state observer
parametres: A, =4, A, =20, o, = 0.6, where, * = {x,y,z,6, ¢, ¥}. According to the properties and
tests of engine and digital servos, we select the control law parametres: k,; =16, k, =8, k, =25,
kaZ == 8

https://doi.org/10.1017/aer.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2023.29

The Aeronautical Journal 65

-Measured EKF Corrected ———— Desired
T T 24 T

B
o

N
o

phi(degree)

o

theta(degree)

0 20 40 60 80 100 120

)
g
o
[ B]
2
®
o
I I |
0 20 40 60 80 100 120
time(s)

Figure 9. Attitude correction.

8.3 Analysis of UAV navigation and control performance

Figure 8(a) shows the comparison of the flight trajectories, including the measured from GPS, the ref-
erence trajectory, and the estimations by the corrector and the EKF-based method. Meanwhile, the
trajectory comparisons in the three directions are shown in Fig. 8(b): due to the effect of adverse condi-
tions, e.g. engine vibration and communication, the actual measurement disturbances in position from
GPS were about 10m. The estimate errors by the corrector were less than 1m, while the estimate errors
by the KF were about 3m. From the estimate errors and the above numerical calculation, we can find
that the position disturbances were mainly within the frequency band [3.98rad/ s, +00). Therefore, the
disturbances in position measurements were rejected sufficiently by the correctors, and the correctors
provided the relatively accurate and smoothed correction outputs. The attitude angle comparisons in
the three directions are shown in Fig. 9. During the UAV flight, the actual measurement disturbances
in attitude from the IMU were about 3° ~ 4°. The corrector estimate errors for attitude angle were less
than 0.2°. Then, comparing the above calculation, we can find that the attitude disturbances were mainly
within the frequency band [4rad /s, +00). Therefore, the disturbances in the attitude measurements were
rejected sufficiently by the correctors due to the very small rejection ratio in this frequency band. From
the flight test, we can find that the correctors also reduced the sensing disturbances from the effect of
UAV vibrations, and the jet UAV remained in the safe flight condition throughout the flight.

9.0 Conclusions

In this paper, a sliding mode corrector has been presented, which can correct disturbance in position
measurement using relatively accurate velocity. The performance of the corrector was demonstrated
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by two simulation examples and a jet UAV flight test: (i) it succeeded in rejecting the disturbances
largely in position and attitude sensing, even though the disturbances are in the low/mid/high frequency
bands; (ii) the experimental test verified the validity of the corrector’s providing accurate and smoothed
estimate of position and attitude; (iii) the estimate outputs from the correctors can be used directly by the
control system without any additional filters. The merits of the corrector include its model free, bounded
corrector gains, the accurate and smoothed estimate outputs and strong parametre inclusion to change
of disturbance and signal.
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Appendix

Proof of Theorem 4.1
If |e,| > 1, from the convergence law ¢, = —e, or e, = —kzsign (e,), we can get |e,| < 1.
Select the Lyapunov function candidate as

1
V= E(e2 +kye))’ (83)
Then, if |e,| < 1, taking the derivative of V, we get
V= (er + kie)) {—kysign (e; + kiey) + ke;)

=—k, |le; + kiei| +kie; (e; + key)

< —k; e+ kie|| + ki |es] |e; + ke

< —(ky — k) lex + kyey]
N2k~ k) V7 (84)

We know that k, > k; > 0. Therefore, there exists a time #,, for 7 > #,, such that V =0, i.e. the sliding
variables are on the sliding surface e, + k;e; = 0. Then, from the relation ¢, = e,, we get the following
convergence law:

e =—ke, (85)
Therefore, lim e¢; = 0. Furthermore, from e, = —k,sign (e, + k;e,), we get lim e, = 0. This concludes
the proof. i_mo o
Proof of Theorem 4.2
Determination of e, range
For (10), when |e, — d, ()| > 1, we get
&, = —kssign(e, — dy(1)) — ds(1) (86)
Then, it achieves a differential inclusion
&, € —kssign(e, — dy (1)) + [—Ls, Ls] 87
From Lemma 8 in [10] and k; > L;, there exists a finite time z,, for # > ¢,, such that
lea] < L, (33)

where, SUP,10.00) |d>(#)| < L,. Then, there exists a time #, > 0, for 7 > t,, we get
le; — dr(D)] < |es| + |da(D)] < 2L, (89)

Therefore, due to L, < 1, the inequality |e, — d,>(¢)| < 1 holds for ¢ > ¢,. Then, for system (10), according
to the 2-sliding mode system (8b) in Theorem 4.1 and k, > k; 4 L,, the sliding variables e, and e, are
on the sliding surface e, — d,(t) + ki (e; — d;(t)) =0, i.e. we get the following convergence law:

b = —kier + kds (1) + do(2) ©0)
Defining the Laplace transforms E,(s) = L[e,], D:(s) = L[d,(#)] and D,(s) = L[d ()], we get
SE\(5) = —ki Ey(5) + ki Dy (s) + Da(s) Ob

Therefore, the error variable e, is expressed by

ky
E =—0D
1(8) STK, I(S)+s+k,

Da(s) 92)

https://doi.org/10.1017/aer.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2023.29

68 Wang

For the disturbance d, (), the transfer function 7 can be taken as a filter, the disturbance d,(¢) is the
input and e, (¢) is the output. The selection of k, should try to reduce the effect of d,(¢) by considering
the effect of disturbance d,(¢) from the velocity measurement.

Suppose the disturbance d,(¢) includes time varying part d,,(f) and constant part d»,, i.e. d,(t) =
dy (1) + dy; the angular frequency variable of dy,(#) is supposed to be w,. We define sup, ., [dai (1] <
Ly < 00, SUP, g0y [dn ()] < Ly <00, and Ly = Ly + Ly, K 1.

Taking Laplace transform for d,(¢), we get D,(s) = D,(s) + d” , where, D,(s) = L[d,(?)] and D,,(s) =

L[d,,(?)]. Then, (92) can be expressed by

ki 1
E\(s) = _Dl(s) + _(DZI(S) + —)

+ ky
ki k. Dy, (s) dy
=—' D, + 93
s+ k )+ s+k ok s(s + ki) ©3)

Boundness of corrector estimate error
Define d,(t) = U, sin (w;?) and d,,(¢) = Uy, sin (w,f). For (93), from the frequency analysis of first-order
filter, we can get

. U . U, /k . d
lim ¢, = —‘z sin (w1t + @) + le sin (wof + ) + f (94)
—>00 1
where, ¢, = — tan™! %‘ and ¢, = — tan™! ‘:—12 We know that U, < L,, U,; < L,, and |d»,| < L,,. Therefore,
for (94), we get
L L, /k L
lim |e;| < I VL (95)

t—00 2 k,
e (2) e ()
Define x = ]ﬁ Then, (95) can be rewritten by

Ly
1 Ax L
lim |e,| < + 4 + 2Zx) L, (96)
=00 Vit Jl+wxr L

In (96), for all the w, € [0, c0), we have

L21

X L21
(Ch)
V14w x2
Therefore, for (96) and i—? <eg, we get
1 L L
lim |e,| < yontie, L,
100 V14 wx? L,
_ 1 L2 L
V1+ o x2
1
= —+¢-x| L (98)
V1+ it
Define the rejection ratio as
1
plw,X)=——==+¢-x 99
V1+ wix?
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Figure 10. Rejection ratio.
Therefore, (98) can be expressed by
lim |e,| < p(wi, X)L, (100)
—00

In the rejection ratio (99), define

1
pi(@),x) = ————=; pr(wy,x) =€ - x (101)
V14 wlx?
Taking the derivative for p;(w;, x) and p,(w;, x) about x, respectively, we get
d
% = —wx(1+ ) ? <0 (102)
d
dp(0nn) _ g (103)

dx
We know that, p,(w,, x) is the monotonically decreasing function of x from p,(w;, 0) = 1, and p,(w,, x)
is monotonically increasing function of x from p,(w,, 0) =0 (See p,(w;, x) and p,(w;, x) in Figure 10).
Therefore, p,(w;, x) and p,(w;, x) will intersect at a point, and we define the point x e Xo.
In the following, we consider to determine w; and x to make p(w,, x) equal a given rejection ratio p,
at the intersection point x,, i.e.

oo, %) = o +&-x=po (104)
1 + wix;
and
Lo
o1(w, X0) = pa(@r, Xo) = ? (105)
holds at the the intersection point x,. From (104) and (105), we have
L M
Vitolg 2
0
£-xp= 30 (106)
Solving the equations in (106), we get
P
'7 2
2¢e define
=3y (4= 08) F e (107)
0

The rejection ratio p, at intersection point should satisfy p, € (0, 1). Moreover, due to 0 < ¢ < 1, the

selection of p, should make w, bounded. Due to 2,/ (4 — ,03) > 1 is bounded, we can select p, to make
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=<1 Therefore, p, > &2 and p, € (0, 1) need to hold. We select p, =&’ € (0, 1) (where, r € (0, 1])

to satisfy the above conditions. Then, at the intersection point, x, and w; in (107) can be expressed
respectively by

1-2r 1 detme

o =46t 1= 2o (108)
where, r € (0, 1]. For p(w,, x), when x = x, and o, > w,, we get

1
p(@1, %) = —=——==t¢ X

V14 wix?
1

<—
V1 + wix?

Therefore, the error variable e, is in the bound:

+&-X0=po (109)

lim |e| < poL, (110)

Dueto0<e < landre (O, %], we can get p, = &” < 1. Also, the frequency w, =4¢'"% /1 — 582’ can
be small enough. Thus, the disturbance d,(¢) is rejected sufficiently in the frequency band [w,, 00).
Determination of corrector parameter k,
Because k; = Xio, the parameter k, is selected as
1
ky=—=2¢"" (111)

Xo

Rejection ratio for frequency band a)l € [0, 00)

When the corrector parameter k; = — = 2¢'™" is selected, i.e. x = x, = s&"', the rejection ratio (99) is
described by:
define l 1 ,
plw) = plwr, Xo)l,oyy = =+ ¢ (112)
J 1+ 167207

We find that the rejection ratio p(w;) in (112) is a monotonically decreasing function of disturbance
frequency w, € [0, 00), and it satisfies:

i) When w; =w,=4¢'""/1— 1%, we have p(wy)=py=¢"; and p(w;) = 3¢ as w; — oo.
Therefore, in the frequency band [y, o0), p(w;) : &" — %e’ as w; : wy —> 0.

.'*l" Yy
ll) When w =w, = %
—1e

plw):1—¢&" asw;: w. > wy.
iii) When w; =0, we have p(0) =1+ 1¢"; and p(0)~ 1 due to 0 < ¢ < 1 and r € (0, 1 ]. Therefore,
in the frequency band [0, w_ ], p(w;) : 1 + 18" — 1 (or p(w;) =~ 1)as w; : 0 — w,.

, we have p(w.) = 1. Therefore, in the frequency band (w,, @),

-3 7 ‘7
We know that o, = = < = 2o =4e'"3" « 1 because of 0 < ¢ < 1 and 7 € (0, 1]. Therefore,
the frequency band [0, w_] is sufficiently small. In general, the disturbance d, (¢) in position measurement
can be rejected sufficiently by the corrector even the the disturbance frequency covers the low/mid/high
frequency bands.

This concludes the proof. B

https://doi.org/10.1017/aer.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2023.29

The Aeronautical Journal 71

Figure 11. p(w,, x) curve and its minimum value.

Proof of Theorem 4.3
We know that the rejection ratio (99) is a monotonically decreasing function of frequency w,. Therefore,
in the given frequency band [a),.eq, oo), the rejection ratio satisfies

1
x<—2+8'x=p(wreq’x) (113)

1
plw,x)=—F——==+¢-x=
1 Vv 1+ olx? V1t olx

and

lim |e;| < p(@req, X)L (114)

In the following, we will determine x to get min {0(@,eg, X)}.
Taking the derivatives for p(w,.,, x) about x, we get

d reqs E
% = (1 + ol ) 4e (115)
dzp(wre ’ -x) _3 1
5t =20, (1 + 0, X)) P2 — o (116)
req

According to (115) and (116), p(w,,,x) is the convex function about x when x* < ﬁ and p(Wyeq, X)
req

is the concave function about x when x> > ﬁ In order to get the minimum value of p(w,,, X), the
%y

2 "
selection of x should make p(w,.,,x) about x be concave function, i.e. Lorg) () holds. Therefore,

dx?

from (116), the following inequality should be satisfied:

2 ] (117)
X
2w?
req
Then, it follows that
1 efine

x> e (118)

Therefore, p(w,,, X) is the concave function in the range x € (x;,¢, 00), and x;, is the curve inflection
point (see Figure 11). From the concave property of o(w,,, X) in the range x € (x;,r, 00) and 0 < ¢ K 1,

the minimum value Oy, Of p(w,,, X) exists when W =0,i.e.
dp(Wyey, X 3
@y D) _ 2 b Py e=0 (119)
dx req req
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Define the solution to (119) in x € (X, 00) iS Xmin. Then, the minimum value Py, of p(w,,, X) can be
expressed by

define . 1

Prin = M {p(@pg, X)} = ——=

It means that, when we select the corrector parametre k; = 1 /X, and x,,;, is the solution to (119) in the
range x € (x;,¢, 00), the rejection ratio can be expressed by

+ € * Xmin (120)

define
plw) = plw, Oy, = + & Xin (121)

1
Vv 1 +x2mina)%

The rejection ratio p(w,) is a monotonically decreasing function of disturbance frequency w,, and it
satisfies:

i) In [@pgs 00), P(@1) 1 Prin = € * Xyin AS W) T By = OO

26 J1—Lexyi
.. o 2 €Xmin
ii) In (a)L., a),gq), p(@1): 1 = ppin 88 @) 1 @, = Wy, Where, @, = 0 = —

1—&-Xmin

iii) In [0, w.], p(wy) : 1+ & Xpin > 1 @S @; : 0 = ..

Therefore, the disturbance d, (¢) in the frequency band [a)m,, oo) is rejected sufficiently.
This concludes the proof. B

Proof of Theorem 5.1
Define e, = x; — py(?), and e, = x, — v(¢). Then, the system error can be expressed by
él =€
—kssign [e; — dx ()] — Vo (1), if le; — da(D)] > 1;
e, = 1 —kasign [e; — da(1) + ki (e — di())] — Vo (D), (122)
lrif|ez — dz([)| < 1
Define d;(f) = d,(t) = vy (¢), the system error (122) is rewritten as
él =ée
—kssign(e; — dy(1)) — ds(1), if |e; — dy ()] > 1
e, =\ —kssign[e; — dy (1) + ki(e; — di(D)] — du(d), (123)
lrifle, —d,(1)| <1

According to Theorem 4.2, we can get the bounds of the estimate errors (18) and the other
conclusions. This concludes the proof. B
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