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Abstract Poincaré’s Polyhedron Theorem is a widely known valuable tool in constructing manifolds
endowed with a prescribed geometric structure. It is one of the few criteria providing discreteness of
groups of isometries. This work contains a version of Poincaré’s Polyhedron Theorem that is applicable
to constructing fibre bundles over surfaces and also suits geometries of non-constant curvature. Most
conditions of the theorem, being as local as possible, are easy to verify in practice.
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1. Introduction

1.1. It is frequently important to decide if a given subgroup G of a Lie group is discrete.
For example, such a necessity appears while constructing manifolds endowed with a
prescribed geometric structure. Typically, the group G is related to some geometrical
configuration: it acts on a simply connected homogeneous space M and is generated
by isometries that identify given codimension-1 subspaces called faces. These faces may
bound a (fundamental) polyhedron P in M into which the quotient M/G can be ‘cut
and unfolded’. Thus, we expect certain pairs of faces to be identified by the generators of
G, called face-pairing isometries, in such a way that M/G results from the identifications
and the space M is tessellated by the copies of P . This can be reversed: starting with a
polyhedron that tessellates M , we get the discrete group generated by the face-pairing
isometries. We have just briefly described the general settings surrounding Poincaré’s
Polyhedron Theorem (PPT). The theorem has a long history and plenty of versions; the
interested reader may consult, for example, [4] and the references therein.

The main step in verifying the tessellation of M is usually the study of tessellation
around the codimension-2 faces of P , called edges. This leads to the concept of a geometric
cycle of edges: given an edge e, its geometric cycle is a cyclic sequence of edges related by
face-pairing isometries such that the corresponding copies of P are expected to tessellate
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M around e. Dealing with geodesic polygons in the hyperbolic plane, Poincaré realized
that in order to obtain the tessellation of M it suffices to require that the sum of the
angles of the polygon along every geometric cycle equals 2π (for simplicity, we do not
deal here with ideal cycles). Later, he extended this idea to the case of constant curvature
hyperbolic 3-space.

1.2. Most versions of PPT come from constant curvature (or even plane) geometries,
where convexity arguments play an important role typically suited to polyhedra with
constant angles between (totally geodesic) faces along common edges. In general, such an
approach is inapplicable to non-constant curvature geometries, say, complex hyperbolic
geometry. The usual requirements like ‘adjacent polyhedra intersect in an expected way’
are difficult to check. Therefore, we look for a version where the conditions for tessellation
are as local as possible and provide global properties just a posteriori. The strategy is to
impose some requirements of infinitesimal nature which can be verified in practice and
then obtain an infinitesimal tessellation that can be ‘integrated’ with the help of suitable
local conditions expressing a good behaviour of the faces. Note that while constructing
manifolds we are used to having an explicitly given set of face-pairing isometries. We
therefore treat the relation between the face-pairing isometries involved in a cycle of
edges as being easily verifiable: at worst, we need to multiply a few matrices.

1.3. We show that the tessellation of a metric neighbourhood (see § 2.1) is sufficient
for discreteness (Proposition 2.1). This condition seems to be more useful than the well-
known completeness requirement. We think it can be particularly relevant in more than
two dimensions if one also has to deal with the ‘parabolic cycles’. Conditions similar
to the tessellation condition (§ 2.1) have already appeared in the literature (see, for
example, [1,3]).

The Poincaré angle condition can be weakened to the following total angle condition.
Pick a point p in an edge e. Being subsequently applied to p, the face-pairing isometries
involved in the geometric cycle of e provide a point in each edge in the cycle. We measure
the interior angles between faces at these points. The total angle at p, i.e. the sum of
such angles, is a multiple of 2π because of the cycle relation. The total angle condition
means that, for every cycle, the total angle at a single point equals 2π. Such a condition
can be quite handy in particular cases: sometimes the verification happens to be very
simple at geometrically distinguished points.

In Theorem 3.2, we deal with polyhedra that possess no faces of codimension greater
than 2. In this case, the total angle condition essentially ensures the tessellation of a topo-
logical neighbourhood of the polyhedron. Requiring in addition the metric separability
of faces (including that of faces sharing a common edge; see item (iv) in § 3 and item (iii)
in Theorem 3.2) allows us to integrate the topological tessellation into the tessellation of
a metric neighbourhood of the polyhedron. In § 4.3, we explain how one can in principle
use the ideas in [1] and the current paper to obtain a more general form of the theorem
with no restriction on codimension of faces. As it stands, Theorem 3.2 is well adapted
to the construction of fibre bundles over surfaces (such manifolds are probably the most
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important type other than compact ones); for example, it applies directly to constructing
complex hyperbolic disc bundles in [2].

A serious defect of our version is the global requirement of simplicity, i.e. the require-
ment that the faces intersect as expected and thus bound the polyhedron itself. In com-
plex hyperbolic geometry, for example, it is already difficult to check the simplicity of
a polyhedron with bisectors taken as faces. Hence, it seems that one should obtain an
even more local PPT which makes the verification of simplicity unnecessary. This would
finally ‘disassemble’ the polyhedron, taking away the arbitrary choice involved in PPT.

2. Preliminaries

This is essentially standard material (see, for example, [3, § 9.8, p. 242]).
Let M be a locally path-connected, connected and simply connected metric space.

Denote by B(x, ε) the open ball of radius ε > 0 centred in x and let

N(X, ε) :=
⋃

x∈X

B(x, ε)

for X ⊂ M . We regard a polyhedron in M as being a closed, locally path-connected and
connected subspace P ⊂ M such that

• P is the closure of its non-empty interior: P̊ �= ∅ and P = Cl P̊ ;

• the non-empty boundary of P is decomposed into the union of non-empty subsets
s ∈ S called faces: ∂P := P \ P̊ =

⋃
s∈S s.

A face pairing of a polyhedron P is an involution : S → S and a family of isometries
Is ∈ Isom M satisfying Iss = s̄ and Is̄ = I−1

s for every face s ∈ S.
Let P be a polyhedron with a given face pairing and let G denote the group generated

by the face-pairing isometries. We introduce a relation in G×P by putting (g, x) ∼ (h, y)
exactly when x ∈ s for some s ∈ S, Isx = y and h−1g = Is. Taking the closure of this
symmetric relation with respect to transitivity (and reflexivity), we obtain an equivalence
relation also denoted by ‘∼’. Let J := G × P/∼ and let [g, x] denote the class of (g, x)
in J . Consider the discrete topology on G and equip P , G × P and J with their natural
topologies. We have a commutative diagram

G × P
π ��

ψ ���������� J

ϕ
����

��
��

��

M

of continuous G-maps ψ(g, x) := gx, π(g, x) := [g, x] and ϕ[g, x] := gx. (Actions of G by
homeomorphisms are defined by h(g, x) := (hg, x) and h[g, x] := [hg, x].) Let

[P ] := {[1, x] | x ∈ P} and [P̊ ] := {[1, x] | x ∈ P̊}.

Clearly, J =
⋃

g∈G g[P ] and g1[P̊ ] ∩ g2[P̊ ] �= ∅ implies g1 = g2. In other words, [P ] is a
fundamental region for the action of G on J .
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We assume that π−1[1, x] is finite for every x ∈ ∂P and hence for every x ∈ P . Let
x ∈ P . Then π−1[1, x] = {(g1, x1), . . . , (gn, xn)} for some gj ∈ G and xj ∈ P . The
polyhedra gjP are the formal neighbours of P at x. For δ > 0, define

Nxj ,δ := {y ∈ P | d(y, xj) < δ} ⊂ P,

Nx,δ :=
n⋃

j=1

(gj , Nxj ,δ) ⊂ G × P,

Wx,δ := πNx,δ ⊂ J,

where d(·, ·) denotes the distance function on M . Using this notation, we state the tes-
sellation condition.

2.1. Tessellation condition

A polyhedron P with a given face pairing satisfies the tessellation condition if the
following hold.

• For every x ∈ P , there exists some δ(x) > 0 such that π−1(Wx,δ) = Nx,δ and
ϕWx,δ = B(x, δ) for all 0 < δ � δ(x).

• Some open metric neighbourhood N of P in M is tessellated; this means that
N(P, ε) ⊂ N for some ε > 0 and that there exists a function f : P → R taking
positive values such that ϕ : WP,f → N is bijective, where WP,f :=

⋃
x∈P Wx,f(x).

Proposition 2.1. The tessellation condition implies that ϕ is a homeomorphism. In
other words, the polyhedron P is a fundamental region for the action of G on M .

Proof. Straightforward arguments show that J is Hausdorff and path-connected, that
the family {gWx,δ | g ∈ G, x ∈ P, 0 < δ � δ(x)} is a base of the topology on J , and
that ϕ is a local homeomorphism. Clearly, ϕ : gWP,f → gN is a homeomorphism for all
g ∈ G. As M is simply connected, it suffices to show that ϕ is a regular covering.

Since ϕ is open, ϕJ is open in M . Let x ∈ Cl(ϕJ). Then B(x, ε) ∩ gP �= ∅ for some
g ∈ G. It follows that x ∈ N(gP, ε) ⊂ gN = ϕ(gWP,f ) ⊂ ϕJ . Hence, ϕJ is closed in M .
Since M is connected, ϕ is surjective.

Take x ∈ M . Define
Gx := {g ∈ G | Ux ∩ gP �= ∅},

where Ux ⊂ B(x, 1
2ε) is a path-connected open neighbourhood of x. For every g ∈ Gx,

let
Wg := ϕ−1(Ux) ∩ gWP,f .

Since Ux ∩ gP �= ∅ implies that Ux ⊂ B(x, 1
2ε) ⊂ N(gP, ε) ⊂ gN , we conclude that

ϕ : Wg → Ux is a homeomorphism. Moreover,

ϕ−1(Ux) =
⋃

g∈Gx

Wg.
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It remains to show that the distinct Wg are disjoint. Suppose that Wg1 ∩ Wg2 �= ∅ for
some g1, g2 ∈ Gx. The projection Wg1 × Wg2 → Wg1 induces a homeomorphism between

X := {(x1, x2) ∈ Wg1 × Wg2 | ϕx1 = ϕx2}

and Wg1 . The diagonal

∆Wg1∩Wg2
= ∆J ∩ (Wg1 × Wg2) ⊂ X

is closed in X since J is Hausdorff. Therefore, the image Wg1 ∩ Wg2 of ∆Wg1∩Wg2
is

closed in Wg1 . Since Wg1 is connected, we obtain Wg1 = Wg2 . �

3. A plane-like Poincaré Polyhedron Theorem

In what follows, M is a connected, oriented and simply connected Riemannian manifold.
We regard a cornerless polyhedron P ⊂ M with a face pairing as a subspace satisfying
the conditions stated in the beginning of the previous section as well as those below.

(i) The faces of P are topologically closed, oriented smooth connected submanifolds of
codimension 1 in M with (possibly empty) boundary. Each face s of P is oriented
so that normal vectors to s \ ∂s point towards the interior of P .

(ii) The boundary of every face s ∈ S is a disjoint union ∂s =
⊔

e∈Es
e of non-empty

connected edges. (Es = ∅ is allowed.) We write e � s or s � e if e ∈ Es. Clearly, e � s

implies s̄ � Ise.

(iii) P has a finite number of faces and edges. Each edge e belongs to exactly two distinct
faces s1 and s2. In symbols: s1 � e � s2.

(iv) (Strong simplicity.) The intersection of two distinct faces is contained in the bound-
ary of both faces and is a (possibly empty) union of edges. The distances between

• two distinct edges,

• two distinct faces that do not share an edge,

• a face and an edge not contained in it

are all greater than some d > 0.

3.1. Start with s̄0 � e � s1. Applying Is1 to s1 and e, we obtain s̄1 � Is1e � s2. Applying
Is2 to s2 and Is1e, we obtain s̄2 �Is2Is1e�s3, and so on. (Of course, by (iii), we eventually
arrive back at s̄0 � e � s1.)

A cyclic sequence

Isn−−→ s̄n = s̄0 � e � s1
Is1−−→ s̄1 � Is1e � s2

Is2−−→ s̄2 � Is2Is1e � s3
Is3−−→ · · ·

Isn−1−−−−→ s̄n−1 � Isn−1 · · · Is1e � sn
Isn−−→,
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where each term is obtained from the previous one by the above rule, is called a cycle
of edges. The number n is the length of the cycle and the isometry I := Isn

· · · Is1 will
be referred to as the cycle isometry. A cycle can be read backwards, i.e. in the opposite
orientation, which inverts its isometry. If the cycle isometry is the identity and if the
cycle is the shortest one with this property, then the cycle is said to be geometric (see
also Remark 3.1). Clearly, every cycle is a multiple of a shortest, combinatorial one. Note
that, in a geometric cycle, an edge may occur several times (this does not happen in a
combinatorial cycle).

Assume that we are given a family of disjoint geometric cycles that contains every
edge of P . Fixing a term (say) s̄0 � e � s1 in some oriented cycle of the family, define
Ij := Isj · · · Is1 for all j = 0, 1, . . . , n (we usually consider j modulo n) so that the cycle
takes the form

Isn−−→ s̄n = s̄0�I0e�s1
Is1−−→ s̄1�I1e�s2

Is2−−→ s̄2�I2e�s3
Is3−−→ · · ·

Isn−1−−−−→ s̄n−1�In−1e�sn
Isn−−→ .

3.2. We can describe all formal neighbours of P at a point x ∈ ∂P . If x does not belong
to any edge, then there is a unique face s containing x, π−1[1, x] = {(1, x), (Is̄, Isx)}, and
the only formal neighbours of P at x are P and Is̄P . If x belongs to an edge s̄0�e�s1, then
π−1[1, x] = {(I−1

j , Ijx) | j = 0, 1, . . . , n − 1} and the I−1
j P are the formal neighbours of

P at x. Indeed, suppose that (I−1
j , Ijx) ∼ (h, y). This means that Ijx ∈ s′, Is′Ijx = y,

and h−1I−1
j = Is′ for some s′ ∈ S. In particular, Ije and s′ intersect. It follows from (iv)

that Ije � s′. Hence, either s′ = s̄j or s′ = sj+1. Therefore, either (h, y) = (I−1
j−1, Ij−1x)

or (h, y) = (I−1
j+1, Ij+1x). It remains to observe that the Ij , j = 0, 1, . . . , n − 1, are all

distinct because we could otherwise take a shorter cycle whose isometry would be the
identity.

3.3. Pick a point x in some edge s̄0 � e� s1 of an oriented cycle. Let Nxe := (Txe)⊥ and
let n0 and n1 denote, respectively, the unit normal vectors to s̄0 and s1 at x that point
towards the interior of P . Let t0 ∈ Txs̄0 ∩ Nxe and t1 ∈ Txs1 ∩ Nxe stand for the unit
vectors that point towards the interiors of s̄0 and s1, respectively. The basis t0, n0 orients
Nxe. This orientation corresponds to the orientation of the cycle. The oriented interior
angle α0 from s̄0 to s1 at x is the angle from t0 to t1, which takes values in [0, 2π] (see
Figure 1 (a)). We define similarly the interior angle αj from s̄j to sj+1 at Ijx. The sum∑n−1

j=0 αj is the total interior angle of the cycle at x. It is easy to see that altering the
orientation of the cycle alters the orientation of the corresponding Nxe and keeps the
same values of the αjs.

Suppose that the face-pairing isometries send interior into exterior. By definition, this
means that Isns = −ns̄ for every face s ∈ S, where ns stands for the unit normal vector
to s at some x ∈ s. This property implies the following. Take a point x in some edge
s̄0 � e � s1 of an oriented geometric cycle. Let t1 ∈ Txs1 ∩ Nxe be the unit vector that
points towards the interior of I−1

1 s̄1 = s1 and let t2 ∈ TxI−1
1 s2 ∩ Nxe be the unit vector

that points towards the interior of I−1
1 s2. Then the oriented angle from t1 to t2 equals

α1. In the same way, denoting by tj ∈ TxI−1
j s̄j ∩Nxe the unit vector that points towards
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Figure 1. (a) Oriented interior angle and (b) total interior angle of an oriented geometric cycle.

the interior of I−1
j s̄j , we can see that the oriented angle from tj to tj+1 equals αj . This

implies immediately that
∑n−1

j=0 αj ≡ 0 mod 2π (see Figure 1 (b)). In particular, the total
interior angle of a geometric cycle is constant : it does not depend on the choice of x ∈ e.

Obviously, the distinct formal neighbours of P at a point in an edge overlap when the
total interior angle of a cycle is different from 2π. In the terms of Proposition 2.1, this
corresponds to a ramification of ϕ.

Remark 3.1. For some geometries, the nature of edges allows one to (formally) weaken
the condition that the cycle isometry is the identity. This happens in the case when every
isometry I that fixes pointwise some edge e is completely determined by the rotation angle
about some x ∈ e, that is, by the image In ∈ Nxe of some 0 �= n ∈ Nxe. In this case,
it suffices to require only that I|e = 1e and that the total interior angle at x vanishes
modulo 2π.

Theorem 3.2. Let P be a cornerless polyhedron with a face pairing providing a family
of geometric cycles that contains every edge of P . Suppose that

(i) the face-pairing isometries send interior into exterior,

(ii) the total interior angle equals 2π at some point of an edge for every cycle of the
family,

(iii) for every two distinct faces s, s′ such that s ∩ s′ �= ∅ and for every ϑ > 0, there
exists ε = ε(s, s′, ϑ) > 0 such that s′ ∩ N(s, ε) ⊂

⋃
s�e�s′ N(e, ϑ).

Then the tessellation condition (see § 2.1) is satisfied.

Proof. In what follows, we denote X̃ := X ∩ P for X ⊂ M .

Step 1. Using conditions (i) and (ii), we will integrate (employing (iv)) an infinitesimal
tessellation into a topological one. Therefore, we will show that there exists a sufficiently
small tessellated open ball centred at x for every x ∈ P . In other words, for every x ∈ P ,
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we will find some δ(x) > 0 such that the first part of the tessellation condition (see
§ 2.1) is valid and, additionally, ϕ : Wx,δ → B(x, δ) is injective for all 0 < δ � δ(x). We
distinguish the cases x ∈ s \ ∂s for some s ∈ S and x ∈ e for some edge e.

• In the first case, choose δ1 > 0 such that B(x, δ1) does not intersect the edges of s

and such that B(x, δ1)∩∂P = B(x, δ1)∩s. Choose δ2 > 0 analogously with respect
to Isx ∈ s̄. Let

Nx,δ := (1, B̃(x, δ)) ∪ (Is̄, B̃(Isx, δ)), Wx,δ := πNx,δ,

where 0 < δ � δ(x) := min(δ1, δ2). Clearly, π−1Wx,δ = Nx,δ. We need to show that
ϕ : Wx,δ → B(x, δ) is a bijection.

Note that s∩B(x, δ) ⊂ B̃(x, δ)∩ Is̄B̃(Isx, δ). Also, B̃(x, δ) �= Is̄B̃(Isx, δ) by condi-
tion (i). Pick a point q0 ∈ B̃(x, δ)\Is̄B̃(Isx, δ) such that q0 /∈ s. Due to the fact that
δ � δ(x), a smooth oriented curve γ ⊂ B(x, δ) connecting q0 and q ∈ B(x, δ)\s can
intersect ∂P and ∂Is̄P only along (s\∂s)∩B(x, δ). We can assume that such inter-
sections are transverse. According to (i), when intersecting s, the curve γ leaves
B̃(x, δ) and enters Is̄B̃(Isx, δ) or vice versa. Hence, q belongs to exactly one of
B̃(x, δ) and Is̄B̃(Isx, δ). The result then follows.

• The second case is similar. Let the Ijs be related to the geometric cycle containing
e. Choose δj > 0 such that B(Ijx, δj) does not intersect any edge of s̄j or sj+1

except Ije and such that

B(Ijx, δj) ∩ ∂P = (B(Ijx, δj) ∩ s̄j) ∪ (B(Ijx, δj) ∩ sj+1).

Let
Nx,δ :=

⋃
j

(I−1
j , B̃(Ijx, δ)), Wx,δ := πNx,δ,

where 0 < δ � δ(x) := min δj . The description of formal neighbours (see § 3.2)
implies that π−1(Wx,δ) = Nx,δ. We have

I−1
j sj+1 ∩ B(x, δ) ⊂ I−1

j B̃(Ijx, δ) ∩ I−1
j+1B̃(Ij+1x, δ).

Let F :=
⋃

j I−1
j sj+1 ∩ B(x, δ) and let q0 ∈ B̃(x, δ) \ F . Since δ � δ(x), a smooth

oriented γ ⊂ B(x, δ) connecting q0 and q ∈ B(x, δ)\F may intersect
⋃

j ∂I−1
j P only

along F . We assume that γ does not intersect e and is transverse to F . Condition (i)
implies that, when intersecting I−1

j sj+1, the curve γ leaves I−1
j B̃(Ijx, δ) and enters

I−1
j+1B̃(Ij+1x, δ) or vice versa. Hence, ϕ : Wx,δ → B(x, δ) is surjective. Following the

discussion in § 3.3 concerning the total angle of the cycle at x, we consider the closed
sectors Tj ⊂ Nxe containing the oriented interior angle of I−1

j P at x. Conditions
(i) and (ii) imply that

⋃
j Tj = Nxe and T̊j1 ∩ T̊j2 = ∅ if j1 �≡ j2 mod n. Hence,

distinct formal neighbours I−1
j P cannot be equal.

Suppose that ϕ : Wx,δ → B(x, δ) is not injective at some q ∈ B(x, δ). It follows
from the description of formal neighbours in § 3.2 that q /∈ F . Pick a point q0 living
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in exactly one of the I−1
j B̃(Ijx, δ) \ F and connect q0 and q by a smooth oriented

curve γ ⊂ B(x, δ) that does not intersect e and is transverse to F . By the properties
of δ and the above ‘leaves-and-enters’ argument, we arrive at a contradiction.

Step 2. We shall use condition (iii) in order to ‘integrate’ the above tessellation of a
topological neighbourhood of P into a tessellation of a metric neighbourhood of P .

Fix some ϑ < 1
2d, where d is provided by (iv), and fix some ε > 0 such that ε <

1
2 mins∩s′ �=∅ ε(s, s′, 1

2ϑ) and ε < 1
2ϑ, where ε(s, s′, 1

2ϑ) is given by condition (iii).
Given an edge e, we put Ne,r :=

⋃
j(I

−1
j , Ñ(Ije, r)), where the Ijs correspond to the

geometric cycle including e as in § 3.1. For s ∈ S, define

Ns,r := (1, Ñ(s, r)) ∪ (Is̄, Ñ(s̄, r)), Ws := πNs,ε

⋃
e∈Es

πNe,ϑ.

• Let us show that ϕ : Ws → N(s, ε)
⋃

e∈Es
N(e, ϑ) is a bijection.

Choose any e ∈ Es. As above, define

F :=
⋃
j

I−1
j sj+1 ∩ N(e, ϑ),

where the Ijs correspond to the geometric cycle including e as in § 3.1, and pick a
point x ∈ e. Using the tessellation of a small open ball B centred at x, we can choose
q0 ∈ B living in exactly one of the I−1

j Ñ(Ije, ϑ). Clearly, F ⊂ ϕπNe,ϑ. It follows
from the description of formal neighbours (see § 3.2) that ϕ : πNe,ϑ → N(e, ϑ) is
injective when restricted to F . Let q ∈ N(e, ϑ) \ F . As above, connecting q0 and q

by a smooth oriented curve γ ⊂ N(e, ϑ) that does not intersect e and is transverse
to F , we can see that γ intersects only the prescribed faces because ϑ < d. We
conclude that ϕ : πNe,ϑ → N(e, ϑ) is surjective and injective. Since ϑ < 1

2d, the
N(e, ϑ) are disjoint. Therefore,

ϕ :
⋃

e∈Es

πNe,ϑ →
⋃

e∈Es

N(e, ϑ)

is a bijection.

It is easy to see that

s \
⋃

e∈Es

N(e, ϑ) ⊂ ϕ

(
Ws \

⋃
e∈Es

πNe,ϑ

)
⊂ N(s, ε) \

⋃
e∈Es

N(e, ϑ).

The description of formal neighbours (see § 3.2) implies that

ϕ : Ws \
⋃

e∈Es

πNe,ϑ → N(s, ε) \
⋃

e∈Es

N(e, ϑ)

is injective when restricted to s \
⋃

e∈Es
N(e, ϑ). Pick a point q ∈ N(s, ε) \⋃

e∈Es
N(e, ϑ) such that q /∈ s. There exist x ∈ s and an oriented smooth curve

γ ⊂ N(s, ε) of length 
(γ) < ε that connects x and q.
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We claim that γ can intersect ∂P and ∂Is̄P only along s \ ∂s. Indeed, γ cannot
intersect the faces of P or of Is̄P that are disjoint from s because ε < d. Let s′ be
a face of P or Is̄P that intersects γ and such that s ∩ s′ �= ∅. By condition (iii)
and the choice of ε, we have

s′ ∩ γ ⊂ s′ ∩ N(s, ε) ⊂
⋃

s�e�s′

N(e, 1
2ϑ) ⊂

⋃
e∈Es

N(e, 1
2ϑ),

which implies q ∈
⋃

e∈Es
N(e, ϑ) because ε < 1

2ϑ: a contradiction. The inequality
ε < 1

2ϑ implies that γ does not intersect ∂s.

We can assume that γ is transverse to s. Considering the tessellation of a small
ball centred at x introduced earlier, we see that γ first enters the interior of P or of
Is̄P . When γ intersects s \ ∂s, it leaves P and enters Is̄P or vice versa. As above,

ϕ : Ws \
⋃

e∈Es

πNe,ϑ → N(s, ε) \
⋃

e∈Es

N(e, ϑ)

is surjective and injective.

• Finally, let us show that the open metric neighbourhood

N := P̊
⋃
s∈S

N(s, ε)
⋃

e∈Es

N(e, ϑ)

of P is tessellated. (Note that N(P, ε) ⊂ N .) Define f(x) = ϑ if x ∈ e for some
edge e of P and f(x) = ε if x ∈ s \ ∂s for some s ∈ S. If x ∈ P̊ , we take an
arbitrary f(x) > 0 such that B(x, f(x)) ⊂ P̊ . It is immediate that ϕWP,f ⊂ N

and that WP,f = [P̊ ]
⋃

s∈SWs. Hence, ϕ : WP,f → N is surjective. If ϕw = ϕw′,
where w ∈ [P̊ ] and w′ ∈ Ws, then w = [1, x], x ∈ P̊ , and x ∈ N(s, ε)

⋃
e∈Es

N(e, ϑ),
implying w ∈ Ws. If x := ϕw = ϕw′, where w ∈ Ws and w′ ∈ Ws′ , then s �= s′ and
we have two cases: s ∩ s′ = ∅ and s ∩ s′ �= ∅. The first case is impossible because

N(s, ε)
⋃

e∈Es

N(e, ϑ) ⊂ N(s, ϑ), N(s′, ε)
⋃

e∈Es′

N(e, ϑ) ⊂ N(s′, ϑ),

and N(s, ϑ) ∩ N(s′, ϑ) = ∅ due to ϑ < 1
2d.

In the second case, suppose that x ∈ N(e0, ϑ) for some e0 ∈ Es. Then w ∈ πNe0,ϑ

because the bijection ϕ : πNe0,ϑ → N(e0, ϑ) is a restriction of

ϕ : Ws → N(s, ε)
⋃

e∈Es

N(e, ϑ)

which is already known to be a bijection. Using ε < ϑ < 1
2d and (iv), we can see

that the inclusion x ∈ N(s′, ε)
⋃

e∈Es
N(e, ϑ) implies e0 ∈ Es′ . So, w′ ∈ πNe0,ϑ and

w = w′. The same arguments work if x ∈ N(e0, ϑ) for some e0 ∈ Es′ .

Therefore, we can assume that x ∈ N(s, ε) ∩ N(s′, ε) and x /∈
⋃

s�e�s′N(e, ϑ).
We can find some p ∈ s′ ∩ B(x, ε) ⊂ s′ ∩ N(s, 2ε). It follows from p ∈ B(x, ε),
x /∈

⋃
s�e�s′N(e, ϑ) and ε < 1

2ϑ that p /∈
⋃

s�e�s′N(e, 1
2ϑ). This contradicts the

choice of ε and ϑ and completes the proof.

�
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4. Final remarks

4.1. The first version of the PPT in which the restriction of the combinatorial cycle
isometry to an edge is not supposed to be the identity can probably be found in [5, § 3.1,
p. 60], although this is in an implicit form and in the specific case of real hyperbolic
4-space. (It is related to Remark 3.1.) Our version seems to be the first dealing with an
angle condition in the situation of non-constant angle along a common edge of two faces.

4.2. Theorem 3.2 (iii) is not trivial to check in the case of non-constant curvature. In
complex hyperbolic geometry, even in so simple a case as that of bisectors intersecting
transversally at a common slice, the proof of this condition requires some analytic effort
[2, Lemma 2.2.3].

4.3. An important generalization of Theorem 3.2 would be of course a version of PPT
for polyhedra admitting faces of codimension greater than 2. Elaborating explicit con-
ditions that express a good behaviour of faces of all codimensions seems to be the most
difficult task here. Indeed, for simplicity, let us assume M to be three dimensional. Take
a vertex p of P and a small sphere S centred at p. We have an infinitesimal tessellation
around generic points in edges, which provides an infinitesimal tessellation of S around
its intersections with the edges containing p. Due to the good behaviour of faces and
edges, we obtain a tessellation of S. While shrinking the radius of S, the topological
picture of this tessellation remains the same. In this way, we visualize a tessellation of
the 3-ball bounded by S as being a cone over the tessellation of S.

In the particular case of a compact polyhedron, the conditions expressing a good
behaviour of faces must be drastically simplified. For example, the tessellation of a topo-
logical neighbourhood of the polyhedron already implies in this case the tessellation con-
dition (see § 2.1). We suggest the following formulation: let M be a Riemannian manifold
and let P ⊂ M be a simple compact PL-polyhedron equipped with a face pairing provid-
ing a family of geometric cycles of edges that contain every edge of P . If conditions (i)
and (ii) of Theorem 3.2 hold, then the tessellation condition is satisfied.

This is just a rough outline of a possible proof; getting the general version in question
may require some serious effort (see also the proof of [1, Theorem 2], where similar
ideas are applied to compact polyhedra with totally geodesic faces in constant curvature
spaces).
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