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Abstract
The most fundamental example of mirror symmetry compares the Fermat hypersurfaces in P𝑛 and P𝑛/𝐺, where
G is a finite group that acts on P𝑛 and preserves the Fermat hypersurface. We generalize this to hypersurfaces in
Grassmannians, where the picture is richer and more complex. There is a finite group G that acts on the Grass-
mannian Gr(𝑛, 𝑟) and preserves an appropriate Calabi–Yau hypersurface. We establish how mirror symmetry, toric
degenerations, blow-ups and variation of GIT relate the Calabi–Yau hypersurfaces inside Gr(𝑛, 𝑟) and Gr(𝑛, 𝑟)/𝐺.
This allows us to describe a compactification of the Eguchi–Hori–Xiong mirror to the Grassmannian, inside a
blow-up of the quotient of the Grassmannian by G.
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Introduction

In the most famous and fundamental of examples of mirror symmetry, the Fermat hypersurface in P𝑛−1

mirrors the Fermat hypersurface in a finite group quotient of P𝑛−1. The action of the finite group on
P
𝑛−1 is obtained by the action of the group

𝐻̃𝑛,1 = 〈(𝜁1, . . . , 𝜁𝑛) | 𝜁
𝑛
𝑖 = 1,

∏
𝜁𝑖 = 1〉

which is identified with a subgroup of the diagonal matrices of SL(C𝑛) and hence acts naturally on
C
𝑛. This descends to an action on the geometric invariant theory (GIT) quotient C𝑛//C∗ = P𝑛−1; we let

𝐻𝑛,1 denote the quotient group of 𝐻̃𝑛,1 that acts effectively on P𝑛−1. The Fermat hypersurface in P𝑛−1

is mirror to the Fermat hypersurface in P𝑛−1/𝐻𝑛,1. This is the first in a series of examples appearing in
Greene–Plesser [11].

In this paper, we explore the analogue of Greene–Plesser mirror symmetry for Grassmannians. The
Grassmannian of quotients can be constructed as a GIT quotient Mat(𝑟 × 𝑛)//GL(𝑟). The group

𝐻̃𝑛,𝑟 = 〈(𝜁1, . . . , 𝜁𝑛) | 𝜁
𝑛
𝑖 = 1, (

∏
𝜁𝑖)

𝑟 = 1〉 (1)

is identified with a subgroup of the diagonal matrices in GL(C𝑛), which acts on Mat(𝑟 × 𝑛) by
multiplication on the right. It can also be identified with a subgroup in SL(Mat(𝑟 × 𝑛)) acting on
Mat(𝑟 × 𝑛) as a vector space—it is in this sense that the (

∏
𝜁𝑖)

𝑟 = 1 is a determinant 1 condition.
The action of 𝐻̃𝑛,𝑟 descends to an action on Gr(𝑛, 𝑟); we let 𝐻𝑛,𝑟 denote the quotient of 𝐻̃𝑛,𝑟 that acts
effectively on Gr(𝑛, 𝑟).

We relate Gr(𝑛, 𝑟) and Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 via mirror symmetry, although—as suits the Grassmannian—
the story is richer and more complex, involving not just mirror duality but also toric degenerations, a
variation of polytope duality, blow-ups and variations of GIT. In unpacking this picture, we also provide
a compactification of the fibers of the Eguchi–Hori–Xiong [9] mirror of the Grassmannian. With a bit
of notation, we can state the main result.

Let P be a lattice polytope and 𝑃∨ its dual. The variety 𝑋𝑃 is the toric variety built from the spanning
fan of P. Mirror pairs of Calabi–Yau hypersurfaces come from pairs of toric varieties 𝑋𝑃 , 𝑋𝑃∨ . We
define the primitive dual of a toric variety 𝑋𝑃 as 𝑋𝑄, where Q is the dual polytope of P viewed in the
lattice spanned by its vertices (see Definition 1.3). The primitive dual of P𝑛−1 is itself: This explains the
reappearance of P𝑛−1 (albeit with a group action) under mirror duality.

In [10], Gonciulea and Lakshmibai describe a toric degeneration of the Grassmannian to the toric
variety associated to a Gelfand–Cetlin polytope. We call this the Gelfand–Cetlin toric degeneration.

Theorem 0.1 (Theorem 4.16). Let 𝑋𝑃 be the special fiber of the Gelfand–Cetlin toric degeneration, and
𝑋𝑄 its primitive dual. Then there is a smoothing of the Batyrev–Borisov dual 𝑋𝑄∨ of 𝑋𝑄 to Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 .

The geometry relating 𝑋𝑃 and 𝑋𝑄 can be further described.

Theorem 0.2 (Theorem 3.7). There is a toric blow-up of 𝑋𝑃 that can be obtained from 𝑋𝑄 by a crepant
toric variation of GIT. The reverse holds for their Batyrev–Borisov duals: There is a toric blow-up of
𝑋𝑄∨ that can be obtained from 𝑋𝑃∨ by a crepant toric variation of GIT.

The first proposals of mirror symmetry for Grassmannians arise in physics: Hori–Vafa [13] and
Eguchi–Hori–Xiong [9]. Hori–Vafa’s proposal is rooted in the abelian/nonabelian correspondence (later
further developed in [4, 12]), while the Eguchi–Hori–Xiong construction can be seen to arise from the
Gelfand–Cetlin toric degeneration [3]. Another more recent proposal is the Marsh–Rietsch Plücker
coordinate mirror [18], which—very roughly speaking—is a mirror produced by combining the mirrors
obtained through many toric degenerations arising from the cluster structure of the coordinate ring of
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the Grassmannian. These proposals focus on a Landau–Ginzburg model, or a superpotential, for the
Grassmannian, where the story is much more developed, rather than on producing mirror partners for
Calabi–Yau hypersurfaces in Grassmannians.

Both the abelian/nonabelian correspondence and toric degenerations essentially reduce the question
of the mirror symmetry to the toric situation, where older results can be applied. The mirror constructed
for Calabi–Yau hypersurfaces in Grassmannians in [2] is of this form—they suggest a specialization
of the mirror family obtained via applying the Batyrev–Borisov construction to the Gelfand–Cetlin
toric degeneration. One problem, though, is that it is unclear how to reverse this process on the mirror
side—how can we leave the toric context?

In this paper, we suggest a solution to this problem. The two theorems above suggest a possible mirror
to the Fermat Calabi–Yau hypersurface of the Grassmannian, which we describe in equation (2) after
establishing more notation. As in [2], our proposal requires the Gelfand–Cetlin toric degeneration: We
use its combinatorial structure to unwind the toric degeneration, arriving at a hypersurface in a quotient
of a blow-up of the Grassmannian. The theorem below gives some evidence towards this proposal.

Theorem 0.3 (Theorem 5.4). The fiber of the Eguchi–Hori–Xiong Laurent polynomial mirror to the
Grassmannian compactifies to an anticanonical hypersurface cut out by equation (2) in a blow-up of
the Grassmannian modulo the group 𝐻𝑛,𝑟 .

While the construction here heavily uses the Gelfand–Cetlin toric degeneration, the final answer does
not depend on the degeneration. It is therefore an intriguing question as to how this proposal fits in with
the results of Marsh–Rietsch [18] and Rietsch–Williams [21].

Overview of results

We now outline the results of the paper. The first step is a close study of the Batyrev–Borisov mirror of
the Gelfand–Cetlin toric degeneration of the Grassmannian. We begin by looking at Batyrev–Borisov
mirror symmetry for Fano toric varieties with high Fano index.

High index Fano varieties, lattices and Batyrev–Borisov mirror symmetry

Let P be a lattice polytope in a lattice N, and let M be the dual lattice. As before, we denote the toric
variety arising from the spanning fan P as 𝑋𝑃 . If P is the polytope of projective space, that is, if 𝑋𝑃 = P𝑛,
then 𝑋𝑃∨ is just 𝑋𝑃/𝐺, where 𝐺 = (Z/(𝑛 + 1)Z)𝑛−1. The group action can be seen to arise from the fact
that P𝑛 has Fano index 𝑛 + 1: The vertices of 𝑃∨ span a sublattice 𝑖 : 𝑀 → 𝑀 such that 𝑀/𝑀 � 𝐺.
The fact that 𝑋𝑃∨ = P𝑛/𝐺 is a consequence of the fact that 𝑖−1(𝑃∨) = 𝑃.

It is a simple corollary of the Batyrev–Borisov construction that if we take intermediate lattices we
recover Greene–Plesser mirror symmetry for the Calabi–Yau hypersurface in projective space. Consider
a lattice inclusion 𝑀 ⊂ 𝑀 ′ ⊂ 𝑀 , and set (𝑀 ′)∨ = 𝑁 ′ and 𝑀

∨
= 𝑁 . Then the anticanonical hypersurface

in P𝑛/(𝑁 ′/𝑁) forms a mirror pair with the anticanonical hypersurface in P𝑛/(𝑀 ′/𝑀).
We show in §1 that there is an analogous picture for any Fano toric variety of index n. Let P be a

reflexive Fano polytope of Fano index k. The vertices of 𝑃∨ span a sublattice 𝑖 : 𝑁 → 𝑁 . Set 𝐺 := 𝑁/𝑁 .
In the projective space example above and in many other cases, 𝐺 � (Z/𝑘Z)dim𝑋𝑃−1. Let Q denote the
polytope 𝑖−1(𝑃). Then mirror symmetry reverses the roles of P and Q:

𝑋𝑃 𝑋𝑄

𝑋𝑃/𝐺𝑋𝑄/𝐺 ,

where the arrows are Batyrev–Borisov mirror symmetry. We call Q the primitive dual of P. For polytopes
whose vertices generate the ambient lattice, this is a duality. We also obtain a series of mirror pairs via
considering intermediate lattices.
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Proposition 0.4. Given lattice inclusions 𝑁 ⊂ 𝑁 ′ ⊂ 𝑁 , dualizing to 𝑀 ⊂ 𝑀 ′ ⊂ 𝑀 , the toric varieties
𝑋𝑃/(𝑁/𝑁

′) and 𝑋𝑄/(𝑀
′/𝑀) are a Batyrev–Borisov mirror pair.

If 𝑋𝑃 is a sufficiently nice toric degeneration of the Grassmannian, then it is in particular a Fano
variety of Fano index n. If 𝑋𝑃 is the Gelfand–Cetlin toric degeneration, then its vertices can be described
via a ladder diagram ([3]; see §2). The primitive dual Q can be described via the same diagram. We
give a description of Q in this case in §2.

The series of examples of mirror pairs for projective space includes the quintic twin [8], which
intriguingly has the same Picard–Fuchs equations as the quintic. The perspective in this paper, allows
us to generalize this ‘twin phenomenon’ to toric degenerations of the Grassmannian. See §2.4.

The Gelfand–Cetlin toric degeneration and variation of geometric invariant theory quotient

Let 𝑃𝑛,𝑟 denote the reflexive Fano polytope associated to the Gelfand–Cetlin toric degeneration, and
𝑄𝑛,𝑟 its primitive dual. Let 𝐺𝑛,𝑟 := (Z/𝑛Z)𝑟 (𝑛−𝑟 )−1. The polytopes 𝑃𝑛,𝑟 and 𝑄𝑛,𝑟 are closely related
via mirror symmetry, but in fact there is another relation. The main result of §3 is Theorem 0.2: There
is a weak Fano toric variety 𝑌𝑛,𝑟 that fits into the diagram

𝑋𝑃𝑛,𝑟
𝑋𝑄𝑛,𝑟

𝑌𝑛,𝑟
VGITblow-up

mirror symmetry

𝑋𝑃𝑛,𝑟 /𝐺𝑋𝑄𝑛,𝑟
/𝐺

𝑌𝑛,𝑟 /𝐺
blow-upVGIT

.

Note that, under mirror symmetry, the roles of the two maps in the diagram are reversed, suggesting
the relationship is analogous to a geometric transition. The variation of GIT is a toric variation of GIT.
While it is not a crepant resolution, the variation of geometric invariant theory quotient (VGIT) is a
K-equivalence: It preserves the anticanonical class in the sense that the polyhedron associated to the
anticanonical divisor is the same for each toric variety.

Smoothing

In the first subsection of §4, we prove Theorem 0.1 above, which we can now state more precisely. There
is a natural embedding of 𝑋𝑃𝑛,𝑟 into P(

𝑛
𝑟)−1, and it is in P(

𝑛
𝑟)−1 that the Gelfand–Cetlin toric degeneration

is seen. The embedding allows G to act not just on 𝑋𝑃𝑛,𝑟 but on the whole projective space. The heart
of the theorem is the remarkable characterization of 𝐻𝑛,𝑟 as precisely the maximal subgroup of G for
which the Grassmannian is an equivariant subvariety (see Theorem 4.9).

It is easy to construct a G-equivariant family 𝑍 ⊂ P(
𝑛
𝑟)−1 × C𝑚, with coefficients 𝑐𝑖 on the second

factor, such that the special fiber is 𝑋𝑃𝑛,𝑟 and the general fiber is Gr(𝑛, 𝑟). This is just the Gelfand–Cetlin
toric degeneration, where we extend the action of G to the second factor in such a way that the varying
Plücker relations are G-invariant. To obtain a smoothing of 𝑋𝑃𝑛,𝑟 /𝐺, we need to take the quotient of
this family by G. Fibers of the quotient family are

(𝑍 ∩ {𝑐𝑛𝑖 = 𝑏𝑖})/𝐺

for constants 𝑏𝑖 .

Theorem 0.5. The generic fiber of the quotient family is isomorphic to Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 .

We call this a smoothing, as the only singularities arise from the finite group quotient.
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We also describe a partial smoothing of 𝑌𝑛,𝑟 . Using the characterization of 𝑌𝑛,𝑟 as the blow-up of
the Gelfand–Cetlin degeneration, one can write down binomial equations cutting 𝑌𝑛,𝑟 out of an ambient
space obtained by blowing-up P(

𝑛
𝑟)−1 multiple times. This description allows us to reverse the Gelfand–

Cetlin degeneration to (partially) smooth to the proper transform of the Grassmannian in the blow-up.
We call the resulting variety Bl Gr(𝑛, 𝑟).

Our mirror proposal

Consider the equations ∑
𝜆∈A(𝑛,𝑟 )

𝑝𝑛𝜆 + 𝜓
∏

𝑝𝜇 frozen
𝑝𝜇 = 0. (2)

The product in the second term is over frozen Plücker coordinates which are indexed by partitions 𝜇which
are maximal rectangular partitions. For details and definitions, see §5. This equation defines a family of
Calabi–Yau hypersurfaces in Bl Gr(𝑛, 𝑟)/𝐻. This is a candidate mirror to a Calabi–Yau hypersurface in
Gr(𝑛, 𝑟). In §5, we give evidence towards this conjecture by showing Theorem 0.3 above.

Plan of the paper

In §1, we explain the special behaviour exhibited by high index Fano varieties under Batyrev–Borisov
mirror symmetry and introduce primitive duality. In §2, we specialize to the Gelfand–Cetlin toric
degeneration and describe the combinatorics of 𝑃𝑛,𝑟 and 𝑄𝑛,𝑟 . In §3, we describe the geometry relating
𝑋𝑃𝑛,𝑟 and 𝑋𝑄𝑛,𝑟 . In §4, we describe how to ‘unwind’ the toric degenerations after mirror symmetry: We
give smoothings for 𝑌𝑛,𝑟/𝐺 and 𝑋𝑃𝑛,𝑟 /𝐺. In §5, we introduce a candidate mirror of the anticanonical
Fermat Calabi–Yau in the Grassmannian.

1. Lattices and Batyrev–Borisov mirror symmetry

In this first section, we explore Batyrev–Borisov mirror symmetry for Calabi–Yau hypersurfaces in
high index Fano toric varieties. In this paper, we’ll only consider mirror symmetry for Calabi–Yau
hypersurfaces rather than complete intersections, so this amounts just to duality of reflexive polytopes.
We thus refer to 𝑋𝑃∨ as the Batyrev–Borisov dual of 𝑋𝑃 , where P is a reflexive polytope.

1.1. Background on toric varieties

1.1.1. Reflexive polytopes
Let P be a full-dimensional lattice polytope in a lattice M, containing the origin in its strict interior. Let
𝑁 = 𝑀∨ be the dual lattice. The dual of P is

𝑃∨ := {𝑣 ∈ 𝑁R | 〈𝑣, 𝑤〉 ≥ −1,∀𝑤 ∈ 𝑃}.

Definition 1.1. A polytope P is reflexive if 𝑃∨ is also a lattice polytope.

Vertices of reflexive polytopes are primitive lattice vectors.

Definition 1.2. A lattice polytope 𝑃 ⊂ 𝑀R is vertex spanning if the set of vertices of P span the lattice M.

Reflexive polytopes may or may not be vertex spanning. For example, among the 4,319 three-
dimensional reflexive polytopes, classified in [16], 4,075 are vertex spanning and 244 are not.
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1.1.2. Toric varieties from reflexive polytopes
Let P be a reflexive polytope, and let F be the spanning fan of P. Then a toric variety 𝑋𝑃 can be
constructed in the usual way from F. We say that this is toric variety associated to P (that is, our
convention uses spanning rather than normal fans).

1.1.3. Toric varieties from weights
In addition to polytopes and fans, toric varieties can also be constructed using GIT data. The GIT data
for a toric variety is

1. A torus 𝐾 � (C∗)𝑟 ,
2. Weights 𝐷1, . . . , 𝐷𝑚 of K defining an action K on C𝑚,
3. A stability condition 𝜔, which is a co-character of K.

The toric variety 𝑋𝜔 is then the GIT quotient C𝑚//𝜔𝐾 . For a description of how to pass between the
GIT description of a toric variety and the fan construction, see, for example, [6, Section 4].

1.1.4. Toric divisors
Let F be a fan in a lattice N, and let X denote the toric variety defined by F. A toric divisor D on X
defines a polyhedron 𝑃𝐷 in 𝑀R, where 𝑀 = 𝑁∨; see, for example, [7, Chapter 5]. This association
between toric divisors and polyhedra has the properties that:

◦ the polyhedron for 𝑛𝐷 is 𝑛𝑃𝐷 ; and
◦ if two divisors are linearly equivalent then their polyhedra are translates of each other.

By definition of duality, if P is a reflexive polytope, then 𝑃−𝐾𝑋𝑃
= 𝑃∨, where −𝐾𝑋𝑃 is the anticanonical

divisor given by the sum of the toric divisors on 𝑋𝑃 .

1.2. High-index Fano varieties

Throughout this section, we will fix a d-dimensional reflexive Fano polytope P giving rise (via the
spanning fan) to a Fano toric variety 𝑋𝑃 . We assume that 𝑋𝑃 has Fano index n. Let N denote the
ambient lattice of P and M the dual lattice.

Let 𝑀 be the sublattice of M spanned by the vertices of 𝑃−𝐾𝑋𝑃
. Let Q denote the lattice polytope in

𝑀 given by the preimage of 𝑃−𝐾𝑋𝑃
under the inclusion 𝑀 ⊂ 𝑀 .

Definition 1.3. The polytope Q is the primitive dual of P.

Remark 1.4. The primitive dual of a reflexive polytope is a reflexive polytope.

Example 1.5. The polytope of projective space is self-dual under primitive duality.

Remark 1.6. The lattice-change phenomenon here is reminiscent of duality for r-Gorenstein polytopes
[1] but differs from it because our polytopes are Gorenstein themselves (rather than a multiple of the
polytope being Gorenstein).

The inclusion of lattices 𝑀 ⊂ 𝑀 induces an action of the finite group 𝑀/𝑀 on 𝑋𝑄, and

𝑋𝑃∨ = 𝑋𝑄/(𝑀/𝑀).

We can extend this description of Batyrev–Borisov mirror symmetry to a series of mirror pairs, one for
each intermediate lattice. The inclusion of lattices 𝑀 ⊂ 𝑀 defines an inclusion 𝑁 ⊂ 𝑀

∨. We denote
𝑁 := 𝑀

∨. Any intermediate lattice 𝑀 ⊂ 𝑀1 ⊂ 𝑀 defines an intermediate dual lattice

𝑁 ⊂ 𝑁1 := 𝑀∨
1 ⊂ 𝑁.
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Proposition 1.7. Fix a lattice 𝑀 ⊂ 𝑀1 ⊂ 𝑀 , and let 𝑁1 be the lattice dual to 𝑀1. Then

𝑋𝑃/(𝑁1/𝑁) and 𝑋𝑄/(𝑀1/𝑀)

are a Batyrev–Borisov mirror pair.

Proof. Let 𝑃1 denote the image of P in 𝑁1. Then we can describe 𝑋𝑃1 as 𝑋𝑃/(𝑁1/𝑁). The dual 𝑃∨
1 has

ambient lattice 𝑀1. The vertices of 𝑃∨
1 are identified with that of Q under the inclusion 𝑀 ⊂ 𝑀1, so

𝑋𝑃∨
1

can be constructed as 𝑋𝑄/(𝑀1/𝑀). �

In the following proposition, we show that primitive duality is a duality, under the assumption that P
is vertex spanning.

Proposition 1.8. Let P be a reflexive, vertex-spanning polytope. Let Q be the primitive dual of P. Then
the primitive dual of Q is P.

Proof. The dual of the reflexive polytope Q is the image of P under the inclusion of lattice 𝑁 ⊂ 𝑁 . By
assumption, P is vertex spanning, and so its vertices generate N. It follows that P is the primitive dual
of Q. �

We can be more explicit given the following assumptions on P and 𝑋𝑃:

1. There is a Cartier toric divisor 𝐷𝑖 for some ray i such that 𝑛𝐷𝑖 is linearly equivalent to −𝐾𝑋𝑃 .
2. Both P and 𝑃𝐷0 are vertex-spanning polytopes.

The two polyhedra 𝑃𝑛𝐷𝑖 and 𝑃−𝐾𝑋𝑃
are translates of each other. Suppose that

𝑃𝑛𝐷𝑖 + ℎ = 𝑃−𝐾𝑋𝑃

for some lattice element ℎ ∈ 𝑀 .

Lemma 1.9. The lattice 𝑀 is generated by h and the generators of 𝑛𝑀 , and

𝑀/𝑀 � (Z/𝑛Z)𝑑−1.

Proof. As noted, 𝑃∨ = 𝑃−𝐾𝑋𝑃
. Fix a basis 𝑒1, . . . , 𝑒𝑑 of M. The vertices of 𝑃𝑛𝐷0 span the lattice given

by the basis 𝑛𝑒 𝑗 . It follows the lattice spanned by the vertices of 𝑃∨, that is the lattice 𝑀 , is the lattice
spanned by 𝑛𝑒1, . . . , 𝑛𝑒𝑑 , ℎ. Note that, as 0 is a vertex of 𝑃𝐷𝑖 , h is a vertex of the reflexive polytope 𝑃∨

and hence is a primitive lattice vector. It follows that

𝑀/𝑀 � (Z/𝑛Z)𝑑−1.

�

2. The Gelfand–Cetlin toric degeneration

The goal of this section is to recall the construction of the best-known toric degeneration of the
Grassmannian, first studied by Gonciulea–Lakshmibai [10]. This is a SAGBI basis degeneration of
the Grassmannian inside its Plücker embedding (see [19] for a good exposition). The polytope giving
the degenerate toric variety is a Gelfand–Cetlin polytope, so we will call this toric degeneration the
Gelfand–Cetlin toric degeneration. We begin by recalling the details of the construction, including a
description of both the polytope and the weight matrix of the toric variety 𝑋𝑃𝑛,𝑟 that forms the central
fiber. We then describe the primitive dual to the polytope 𝑃𝑛,𝑟 and its weight matrix.

https://doi.org/10.1017/fms.2022.98 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.98


8 T. Coates, C. Doran and E. Kalashnikov

2.1. Ladder diagrams

The polytope 𝑃𝑛,𝑟 can be described via a ladder diagram. Fix integers 𝑛 > 𝑟 > 0, and set 𝑘 := 𝑛 − 𝑟 .
Draw an 𝑟 × 𝑘 grid of boxes. For example, the grid for 𝑛 = 5, 𝑟 = 2 is

Draw vertices on the diagram as follows: at all internal crossing points and at the bottom-left and top-
right corner. Continuing this example, we obtain

We consider paths in this diagram between vertices, where travel is always up and to the right. This
describes a quiver: Vertices are given by the vertices in the ladder diagram, and there is an arrow from
vertex a to b for every path in the ladder diagram which does not pass through any other vertex. In the
example, the quiver is

Definition 2.1. We call this quiver the ladder quiver LQ, or LQ(𝑛, 𝑟) if n and r are not clear from
context. The set of vertices of the ladder quiver is denoted by LQ0 and the set of arrows by LQ1. We
denote the source and target maps by s, 𝑡 : LQ1 → LQ0. Let 0 ∈ LQ0 be the source vertex. Let LQ0
denote the set of vertices with the source vertex omitted.

Remark 2.2. We henceforth draw the ladder quiver as a ladder diagram, leaving the directions of the
arrows implicit.

A quiver moduli space is defined by assigning a vector space to each vertex of a quiver and choosing
a stability condition [15]. If we assign a one-dimensional vector space to each vertex of the ladder quiver
and choose a Fano stability condition, then we obtain a quiver moduli space that coincides with 𝑋𝑃𝑛,𝑟 :
See [14] for details.

The weight matrix of 𝑋𝑃𝑛,𝑟 is given by the adjacency matrix of the ladder quiver. More precisely, let
Z

LQ0 be the lattice with basis 𝑒𝑣 , 𝑣 ∈ LQ0. For the source vertex 0 ∈ LQ0, set 𝑒0 = 0. Then the weights
are given by 𝑑𝑎 := −𝑒𝑠 (𝑎) + 𝑒𝑡 (𝑎) .

It is often more convenient to write the weights in a different basis. We identify a basis element 𝑓𝑣
for each 𝑣 ∈ 𝐿𝑄0, as follows:

1. If all arrows with 𝑡 (𝑎) = 𝑣 have 𝑠(𝑎) = 0, then we set 𝑓𝑣 := 𝑑𝑎 = 𝑒𝑣 .
2. If there is a unique arrow such that both 𝑡 (𝑎) = 𝑣 and 𝑠(𝑎) ≠ 0, then we set 𝑓𝑣 := 𝑑𝑎.
3. Otherwise, v is the top-right corner of a square of vertices. Label the other vertices of the square as

shown:

𝑣0 𝑣1

𝑣2 𝑣

,
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then set

𝑓𝑣 := 𝑒𝑣 − 𝑒𝑣1 − 𝑒𝑣2 + 𝑒𝑣0 .

That is, 𝑓𝑣 is a sum
∑
𝑑𝑎 where a runs through the arrows drawn in the diagram:

𝑣0 𝑣1

𝑣2 𝑣

.

In the basis 𝑓𝑣 , 𝑣 ∈ 𝐿𝑄0, the weight matrix

𝐵 := [𝑏𝑣𝑎] (3)

has rows indexed by 𝑣 ∈ LQ0, columns indexed by 𝑎 ∈ LQ1, and all entries are either 1 or 0. There are
precisely n positive entries in each row. It is easy to identify visually the set

{𝑎 ∈ LQ1 : 𝑏𝑣𝑎 = 1}

for each v. We describe it by way of example.

Example 2.3. Let 𝑛 = 7 and 𝑟 = 3. For each nonsource vertex v, labeled in red, the arrows satisfying
𝑏𝑣𝑎 = 1 are the n arrows fully contained in the red part of the ladder quiver.

As one can see from the example, for a nonsource vertex v, 𝑏𝑣𝑎 = 1 if a is an arrow that either

◦ has a horizontal step above and in the same column as the horizontal arrow with target v or
◦ has a vertical step to the right and in the same row as the vertical arrow with target v.

In particular, every path from the bottom-left to top-right corner contains exactly one of the arrows in

{𝑎 ∈ LQ1 : 𝑏𝑣𝑎 = 1}

for each v.
A great deal of the geometry of the special fiber 𝑋𝑃𝑛,𝑟 can be read off the ladder quiver. For example,

collections of arrows give divisors. The toric variety 𝑋𝑃𝑛,𝑟 has Picard rank 1, and the Picard lattice is
generated by a divisor corresponding to a path from the bottom-left vertex to the top right; each such
path is linearly equivalent to the ample generator for the Picard lattice. This generator is the ample line
bundle that gives the embedding of 𝑋𝑃𝑛,𝑟 into P(

𝑛
𝑟)−1, where it is the special fiber of the Gelfand–Cetlin

degeneration. As such, we label it O(1). The space of sections of O(1) has dimension
(𝑛
𝑟

)
and basis
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indexed by paths from the bottom-left vertex to the top right. Fixing such a path p, we can consider the
area above p: This gives a partition 𝜆 which fits into an 𝑟 × 𝑘 box. We label the corresponding section
of O(1) by 𝑠𝜆. The Cox ring is a polynomial ring C[𝑦𝑎 : 𝑎 ∈ LQ1], and 𝑠𝜆 =

∏
𝑎∈𝑝 𝑦𝑎.

Partitions fitting into an 𝑟 × 𝑘 box also index Plücker coordinates. Given a partition 𝜆, there are n
horizontal and vertical steps in the corresponding path p, and the location of the vertical steps gives a
size-r subset of {1, . . . , 𝑛}.

Definition 2.4. We denote by P (𝑛, 𝑟) the set of partitions 𝜆 that fit into an 𝑟 × 𝑘 box. If 𝜆 ∈ P (𝑛, 𝑟), we
define 𝐼𝜆 to be the corresponding size-r subset of {1, . . . , 𝑛}.

Example 2.5. The ladder diagram for 𝐺𝑟 (7, 3) is below. The path in blue describes the partition (2, 1).
This indexes the Plücker coordinate 𝑝 {1,3,5}.

2.2. The polytope 𝑃𝑛,𝑟 and its primitive dual

To describe the Gelfand–Cetlin toric degeneration via a polytope, we draw another quiver dual to the
ladder quiver (this is the quiver that gives the head-over-tails mirror [9]). There is a vertex for the dual
quiver in each square of the ladder diagram, as well as two external vertices above and to the right of
the ladder diagram. Arrows move down and to the left, so we obtain:

Each arrow in the ladder quiver is crossed by precisely one arrow in the dual quiver.
Notice that there are 𝑘𝑟 interior vertices. Let M be an 𝑘𝑟-dimensional lattice, where we index the

basis 𝑒′𝑣 by interior vertices v in the dual quiver. Set 𝑒′𝑣 = 0 for external vertices v.

Definition 2.6. The polytope 𝑃𝑛,𝑟 has a vertex for each arrow in the dual quiver. The vertex for arrow a
is 𝑤𝑎 := −𝑒′

𝑠 (𝑎)
+ 𝑒′

𝑡 (𝑎)
∈ 𝑀 .

Sometimes, instead of the basis 𝑒′𝑣 it is convenient to use another basis, given by arrows. For each
internal vertex v in the dual quiver, we assign an arrow 𝑎𝑣 . If there is a horizontal arrow out of vertex
v, then this is 𝑎𝑣 ; otherwise, 𝑎𝑣 is the vertical arrow out of v. Then we set 𝑏𝑣 := 𝑤𝑎𝑣 . In the diagram
below, we highlight the arrows 𝑎𝑣 in red for 𝑛 = 7, 𝑟 = 3.

Let N be the lattice dual to M, with dual bases 𝑒′∨𝑣 and 𝑏∨𝑣 . We now construct the primitive dual of
𝑃𝑛,𝑟 , which we call 𝑄𝑛,𝑟 . By definition, this is the pullback of the anticanonical polytope of 𝑋𝑃𝑛,𝑟 to
the lattice spanned by its vertices. We construct it in three stages:
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1. Construct the polytope for the divisor given by the path corresponding to the empty partition.
2. Compare the n-th dilate of this polytope with anticanonical polytope of 𝑋𝑃𝑛,𝑟 .
3. Compute the sublattice generated by the vertices of the polytope.

Let 𝐷∅ denote the divisor corresponding to the empty partition. The path corresponding to the empty
set consists of exactly one arrow, which we denote 𝑎∅. Set

𝑚𝜆 :=
∑

𝜆 crosses 𝑎𝑣

𝑏∨𝑣 . (4)

Lemma 2.7. Let a be an arrow in the dual quiver that is not 𝑎∅ and 𝜆 a path that does not correspond
to ∅. Then

〈𝑚𝜆, 𝑤𝑎〉 = 1

if 𝜆 crosses a and is 0 otherwise.

Proof. To compute, we consider both vectors written in the 𝑏𝑣 or 𝑏∨𝑣 basis. The statement is obvious
if 𝑎 = 𝑎𝑣 for some v. Otherwise, we can assume that a is a vertical arrow with both source and target
internal vertices. The vector 𝑤𝑎 is expanded in the 𝑏𝑣 by following the path starting at 𝑠(𝑎), going all
the way to the right, then down, and then going in reverse back to 𝑡 (𝑎). Then 𝑤𝑎 is the sum of these 𝑏𝑣 ,
where 𝑏𝑣 has coefficient ±1, depending on whether it followed in the positive direction or in reverse.
Note that the number of arrows followed in the positive direction is one more than the number of arrows
in the reverse direction.

Suppose 𝜆 crosses a. After crossing a, it must cross exactly one of the arrows going in the positive
direction, so 〈𝑚𝜆, 𝑤𝑎〉 = 1. If 𝜆 does not cross a, it either avoids the arrows used in the expansion of 𝑤𝑎

entirely, or it crosses one arrow in the reverse direction and one arrow in the positive, so

〈𝑚𝜆, 𝑤𝑎〉 = 1 − 1 = 0.

For an illustration, consider the following example:

�

Corollary 2.8. The polytope 𝑃𝐷∅
corresponding to the divisor 𝐷∅ is the convex hull of the points{
𝑚𝜆 :=

∑
𝜆 crosses 𝑎𝑣

𝑏∨𝑣

					𝜆 ∈ P (𝑛, 𝑟)

}
.

Proof. One easy way to see the claim is to check that points in this polytope homogenize to sections of
𝐷∅. This is the case if 𝑚∅ is the origin and for all other partitions 𝜆:

◦ 〈𝑚𝜆, 𝑤𝑎∅〉 = −1,
◦ 〈𝑚𝜆, 𝑤𝑎〉 = 1 if a is in the path 𝜆 and 〈𝑚𝜆, 𝑤𝑎〉 = 0 otherwise.

The first condition is easy to check visually, and the second is precisely Lemma 2.7. �
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To compute 𝑃∨
𝑛,𝑟 , one must dilate the polyhedron 𝑃𝐷∅

by a factor of n and then perform a linear shift.
That is,

𝑃∨
𝑛,𝑟 = 𝑛𝑃𝐷∅

− ℎ,

where ℎ =
∑

𝑣 𝑏𝑣 . This can be seen by comparing the homogenization procedure of 𝑃𝑛𝐷∅
and 𝑃−

∑
𝐷𝑎 =

𝑃∨
𝑛,𝑟 . It follows that the vertices of 𝑃∨

𝑛,𝑟 are

𝑛 · 𝑚𝜆 − ℎ.

Finally, we note that the lattice 𝑀 generated by ℎ, {𝑛𝑏𝑣 : 𝑣 an interior vertex} is the lattice generated
by the vertices of 𝑃∨

𝑛,𝑟 . The preimage of 𝑃∨
𝑛,𝑟 under the inclusion of lattice 𝑀 ⊂ 𝑀 is by definition the

primitive dual𝑄𝑛,𝑟 . This is a Fano reflexive polytope with
(𝑛
𝑟

)
vertices, labeled by partitions 𝜆 ∈ P (𝑛, 𝑟).

We denote the vertices of 𝑄𝑛,𝑟 as 𝑣𝜆, 𝜆 ∈ P (𝑛, 𝑟).

2.3. Weights of 𝑋𝑄𝑛,𝑟

As 𝑄𝑛,𝑟 is a Fano reflexive polytope, we can consider the Fano toric variety 𝑋𝑄𝑛 ,𝑟 . We will describe a
spanning set of the kernel of the ray sequence (a basis for the kernel would give the rows of a weight
matrix). There is a relation for each m-covering of the ladder quiver LQ.

Definition 2.9. An m-covering of the ladder quiver LQ is a collection of partitions such that the collection
of associated paths in the ladder quiver contains each arrow precisely m times.

The 1-coverings are given by crossing diagrams.

Definition 2.10. A crossing diagram of LQ𝑛,𝑟 is an assignment of X or O to each internal vertex of
LQ𝑛,𝑟 .

For example, the following is a crossing diagram for LQ5,2.

X O

A crossing diagram defines a set of n partitions in P (𝑛, 𝑟). Each partition corresponds to a path in the
ladder quiver. A path 𝜆 is a path for a given crossing diagram if

◦ For every vertex labeled X, if the path 𝜆 contains this vertex, it goes straight through this vertex.
◦ For every vertex labeled O, if the path 𝜆 contains this vertex, it makes a 90◦ turn at this vertex.

If we continue the same example as above, the paths are ∅, , , , . Notice that the empty
partition and the maximal partition (𝑘𝑟 ) are paths for every crossing diagram. Together, the paths of a
fixed crossing diagram cover every arrow in the ladder quiver precisely once, so they are a 1-covering.

Proposition 2.11. Let {𝜆𝑖} be the 𝑚𝑛 paths of an m-covering of a ladder quiver. Then
∑𝑚𝑛
𝑖=1 𝑣𝜆𝑖 = 0.

These relations span all relations amongst the 𝑣𝜆.

Proof. To show the first part of the proposition, note that, though the 𝑣𝜆 are vectors in the sublattice 𝑀
spanned by the vertices of 𝑄𝑛,𝑟 , it is equivalent to show that

𝑚𝑛∑
𝑖=1

𝑖(𝑣𝜆𝑖 ) = 0, that is,
𝑚𝑛∑
𝑖=1

(𝑛𝑚𝜆𝑖 − ℎ) = 0.

Here, i is the inclusion 𝑖 : 𝑀 → 𝑀 .
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Recall that 𝑚𝜆 :=
∑
𝜆 crosses 𝑎𝑣 𝑏

∨
𝑣 . Since the collection of paths {𝜆𝑖} together cover each arrow in LQ

exactly m times, it follows that

𝑚𝑛∑
𝑖=1

𝑚𝜆𝑖 =
∑
𝑣

𝑏∨𝑣 = 𝑚ℎ,

which is equivalent to the desired equality.
For the second part of the proposition, suppose there is some collection {𝜇1, . . . , 𝜇𝑘 } and coefficients

𝑎𝑖 satisfying

𝑘∑
𝑖=1

𝑎𝑖𝑣𝜇𝑖 = 0.

Note that we can assume, by adding multiples of the relations obtained from the crossing diagrams if
necessary, that all the 𝑎𝑖 are nonnegative. In fact, if we allow partitions to appear multiple times, we can
assume that the 𝑎𝑖 = 1.

As above, we convert this to an equality in N, where we see that

𝑘∑
𝑖=1

(𝑛𝑚𝜇𝑖 − ℎ) = 0.

It follows that k is a multiple of n and

𝑘∑
𝑖=1

𝑚𝜇𝑖 =
𝑘

𝑛
ℎ.

If we reinterpret this as a statement about ladder diagrams, it says that, for each basis arrow 𝑎𝑣 in the
dual quiver, precisely 𝑘/𝑛 of the paths 𝜇𝑖 cross 𝑎𝑣 .

In fact, this is enough to show that precisely 𝑘/𝑛 of the paths 𝜇𝑖 cross any arrow in the dual quiver.
To see this, first consider a nonbasis arrow a, 𝑎 ≠ 𝑎∅. It is a vertical arrow with internal source and
target (in the dual quiver). There is a rectangle of arrows in the dual diagram, with vertical arrow a on
the left side, and all other arrows (on the boundary) basis arrows. For example, this is such a rectangle
(where a is the green arrow and the red arrows are—as before—the 𝑎𝑣 ):

In general, there will be zero or more black vertical arrows in between the green vertical arrow and the
red vertical arrow. Each of the red arrows is crossed 𝑘/𝑛 times, and suppose a is crossed s times. If the
width of the rectangle is t arrows, this means there are 𝑠 + 𝑡𝑘/𝑛 paths 𝜇𝑖 entering the rectangle, and
(𝑡 + 1)𝑘/𝑛 paths exiting the rectangle. So we can conclude that 𝑠 = 𝑘/𝑛. Therefore, the collection of
arrows 𝜇𝑖 cover the ladder diagram, omitting the arrow dual to 𝑎∅, exactly 𝑘/𝑛 times.

Finally, now suppose that 𝑎∅ is crossed r times by the paths— that is, r of the 𝜇𝑖 are the path
corresponding to the empty set. The remaining arrows do not cross 𝑎∅, but they cover the rest of the
diagram 𝑘/𝑛 times so that means that there are (𝑛 − 1)𝑘/𝑛 of them. Since 𝑟 + (𝑛 − 1)𝑘/𝑛 = 𝑘 , we
conclude that 𝑟 = 𝑘/𝑛 as required. So the set {𝜇𝑖} is a 𝑘/𝑛-covering. �
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This proposition characterizes a (redundant form of) the weight matrix.

Remark 2.12. We expect that the relations from 1-coverings span all of the relations but did not manage
to prove this and do not require it in what follows.

2.4. Grassmannian twins

One of the more interesting examples of Batyrev–Borisov mirror pairs obtained from lattice inclusions
is the quintic twin [8]. This is a hypersurface in a quotient of projective space whose Picard–Fuchs
equations are identical to that of the quintic. The quotient is obtained by taking the action on P4 of the
group 𝜇5 of fifth roots of unity given by

𝜁 · [𝑧0 : · · · : 𝑧4] = [𝑧0 : 𝜁 𝑧1 : 𝜁2𝑧2 : 𝜁3𝑧3 : 𝜁4𝑧4] .

Let 𝑃̃ denote the polytope of the quotient, a lattice polytope in 𝑀̃ , and P the polytope of projective
space, a lattice polytope in M. Then the group action corresponds to a lattice inclusion 𝑖 : 𝑀 ⊂ 𝑀̃ . The
fact that the Picard–Fuchs equations are identical follows from the fact that 𝑖−1(𝑃̃) is isomorphic to P.

The perspective on mirror symmetry for high-index Fano varieties described in this paper also
suggests that the quintic twin can be generalized to Grassmannians, as in the following example.

Example 2.13. Consider the action of the group 𝜇5 on Mat(2 × 5) given by multiplication on the right
by diagonal matrices with entries (1, 𝜁 , . . . , 𝜁4). This extends to an action on the ambient space of
the Plücker embedding, and hence also on the Gelfand–Cetlin degeneration. Let 𝑃̃2,5 denote the lattice
polytope corresponding to the quotient by K of the Gelfand–Cetlin degeneration. Denote the ambient
lattice of 𝑃2,5 as M and the ambient lattice of 𝑃̃2,5 as 𝑀̃ . As for projective space, there is an inclusion
of lattices 𝑖 : 𝑀 ⊂ 𝑀̃ and 𝑖−1(𝑃̃2,5) � 𝑃2,5. The toric variety associated to 𝑃̃2,5 is a toric degeneration
of Gr(2, 5)/𝐾 .

Conjectures that form part of the Corti–Golyshev Fanosearch program [5] would imply that the quan-
tum periods of Gr(2, 5) and Gr(2, 5)/𝐾—which are generating functions for the genus-zero Gromov–
Witten invariants of the two spaces—can be computed as classical periods of Laurent polynomials f and
𝑓 with Newton polytopes 𝑃2,5 and 𝑃̃2,5, respectively. (The statement about Gr(2, 5) has been proven by
Marsh–Rietsch [18].) Since f and 𝑓 differ only by changing the lattice of exponents, they have the same
classical period. Thus, we expect that the quantum periods of Gr(2, 5) and Gr(2, 5)/𝐾 should coincide.
In other words, their anticanonical Calabi–Yau sections exhibit a ‘twin phenomenon’.

3. The Gelfand–Cetlin degeneration and variation of GIT

The Grassmannian degenerates to the toric variety 𝑋𝑃𝑛,𝑟 , to which Batyrev–Borisov duality can be
applied. The primitive dual 𝑄𝑛,𝑟 of 𝑃𝑛,𝑟 has been defined and constructed in the previous section. The
Batyrev–Borisov mirror of 𝑋𝑃𝑛,𝑟 is 𝑋𝑄𝑛,𝑟 /𝐺, and the Batyrev–Borisov mirror of 𝑋𝑄𝑛,𝑟 is 𝑋𝑃𝑛,𝑟 /𝐺,
where 𝐺 � (Z/𝑛Z)𝑟 (𝑛−𝑟 )−1. The action of the group is determined by the lattice inclusions that define
the primitive dual. In this section, we will explore the relationship between 𝑃𝑛,𝑟 and 𝑄𝑛,𝑟 in more detail.
We will see that there is a weak Fano toric variety 𝑌𝑛,𝑟 that fits into the diagrams

𝑋𝑃𝑛,𝑟
𝑋𝑄𝑛,𝑟

𝑌𝑛,𝑟
VGITblow-up

mirror symmetry

𝑋𝑃𝑛,𝑟 /𝐺𝑋𝑄𝑛,𝑟
/𝐺

𝑌𝑛,𝑟 /𝐺
blow-upVGIT
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∅

Figure 1. The labeling for 𝑛 = 7, 𝑟 = 3.

Remark 3.1. The VGITs here are K-equivalences, and so 𝑋𝑃𝑛,𝑟 and 𝑋𝑄𝑛,𝑟 are related by (a natural
generalization of) a geometric transition. In the Calabi–Yau threefold case, if X and Y are related by a
geometric transition, then it is expected that their mirrors 𝑋∨ and 𝑌∨ are also related by a geometric
transition, with the roles of the birational contraction and the smoothing reversed. We see the same
phenomenon here.

Recall that the vertices of 𝑃𝑛,𝑟 are indexed by arrows in the ladder quiver. The vertices of 𝑄𝑛,𝑟 are
indexed by partitions 𝜆 ∈ P (𝑛, 𝑟). As before, set 𝑘 := 𝑛 − 𝑟 . We will need to consider a set of special
partitions in P (𝑛, 𝑟). Define:

1. 𝜇𝑎,𝑏 = (𝑘, . . . , 𝑘︸���︷︷���︸
𝑎 times

, 𝑏), where 0 ≤ 𝑎 ≤ 𝑟 and 0 ≤ 𝑏 ≤ 𝑘 .

2. 𝜈𝑎,𝑏 to be the partition such that its transpose is 𝜈𝑡𝑎,𝑏 = (𝑟, . . . , 𝑟︸��︷︷��︸
𝑎 times

, 𝑏), where 0 ≤ 𝑎 ≤ 𝑘 and 0 ≤ 𝑏 ≤ 𝑟 .

We will assign a partition 𝜇𝑎,𝑏 or 𝜈𝑎,𝑏 to each arrow in the dual quiver. This is equivalent to assigning
such a partition to each arrow in the ladder quiver since each arrow in the dual quiver crosses precisely
one arrow in the ladder quiver. It is easiest to see how the arrows are assigned in an example—see
Figure 1.

The following rules describe the assignment in general:

◦ To the arrow with source an external vertex, we assign the maximal partition (𝑘𝑟 ). To the arrow with
target an external vertex, we assign ∅.

◦ There are r rows of horizontal arrows with internal vertices, with each row containing 𝑘−1 arrows. To
the 𝑎𝑡ℎ arrow (from the right) in the 𝑏𝑡ℎ row (from the bottom) of horizontal arrows, we assign 𝜈𝑎,𝑏−1.

◦ There are k columns of vertical arrows, with each row containing 𝑟 − 1 arrows. To the 𝑎𝑡ℎ arrow
(from the bottom) in the 𝑏𝑡ℎ column (from the right) of vertical arrows, we assign 𝜇𝑎−1,𝑏 .

This defines a map from the arrows of the ladder quiver to P (𝑛, 𝑟), which we call 𝜙 : LQ1 → P (𝑛, 𝑟).

Definition 3.2. A partition 𝜆 ∈ P (𝑛, 𝑟) is an arrow partition if it is in the image of 𝜙 : LQ1 → P (𝑛, 𝑟),
that is, if it is of the form:

1. 𝜈𝑎,𝑏−1, for 1 ≤ 𝑎 ≤ 𝑘 and 1 ≤ 𝑏 ≤ 𝑟 − 1.
2. 𝜇𝑎−1,𝑏 for 1 ≤ 𝑎 ≤ 𝑟 and 1 ≤ 𝑏 ≤ 𝑘 − 1.
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The set of arrow partitions is denoted A(𝑛, 𝑟). Its complement in P (𝑛, 𝑟) is labeled B(𝑛, 𝑟); partitions
in B(𝑛, 𝑟) are called excess partitions.

There are 2(𝑟 − 1) (𝑛 − 𝑟 − 1) + 𝑛 arrow partitions.

Example 3.3. Let 𝑟 = 3, 𝑛 = 6. Then

B(𝑛, 𝑟) = { , , , , , }.

Lemma 3.4. Consider a path in the dual quiver between the two external vertices. The set of partitions
given by the labels of the arrows in the path are the set of partitions associated to some crossing diagram.

Proof. We say that two partitions are crossing-diagram compatible if they can both appear in the same
crossing diagram. Fix a dual arrow a, and consider all arrows in the dual quiver strictly to the right and
below a (i.e., all arrows that could appear after a in a path on the dual quiver). Suppose a is vertical so
that 𝜙(𝑎) is of the form

The two outgoing dual arrows from 𝑡 (𝑎) have the labels drawn in orange and yellow below and hence
are each crossing-diagram compatible with 𝜙(𝑎).

,

Since all other arrows below and to the right of a have labels obtained by iteratively removing single
boxes and complete rows or columns from these two, they are all also crossing-diagram compatible with
𝜙(𝑎). The same analysis shows the same statement for a horizontal. If we now take a path between the
two external vertices of the dual quiver, it is clear that all of the labels along the path are contained in the
same crossing diagram, and since there are n of them, they are precisely the set of partitions associated
to this crossing diagram. �

The polytopes 𝑃𝑛,𝑟 and 𝑄𝑛,𝑟 are closely related. Recall that the vertices of 𝑄𝑛,𝑟 are given by 𝑣𝜆,
𝜆 ∈ P (𝑛, 𝑟).

Theorem 3.5. Let 𝑄𝑛,𝑟 be the polytope obtained by deleting the vertices of 𝑄𝑛,𝑟 associated to the excess
partitions, that is, 𝑄𝑛,𝑟 is the convex hull of {𝑣𝜆 : 𝜆 ∈ A(𝑛, 𝑟)}. Then 𝑃𝑛,𝑟 and 𝑄𝑛,𝑟 are isomorphic as
lattice polytopes.

Proof. To prove the statement, it suffices to show

1. that 𝑄𝑛,𝑟 is a Fano polytope (that is, it has primitive vertices and the origin is in its strict interior);
2. that both polytopes have vertices that span the ambient lattice;
3. that the associated toric varieties 𝑋𝑃𝑛,𝑟 and 𝑋𝑄𝑛,𝑟

have the same weight matrix.

We will first show a claim that will help with all three statements.
Since𝑄𝑛,𝑟 is obtained from𝑄𝑛,𝑟 by forgetting some vertices, relations between vertices in the former

are just given by relations between vertices in the latter that do not involve any of the forgotten vertices.
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We will describe a crossing diagram—which in particular is a relation between the vertices of 𝑄𝑛,𝑟—for
each nonsource vertex in the ladder quiver, such that all associated paths are in A(𝑛, 𝑟).

Claim 3.6. Fix a nonsource vertex v. Then the set {𝜙(𝑎) : 𝑏𝑣𝑎 = 1} is precisely the set of paths for some
crossing diagram.

Proof of claim. We have described the set {𝜙(𝑎) : 𝑏𝑣𝑎 = 1} in Example 2.3. It will be more convenient
if we dualize the picture given there: The highlighted vertex (if internal) becomes a square in the dual
quiver, and the highlighted arrows correspond to highlighted dual arrows. In the case of the external
vertex, no square is highlighted. The diagrams then become

, , ,

, , ,

and this generalizes easily to arbitrary n and r. The important thing to see from this picture is that the
collection of dual arrows satisfying 𝑏𝑣𝑎 = 1 forms a path between the external vertices of the dual
quiver. Therefore, by Lemma 3.4, the set of labels are the partitions for a crossing diagram. �

Claim 3.6 implies that the weight matrix of 𝑋𝑄𝑛,𝑟
contains all of the rows of the weight matrix 𝑋𝑃𝑛,𝑟 ,

although there may be additional rows (such as those covering from k-coverings for 𝑘 ≥ 2).
We need now to show that 𝑄𝑛,𝑟 is a Fano polytope with vertices that span the lattice: We already

know that this holds for 𝑃𝑛,𝑟 . Note that the vertices of 𝑄𝑛,𝑟 are primitive lattice vectors, as they are also
vertices of the reflexive polytope 𝑄𝑛,𝑟 . For every vertex 𝑣𝜆 of 𝑄𝑛,𝑟 , there is at least one crossing diagram
of the form in Claim 3.6 which has 𝜆 as a path, and this implies that there exist positive 𝑐𝜆 such that

0 =
∑

𝜆∈A(𝑛,𝑟 )

𝑐𝜆𝑣𝜆.

Thus, 0 lies in the strict interior of 𝑄𝑛,𝑟 . To see that the vertices span the lattice, note that it suffices to
check that the 𝑚𝜆, 𝜆 ∈ A(𝑛, 𝑟) span the lattice N: This follows from the explicit description of the 𝑚𝜆

in equation (4). We leave the details here to the reader. It follows that 𝑄𝑛,𝑟 is an 𝑟 (𝑛 − 𝑟)-dimensional
Fano polytope, with the same number of vertices as 𝑃𝑛,𝑟 . Therefore, there can be no more relations
between the vertices then those already found—we have already found 𝑉 − 𝑟 (𝑛 − 𝑟) relations, where V
is the number of vertices of 𝑄𝑛,𝑟 , and we know these relations are linearly independent because they
are also relations for 𝑃𝑛,𝑟—so the weight matrices are the same. �

Since we are only interested in studying 𝑃𝑛,𝑟 up to isomorphism, we can replace 𝑃𝑛,𝑟 with 𝑄𝑛,𝑟 and
view 𝑃𝑛,𝑟 as a polytope in N with vertices indexed by 𝜆 ∈ A(𝑛, 𝑟).

Theorem 3.5 tells us that𝑄𝑛,𝑟 is obtained from 𝑃𝑛,𝑟 by adding vertices. This has the effect of blowing
up the spanning fan 𝐹𝑃𝑛,𝑟 of 𝑃𝑛,𝑟 along the missing rays (in some order). Label the partitions in B(𝑛, 𝑟)
as 𝜆1, . . . , 𝜆𝑚, and set 𝑣𝑖 := 𝑣𝜆𝑖 ∈ 𝑁 . Blowing up the spanning fan of 𝑃𝑛,𝑟 (viewed as a polytope in 𝑁R)
repeatedly at 𝑣1, . . . , 𝑣𝑚, we obtain a new fan, and hence a new toric variety, which was called 𝑌𝑛,𝑟 in
the introduction.
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Theorem 3.7. There is a variation of GIT from the weak Fano variety 𝑌𝑛,𝑟 to 𝑋𝑄𝑛,𝑟 . The anticanonical
polytope of these two toric varieties are equal, and they have isomorphic Cox rings. In particular,
Γ(O−𝐾𝑌𝑛,𝑟

) = Γ(O−𝐾𝑋𝑄𝑛,𝑟
).

Proof. It follows from Theorem 3.5 that the GIT description of 𝑌𝑛,𝑟 and 𝑋𝑄𝑛,𝑟 has the same weight
matrix—that is, the fans have the same rays. The difference lies entirely in the choice of stability
condition, which gives the different fan structure. The dual of the anticanonical polytope is the polytope
spanned by primitive generators of the rays of the fan, so the anticanonical polytope of both toric
varieties agree. In particular since this polyhedron is convex, we have that the anticanonical bundle of
𝑌𝑛,𝑟 is nef; that is, 𝑌𝑛,𝑟 is weak Fano. The Cox ring of a toric variety depends only on the rays of the
fan, so the last two claims follow immediately. �

4. Smoothing

In this section, we will discuss (partial) smoothings of 𝑋𝑃𝑛,𝑟 /𝐺 and of 𝑌𝑛,𝑟/𝐺.

4.1. Smoothing 𝑋𝑃𝑛,𝑟 /𝐺

Although the group action of G on 𝑋𝑃𝑛,𝑟 looks very toric and unconnected to the Grassmannian,
remarkably, when smoothing, we obtain a very natural group action on Gr(𝑛, 𝑟), which generalizes the
Greene–Plesser group action for projective space. Recall that

𝐻̃𝑛,𝑟 = 〈(𝜁1, . . . , 𝜁𝑛) | 𝜁
𝑛
𝑖 = 1, (

∏
𝜁𝑖)

𝑟 = 1〉 (5)

acts naturally on Mat(𝑟 × 𝑛) and descends to an effective action of 𝐻𝑛,𝑟 on Gr(𝑛, 𝑟). The group 𝐻𝑛,𝑟 is
the quotient

𝐻̃𝑛,𝑟/((𝜁, . . . , 𝜁) ∈ 𝐻̃𝑛,𝑟 ).

4.1.1. The action of G on 𝑋𝑃𝑛,𝑟

It follows from Lemma 1.9 that 𝐺 � (Z/𝑛Z)𝑟 𝑘−1, where, as before, 𝑘 = 𝑛− 𝑟 . The group action of G on
𝑋𝑃𝑛,𝑟 can be described as a quotient of a larger group action onC | LQ1 | , recalling that 𝑋𝑃𝑛,𝑟 = C |𝐿𝑄1 |//𝑇 ,
𝑇 = (C∗) |LQ0 | . The group

𝐺̃ := {(𝜓𝑎)𝑎∈LQ1 | 𝜓𝑛
𝑎 = 1,

∏
𝑎

𝜓𝑎 = 1}

acts naturally via SL(| LQ1 |) on C | LQ1 | . The action descends to give an effective action of the quotient

𝐺 = 𝐺̃/(𝑇 ∩ 𝐺̃)

on the toric variety 𝑋𝑃𝑛,𝑟 . To compute the intersection, we view both T and 𝐺̃ as diagonal sub-
groups of GL(| LQ1 |). Recall from equation (3) that the weight matrix of the toric variety is
𝐵 := [𝑏𝑣𝑎]𝑣 ∈LQ0 ,𝑎∈LQ1

. The intersection 𝑇 ∩ 𝐺̃ is generated by

{(𝜓𝑏𝑣𝑎 )𝑎 | 𝜓𝑛 = 1, 𝑣 ∈ LQ0} ⊂ 𝐺̃. (6)

Remark 4.1. One way to see that this group action agrees with the action described in Lemma 1.9
is to convert the fan description of 𝑋𝑄∨

𝑛,𝑟
to a GIT description. Recall that the vertices of 𝑋𝑄∨

𝑛,𝑟
are

indexed by arrows of the ladder diagram and that 𝑄∨
𝑛,𝑟 can be obtained from the polytope of a divisor

of 𝑋𝑄𝑛,𝑟 , namely the divisor associated to the empty partition. Let 𝑚𝑎, 𝑎 ∈ LQ1, denote the vertices of
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the polytope of this divisor. Then the vertices of 𝑄∨
𝑛,𝑟 are given by 𝑤𝑎 := 𝑛𝑚𝑎 − ℎ, where h is a (fixed)

primitive lattice vector and 𝑎 ∈ LQ1.
The rays of the fan of 𝑋𝑄∨

𝑛,𝑟
do not generate the ambient lattice. To convert to the GIT description,

we must add virtual rays—rays that appear in no cones of the fan—so that all the rays together generate
the lattice. It suffices to add all of the 𝑚𝑎 as virtual rays. Then in addition to the weights of 𝑋𝑃𝑛,𝑟 , we
also obtain gradings coming from the relations

𝑤𝑎 + ℎ − 𝑛𝑚𝑎 = 0.

Choosing an appropriate stability condition allows us to translate these gradings into quotient gradings,
which exactly give the action of 𝐺̃ on C | LQ1 | .

4.1.2. The action of G on P(
𝑛
𝑟)−1

The embedding of 𝑋𝑃𝑛,𝑟 into P(
𝑛
𝑟)−1 allows us to extend the action of G to P(

𝑛
𝑟)−1. Label the coordinates

of P(
𝑛
𝑟)−1 by 𝑝𝜆, 𝜆 ∈ P (𝑛, 𝑟). These are of course the Plücker coordinates—recall that they can be

indexed either by partitions in P (𝑛, 𝑟) or by size-r subsets of {1, . . . , 𝑛} (Definition 2.4). For a partition
𝜆 ∈ P (𝑛, 𝑟), 𝐼𝜆 denotes the corresponding subset.

The embedding is given by the
(𝑛
𝑟

)
sections of O(1) on 𝑋𝑃𝑛,𝑟 , that is,∏

𝑎∈𝜆

𝑦𝑎, 𝜆 ∈ P (𝑛, 𝑟).

The group 𝐺̃ acts on the coordinate 𝑝𝜆 by multiplication by
∏

𝑎∈𝜆 𝜓𝑎 . Either by observing that it is
true by construction of the embedding or by explicitly checking, it is easy to see that the action of 𝐺̃
descends to an action of G on P(

𝑛
𝑟)−1. That is, elements of intersection 𝑇 ∩ 𝐺̃ act by scaling.

4.1.3. Degenerate Plücker relations
The toric variety 𝑋𝑃𝑛,𝑟 is cut out of P(

𝑛
𝑟)−1 by degenerate Plücker relations [3].

Definition 4.2. Let ≺ be the usual partial order on partitions/Plücker coordinates: for 𝜆, 𝜎 ∈ P (𝑛, 𝑟),
𝜆 ≺ 𝜎 if 𝜆𝑖 ≤ 𝜎𝑖 for all i. Here, we use zeroes to extend any partition in P (𝑛, 𝑟) to a length-r partition.

Following [3], there is a relation for every incomparable pair of partitions 𝜆, 𝜎:

𝑝𝜎 𝑝𝜆 − 𝑝𝜎∧𝜆𝑝𝜎∨𝜆.

Here, 𝜎∧𝜆 is the minimal partition 𝜇 satisfying 𝜆, 𝜎 ≺ 𝜇 and 𝜎∨𝜆 is the maximal partition 𝜈 satisfying
𝜈 ≺ 𝜆, 𝜎.

Example 4.3. We give an example for 𝐺𝑟 (7, 3). The partitions 𝜎 = (1, 1, 1) and 𝜆 = (4, 2) are
incomparable. We draw them in blue and green, respectively, below.
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The partition 𝜎 ∨ 𝜆 is drawn in red and 𝜎 ∧ 𝜆 in yellow.

Lemma 4.4. The degenerate Plücker relations are homogeneous with respect to the induced action of
G on P(

𝑛
𝑟)−1.

Proof. Let 𝜎, 𝜆 be an incomparable pair. The set of arrows contained in the union of 𝜎 and 𝜆 is the
same as the set of arrows contained in the union of 𝜎 ∨ 𝜆 and 𝜎 ∧ 𝜆. Therefore, G acts with the same
weights on 𝑝𝜎 𝑝𝜆 and 𝑝𝜎∧𝜆𝑝𝜎∨𝜆. �

4.1.4. The group preserving the Plücker relations
Consider the Plücker relation for Gr(4, 2):

𝑝∅𝑝 − 𝑝 𝑝 + 𝑝 𝑝 ,

which degenerates to

0 · 𝑝∅𝑝 − 𝑝 𝑝 + 𝑝 𝑝 .

The second equation is homogeneous under the action of G, but the first is not. However, it is homoge-
neous with respect to a subgroup of G.

Definition 4.5. Let 𝐺ℎ be the subgroup of G that preserves the Grassmannian, that is, 𝐺ℎ is the largest
subgroup of G such that all Plücker relations are homogeneous with respect to this action.

Before describing 𝐺ℎ precisely, let’s describe it heuristically. Binomial Plücker relations are of the
form:

𝑝𝜎 𝑝𝜆 +
∑

𝑎𝛼,𝛽 𝑝𝛼𝑝𝛽 = 0.

For a complete description of these relations, see [19]. A term 𝑝𝛼𝑝𝛽 appears with nonzero coefficient
only if the multisets 𝐼𝜎 ∪ 𝐼𝜆 and 𝐼𝛼 ∪ 𝐼𝛽 agree. In other words, the terms that appear in the sum must
just be rearrangements of the indices of 𝐼𝜎 and 𝐼𝜆. The Plücker relations are not homogeneous with
respect to the action of G because this action feels the paths of the partitions, which is more precise than
the location of the vertical steps (which gives the underlying subset). We are looking for a subgroup 𝐺ℎ

whose action depends only on the indices. We will show that 𝐺ℎ is isomorphic to 𝐻𝑛,𝑟 . The first step is
to define a map from 𝐻𝑛,𝑟 to G.

Consider the following labeling of the vertical steps of a ladder diagram:

1

2

2

3

3

4

4

5

The labeling allows assigning a subset of {1, . . . , 𝑛} to an arrow or path in the ladder diagram by
recording the labels along the arrow or path. For example, the path corresponding to the partition in
the Gr(2, 5) diagram has labeling {1, 3}. Some arrows are associated to the empty set—in this example,
the internal horizontal arrow has no labels.
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The following remark is key to establishing the next two lemmas.

Remark 4.6. The labeling of a path 𝜆 is 𝐼𝜆.

Use the labeling to define a morphism

Ψ̃ : 𝐻̃𝑛,𝑟 → 𝐺̃, (𝜁𝑖)
𝑛
𝑖=1 ↦→

�����
∏

𝑗 a label
of 𝑎

𝜁 𝑗

�����𝑎∈LQ1

.

Lemma 4.7. The map Ψ̃ descends to an injective map 𝜓 : 𝐻𝑛,𝑟 → 𝐺.

Proof. Recall that G acts on P(
𝑛
𝑟)−1. We know that 𝑇 ∩ 𝐺̃ acts on P(

𝑛
𝑟)−1 by scaling, so it suffices to

show that, for ℎ ∈ 𝐻̃𝑛,𝑟 ,

ℎ = (𝜁, . . . , 𝜁) ⇔ Ψ̃(ℎ) acts by scaling on P(
𝑛
𝑟)−1.

Note that

Ψ̃((𝜁𝑖)
𝑛
𝑖=1) · [𝑝𝜆 : 𝜆 ∈ P (𝑛, 𝑟)] =

[(∏
𝑗∈𝐼𝜆

𝜁 𝑗

)
𝑝𝜆 : 𝜆 ∈ P (𝑛, 𝑟)

]
.

Since 𝐼𝜆 runs over all size r subsets of {1, . . . , 𝑛}, the only way to ensure that∏
𝑗∈𝐼𝜆

𝜁 𝑗 =
∏
𝑗∈𝐼𝜇

𝜁 𝑗

for all 𝜆, 𝜇 is for 𝜁𝑖 = 𝜁 𝑗 for all i, j. �

Lemma 4.8. The image of 𝐻𝑛,𝑟 under Ψ preserves the Grassmannian, that is,

Ψ(𝐻𝑛,𝑟 ) ⊆ 𝐺ℎ .

Proof. Consider a binomial Plücker relation:

𝑝𝜎 𝑝𝜆 +
∑

𝑎𝛼,𝛽 𝑝𝛼𝑝𝛽 = 0,

where the term 𝑝𝛼𝑝𝛽 appears with nonzero coefficient only if the multisets 𝐼𝜎 ∪ 𝐼𝜆 and 𝐼𝛼 ∪ 𝐼𝛽 are
equal. A group element Ψ̃((𝜁𝑖)) acts on 𝑝𝛼𝑝𝛽 by multiplication by∏

𝑗∈𝐼𝛼

𝜁 𝑗
∏
𝑗∈𝐼𝛽

𝜁 𝑗

which is equal to ∏
𝑗∈𝐼𝜆

𝜁 𝑗
∏
𝑗∈𝐼𝜎

𝜁 𝑗 .

Therefore, the relation is homogeneous with respect to the Ψ̃(𝐺̃) action, and hence the Ψ(𝐺) action. �
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The main combinatorial result of this section is the next theorem.

Theorem 4.9. There is an isomorphism 𝐺ℎ � 𝐻𝑛,𝑟 .

Proof. The map Ψ defines an isomorphism 𝐻𝑛,𝑟 → Ψ(𝐻𝑛,𝑟 ). We will show that Ψ(𝐻𝑛,𝑟 ) = 𝐺ℎ; by
Lemma 4.8, Ψ(𝐻𝑛,𝑟 ) ⊆ 𝐺ℎ . We will show the other direction by demonstrating that, for every [𝑔] ∈ 𝐺ℎ

with lift 𝑔 ∈ 𝐺̃, the 𝐺̃∩𝑇-orbit of g has nonempty intersection with Ψ̃(𝐻̃𝑛,𝑟 ). We will use two collections
of arrows in the proof. The first collection 𝐶1 is described via the following example: It is the set of
𝑛 = 9 arrows that are fully contained in the blue part of the diagram.

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

5

6

7

8

6

7

8

9

In general, there are n arrows in 𝐶1. We label them, starting at the bottom-left corner, by 𝑎1
1, . . . , 𝑎

1
𝑛.

This collection is chosen so that if (𝜓𝑎) ∈ Ψ̃(𝐻̃𝑛,𝑟 ), then the 𝜓𝑎, 𝑎 ∉ 𝐶1 are determined by the 𝜓𝑎,
𝑎 ∈ 𝐶1. This is because the 𝜓𝑎, 𝑎 ∈ 𝐶1, are

𝜁1, 𝜁1𝜁2, . . . , 𝜁1 · · · 𝜁𝑟 , 𝜁𝑟+1, 𝜁𝑟+2, . . . , 𝜁𝑛−1, 𝜁𝑛

so that the exponent matrix of the map Ψ composed with the projection 𝜋 : (𝜓𝑎)𝑎∈LQ1 ↦→ (𝜓𝑎)𝑎∈𝐶1

is an invertible matrix in GL(𝑛,Z). This means that, for (𝜓𝑎)𝑎 ∈ Ψ̃(𝐻̃𝑛, 𝑟), we can express each 𝜓𝑎,
𝑎 ∈ LQ1, as a function of the 𝜓𝑎, 𝑎 ∈ 𝐶1. Denote this function by 𝜉𝑎, which we view as a function on
𝐺̃ that depends only on the 𝜓𝑎 for 𝑎 ∈ 𝐶1. Then the maps 𝜉𝑎 provide a way of measuring how far away
an element of 𝐺̃ is from being in the image of Ψ̃(𝐻̃𝑛,𝑟 ):

𝑔 = (𝜓𝑎)𝑎 ∈ Ψ̃(𝐻̃𝑛,𝑟 ) ⇔ 𝜉𝑎 (𝑔) = 𝜓𝑎 for all 𝑎 ∈ LQ1 .

The second collection of arrows 𝐶2 is drawn in green in the example below. It is disjoint from 𝐶1.

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

5

6

7

8

6

7

8

9

Taking the target map from 𝐶2 → LQ0 gives an injection.

Claim 4.10. The 𝑇 ∩ 𝐺̃ orbit of any 𝑔 ∈ 𝐺̃ contains another group element ℎ = (𝜓𝑎)𝑎∈LQ1 satisfying,
for 𝑎 ∈ 𝐶2:

𝜓𝑎 = 𝜉𝑎 (ℎ). (7)

In other words, along 𝑎 ∈ 𝐶2, the relations we need for h to be an element of Ψ̃(𝐻̃𝑛,𝑟 ) are satisfied.

Proof of claim. There are two types of arrows in 𝐶2: horizontal arrows and arrows containing a vertical
step, which we call vertical for simplicity. Each of the arrows in 𝐶2 picks out a column in the weight
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matrix [𝑏𝑣𝑎] of 𝑋𝑃𝑛,𝑟 . If we order the arrows in 𝐶1 from left to right and top to bottom, the resulting
submatrix of [𝑏𝑣𝑎] is the identity matrix along the vertical arrows and then upper triangular for the rest
with 1s on the diagonal.

If a is horizontal, then the equation that h must satisfy is

𝜓𝑎 = 1.

Recall that the generators of 𝑇 ∩ 𝐺̃ are given by the rows of the weight matrix of the ladder quiver—
there is a row for each vertex, and the entries are the 𝑏𝑣𝑎; see equation (6). Since the submatrix is upper
triangular, we can use the generators of 𝑇 ∩ 𝐺̃ corresponding to the vertices 𝑡 (𝑎), a horizontal, to move
g within its orbit to a group element satisfying the equations we need for horizontal 𝑎 ∈ 𝐶2. Call this
element 𝑔′ = (𝜓 ′

𝑎).
We now focus on the vertical arrows. Note that none of the generators of 𝑇 ∩ 𝐺̃ associated to the

vertical arrows act nontrivially on the 𝜓𝑎, 𝑎 ∈ 𝐶2, a horizontal. Label the vertical arrows of 𝐶2 from
bottom to top as 𝑎2

1, . . . , 𝑎
2
𝑟−1. Then the equations that 𝑔′ must satisfy are

𝜓𝑎2
𝑖
= 𝜓𝑎1

𝑖+1
/𝜓𝑎1

𝑖
.

To move g within its orbit so that it satisfies these equations, we start with the last vertical arrow, 𝑎2
𝑟−1.

If we act with the generator associated to 𝑡 (𝑎2
𝑟−1), we can set the 𝑎2

𝑟−1-th coordinate to

𝜓 ′

𝑎1
𝑟
/𝜓 ′

𝑎1
𝑟−1

.

Note that that generator acts nontrivially on the 𝑎1
𝑟 and 𝑎1

𝑟−1 coordinates—however, it acts on the same
weight with each, so we now have a group element which satisfies the 𝑎2

𝑟1 equation and the horizontal
equations. If we move one step lower, the same thing happens: Our group element acts trivially on the
ratios 𝜓 ′

𝑎1
𝑟
/𝜓 ′

𝑎1
𝑟−1

and 𝜓 ′

𝑎1
𝑟−1

/𝜓 ′

𝑎1
𝑟−2

. Continuing downwards, eventually we find h as required. �

Let’s rephrase what we’ve done so far: For every [𝑔] ∈ 𝐺, we have identified a particular lift 𝑔 ∈ 𝐺̃
satisfying

𝜓𝑎 = 𝜉𝑎 (𝑔) for all 𝑎 ∈ 𝐶2. (8)

To complete the proof, it is enough to show that if [𝑔] ∈ 𝐺ℎ , then the special lift g constructed above is
in Ψ̃(𝐻̃𝑛,𝑟 ). Since 𝐺̃ ∩ 𝑇 acts trivially on the Plücker coordinates, both g and [𝑔] preserve the Plücker
relations. In particular, g preserves certain three-term Plücker relations: We will define such a relation
for every internal vertex in the ladder quiver.

For every internal vertex 𝑣 ∈ LQ0, fix an incomparable pair 𝜆𝑣 , 𝜎𝑣 which crosses at v and agrees
outside of the 2× 2 box centered at v. (The argument will not depend on what happens outside the 2× 2
box centered at v.) For example, here are some pairs with v highlighted in red and the box shaded in gray.

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

5

6

7

8

6

7

8

9

,
1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

5

6

7

8

6

7

8

9
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Fix an interior vertex v. Locally about vertex v, 𝜆𝑣 and 𝜎𝑣 look like:

𝑖

𝑖 + 1

𝑖 + 1

𝑖 + 2

𝑖 + 2

𝑖 + 3

v (9)

By definition, 𝜎𝑣 ∧ 𝜆𝑣 and 𝜎𝑣 ∨ 𝜆𝑣 agree with 𝜆𝑣 , 𝜎𝑣 outside of the box centered at v, and locally at v
they look like

𝑖

𝑖 + 1

𝑖 + 1

𝑖 + 2

𝑖 + 2

𝑖 + 3

v

The incomparable pair 𝜎𝑣 , 𝜆𝑣 gives rise to a three-term Plücker relation:

𝑝𝛼𝑣 𝑝𝛽𝑣 − 𝑝𝜆𝑣 𝑝𝜎𝑣 + 𝑝𝜎𝑣∧𝜆𝑣 𝑝𝜎𝑣∨𝜆𝑣 = 0.

The partitions 𝛼𝑣 , 𝛽𝑣 are characterized by agreeing with 𝜎, 𝜆 outside of the box centered at v, and
locally at v they look like

𝑖

𝑖 + 1

𝑖 + 1

𝑖 + 2

𝑖 + 2

𝑖 + 3

v (10)

One can easily read off from this picture that this relation is homogeneous with respect to the Ψ(𝐻𝑛,𝑟 )-
action. Let 𝑆𝑣 be the collection of arrows of LQ whose intersection with the 2 × 2 box in equation (9)
is contained in the blue or green highlighted paths in equation (9). Let 𝑇𝑣 be the collection of arrows of
LQ whose intersection with the 2 × 2 box in equation (10) is contained in the blue or green highlighted
paths in equation (10). If 𝑔 = (𝜓𝑎) ∈ 𝐺̃ preserves this relationship, then∏

𝑎∈𝑆𝑣

𝜓𝑎 =
∏
𝑎∈𝑇𝑣

𝜓𝑎 . (11)

Now, fix some [𝑔] ∈ 𝐺ℎ with lift 𝑔 ∈ 𝐺̃ constructed as in equation (8). The Plücker relation constructed
for any v is homogeneous for 𝑔 = (𝜓𝑎), so equation (11) holds for all v.

Consider the following diagram, which highlights both 𝐶1 and 𝐶2.

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

5

6

7

8

6

7

8

9

Consider the top-left interior vertex 𝑣0. Note that there is precisely one arrow 𝑎0 in 𝑆𝑣0 ∪ 𝑇𝑣0 that is not
contained in 𝐶 := 𝐶1 ∪ 𝐶2. Using equation (11) for 𝑣0 one can see that 𝜓 ′

𝑎0 is determined by the 𝜓𝑎,
𝑎 ∈ 𝐶—and so, in fact, is determined by the 𝜓𝑎, 𝑎 ∈ 𝐶1. Abusing notation, replace C by 𝐶 ∪ {𝑎0}. Now,
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consider the vertex 𝑣1 directly below 𝑣0, and note that there is precisely one arrow 𝑎1 in 𝑆𝑣1 ∪𝑇𝑣1 that is
not contained in (the new) C. Applying equation (11) for 𝑣1, we see that 𝜓 ′

𝑎1 is determined by the 𝜓𝑎,
𝑎 ∈ 𝐶, and hence by 𝜓 ′

𝑎, 𝑎 ∈ 𝐶1. Applying this argument repeatedly, moving down columns from left
to right, we conclude that g is uniquely characterized by:

◦ the values (𝜓𝑎)𝑎∈𝐶1

◦ equation (8)
◦ preserving the Plücker relations.

We now use the 𝜓𝑎, 𝑎 ∈ 𝐶1, to define an element of Ψ̃(𝐻̃𝑛,𝑟 ) and deduce that this element agrees with
g. Writing the relation

∏
𝑎∈LQ1

𝜓𝑎 = 1 in terms of 𝜓𝑎, 𝑎 ∈ 𝐶1, we see that

𝑟∏
𝑖=1

(
𝜓𝑎2

𝑖

𝜓𝑎2
𝑖−1

)𝑟 𝑛∏
𝑖=𝑟+1

𝜓𝑟
𝑎2
𝑖

= 1.

So (𝜉𝑎 ((𝜓𝑎)𝑎∈𝐶1)) defines an element of Ψ̃(𝐻̃𝑛,𝑟 ) ⊂ 𝐺̃ which agrees with g along 𝑎 ∈ 𝐶1 and satisfies
the other two conditions. It follows that 𝑔 = 𝜉 ((𝜓𝑎)𝑎∈𝐶1), and in particular 𝑔 ∈ Ψ̃(𝐻̃𝑛,𝑟 ). Finally, we
conclude that [𝑔] ∈ Ψ(𝐻𝑛,𝑟 ) as claimed. �

To translate this combinatorial statement to geometry, we extend the G-action from 𝑋𝑃 to the family
which gives the toric degeneration. The degeneration is given by the Plücker relations. To illustrate, we
describe the Gr(5, 2) example:

Example 4.11. When 𝑛 = 5, 𝑟 = 2, the family is given by the five polynomials

𝑐𝑝12𝑝34 − 𝑝13𝑝24 + 𝑝14𝑝23,

𝑐𝑝12𝑝35 − 𝑝13𝑝25 + 𝑝15𝑝23,

𝑐𝑝12𝑝45 − 𝑝14𝑝25 + 𝑝15𝑝24,

𝑐𝑝13𝑝45 − 𝑝14𝑝35 + 𝑝15𝑝34,

𝑐𝑝23𝑝45 − 𝑝24𝑝35 + 𝑝25𝑝34,

that is, this is a family in P9 × C, where the coordinate on the second factor is c. The fiber over 𝑐 = 0 is
the degenerate toric variety 𝑋𝑃5,2 , and the generic fiber is isomorphic to the Grassmannian Gr(5, 2). To
make this family G-equivariant, we need to extend the action of G to the coefficient c. Label the vertices
of the ladder diagram as shown:

0

1 2

3

There are nine arrows in the ladder quiver, which we label

𝑎0,1, 𝑎
′
0,1, 𝑎0,2, 𝑎0,3, 𝑎

′
0,3, 𝑎1,2, 𝑎1,3, 𝑎2,3, 𝑎

′
2,3,

where 𝑎𝑖, 𝑗 is an arrow from 𝑖 → 𝑗 , and we add a ′ to the lower arrow if there are two such arrows.
Consider the first equation above. The weight of the first monomial is 𝜓𝑎0,3𝜓𝑎0,2𝜓𝑎2,3 ; the weight of both
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the second and third monomial is 𝜓𝑎0,1𝜓𝑎1,3𝜓𝑎′0,1
𝜓𝑎1,2𝜓𝑎2,3 , so for c to be equivariant in this equation, it

should have weight

(𝜓𝑎0,3𝜓𝑎0,2𝜓𝑎2,3 )
−1𝜓𝑎0,1𝜓𝑎1,3𝜓𝑎′0,1

𝜓𝑎1,2𝜓𝑎2,3 .

However, as we go through the remaining five relations, the required weight for c changes, so we are
forced to introduce multiple coefficients. Consider the polynomials

𝑐1𝑝12𝑝34 − 𝑝13𝑝24 + 𝑝14𝑝23,

𝑐2𝑝12𝑝35 − 𝑝13𝑝25 + 𝑝15𝑝23,

𝑐3𝑝12𝑝45 − 𝑝14𝑝25 + 𝑝15𝑝24,

𝑐4𝑝13𝑝45 − 𝑝14𝑝35 + 𝑝15𝑝34,

𝑐5𝑝23𝑝45 − 𝑝24𝑝35 + 𝑝25𝑝34.

We view the toric degeneration as a family in 𝑍 ⊂ P9 × C5, where the second factor has coordinates
(𝑐𝑖), and the equations cutting out Z are above. Computing the required weights of 𝑐1, . . . , 𝑐5, we note
that 𝑐1 has the same weight as 𝑐2 and 𝑐4 has the same weight as 𝑐5. The variable 𝑐3 has the weight of
the monomial 𝑐1𝑐4. To get rid of the excess variables, we add the equations

𝑐1 = 𝑐2, 𝑐4 = 𝑐5, 𝑐3 = 𝑐1𝑐4.

Consider the quotient 𝑍/𝐺. The special fiber—when 𝑐𝑖 = 0—is 𝑋𝑃𝑛,𝑟 /𝐺. Now, consider a generic
fiber of Z. The equation 𝑐𝑖 = 1 is not homogeneous for the G-action; however, we can consider the
disconnected subvariety 𝑍1 cut out of Z by the equations 𝑐5

𝑖 = 1, 𝑖 ∈ {1, . . . , 5}. The subgroup of G that
preserves a given component of 𝑍1 is precisely 𝐻5,2. The number of components of 𝑍1 is 25. The group
𝐺/𝐻5,2 has order 25. Comparing group sizes, it follows that 𝑍1/𝐺 = Gr(5, 2)/𝐻5,2.

The situation is slightly more complicated in the general case. As in the example, 𝑋𝑃 is the special
fiber of a family of varieties

𝑍̃ ⊂ P(
𝑛
𝑟)−1 × C𝑚

𝜋
−→ C𝑚. (12)

We denote points in C𝑚 as 𝑐. The coordinates of 𝑐 give coefficients for all monomials in the Plücker
relations that disappear under the degeneration, and 𝑍̃𝑐 is 𝑍̃ ∩ 𝜋−1(𝑐). If 𝑐1 := (1, . . . , 1) and 𝑐0 :=
(0, . . . , 0), then 𝑍̃𝑐1

= Gr(𝑛, 𝑟) and 𝑍̃𝑐0
= 𝑋𝑃𝑛,𝑟 . The generic fiber is isomorphic to Gr(𝑛, 𝑟).

We can extend the action of G to P(
𝑛
𝑟)−1 × C𝑚 → C

𝑚 by defining the action on C𝑚 to be the one
that ensures 𝑍̃ is preserved by G. Note that 𝐺ℎ is the subgroup of G that acts trivially on C𝑚. As in
Example 4.11, in general some of these variables are redundant. In fact, the proof of Theorem 4.9 shows
that we need only the special 2 × 2 three-term Plücker relations associated to each internal vertex in the
ladder quiver. More precisely, the proof shows that if 𝑔 ∈ 𝐺 preserves these relations, then it in fact
preserves all Plücker relations. Let 𝑑𝑣 , where v is an internal vertex, denote the these coefficients. Then
for any other coefficient c, the weight of c under the G-action can be expressed as a ratio of the 𝑑𝑣 .
Whatever these ratios are, they give a collection of polynomial equations between the 𝑐𝑖 , which we call

P1. (13)

Before we can define the family we want, we need to cut down by one last equation, which is nontrivial
when gcd(𝑛, 𝑟) > 1. (It did not occur in our earlier example because 5 and 2 are coprime.) This will be
a G-equivariant equation, of course, and will take some time to describe.
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Definition 4.12. Fix integers 𝑛 > 𝑟 > 0, and set 𝑘 = 𝑛 − 𝑟 and 𝑑 = gcd(𝑛, 𝑟). Then there exist s, t such
that 𝑟 = 𝑠𝑑 and 𝑘 = 𝑡𝑑. The ladder diagram LQ𝑛,𝑟 can be subdivided into an 𝑠 × 𝑡 grid of 𝑑 × 𝑑 squares.
The set of d-diagonal vertices in LQ0 is the set of 𝑣 ∈ LQ0 such that v lies on the diagonal of one of the
𝑑 × 𝑑 squares. To a d-diagonal vertex v lying in a 𝑑 × 𝑑 square B, we associate an incomparable pair
of partitions 𝜎𝐵,𝑣 , 𝜇𝐵,𝑣 . As before, we only specify these partitions locally, insisting that they agree
outside of B. The partitions are specified by the statement that their union contains both the vertical and
horizontal line (contained in B) passing through the vertex v and that both partitions pass through the
bottom-left and top-right vertices of B. We draw the two partitions below.

𝑣

𝜎𝐵,𝑣

𝜇𝐵,𝑣

We denote by 𝜎𝐵 and 𝜇𝐵 the two partitions that agree with 𝜎𝐵,𝑣 and 𝜇𝐵,𝑣 away from B and follow the
border of B:

𝜎𝐵𝜇𝐵

Lemma 4.13. Let v be a d-diagonal vertex in the ladder diagram LQ𝑛,𝑟 . Then there is a Plücker relation
that contains both 𝑝𝜎𝐵 𝑝𝜇𝐵 and 𝑝𝜎𝐵,𝑣 𝑝𝜇𝐵,𝑣 .

Proof. Suppose that v is the ath d-diagonal vertex in the box B, and suppose that the label on the
bottom-left vertical step of B is i. Then 𝐼 (𝜎𝐵,𝑣 ) differs from 𝐼 (𝜇𝐵,𝑣 ) only in the range 𝑀 := { 𝑗 | 𝑖 ≤
𝑗 ≤ 𝑖 + 2𝑑 − 1}. It is easy to see that

𝐼 (𝜎𝐵,𝑣 ) ∩ 𝑀 = {𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑎 − 1, 𝑖 + 𝑎 + 𝑑, . . . , 𝑖 + 2𝑑 − 1},

and

𝐼 (𝜇𝐵,𝑣 ) ∩ 𝑀 = {𝑖 + 𝑎, . . . , 𝑖 + 2𝑎 − 1, 𝑖 + 2𝑎, . . . , 𝑖 + 𝑎 + 𝑑 − 1}.

If 𝐼 (𝜎𝐵,𝑣 ) = {𝑠1 < · · · < 𝑠𝑟 } and 𝐼 (𝜇𝐵,𝑣 ) = {𝑡1 < · · · < 𝑡𝑟 }, then choose p such that 𝑠𝑝 = 𝑖 + 𝑎 − 1.
So we can obtain 𝐼 (𝜎𝐵) and 𝐼 (𝜇𝐵) from 𝐼 (𝜎𝐵,𝑣 ) and 𝐼 (𝜇𝐵,𝑣 ) by swapping 𝑠𝑝+1 < · · · < 𝑠𝑑−𝑎+𝑝
with 𝑡𝑝+1 < · · · < 𝑡𝑑−𝑎+𝑝 . This implies that there is a Plücker relation where both terms appear. For
completeness, we construct a relation using [17, equation 3.1.3] in the case when 2𝑎 ≥ 𝑑 and in the
case where 2𝑎 < 𝑑.

In each case, we will identify subsets of indices 𝐽𝑠 = {𝑠𝑖1 , . . . , 𝑠𝑖𝑙 } and 𝐽𝑡 = {𝑡 𝑗1 , . . . , 𝑡 𝑗𝑟−𝑙 }. Let S be
the symmetric group permuting the symbols in the union 𝐽𝑠 ∪ 𝐽𝑡 , and 𝑆1 × 𝑆2 the subgroup of S that
preserves 𝐼 (𝜎𝐵,𝑣 ) and 𝐼 (𝜇𝐵,𝑣 ). For 𝜔 ∈ 𝑆/(𝑆1 × 𝑆2), set

𝜔(𝐼 (𝜎𝐵,𝑣 )) = {𝜔(𝑠𝑖) : 𝑠𝑖 ∈ 𝐽𝑠} ∪ {𝑠𝑖 : 𝑠𝑖 ∉ 𝐽𝑠},

and

𝜔(𝐼 (𝜇𝐵,𝑣 )) = {𝜇(𝑡𝑖) : 𝑡𝑖 ∈ 𝐽𝑡 } ∪ {𝑡𝑖 : 𝑡𝑖 ∉ 𝐽𝑡 }.
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Then for any choice of 𝐽𝑠 and 𝐽𝑡 , the following equation is a Plücker relation:∑
𝜔∈𝑆/𝑆1×𝑆2

sign(𝜔)𝑝𝜔 (𝐼 (𝜎𝐵,𝑣 )) 𝑝𝜔 (𝐼 (𝜇𝐵,𝑣 )) .

When 2𝑎 ≥ 𝑑, we choose

𝐽𝑠 = {𝑖 + 𝑎 + 𝑑, . . . , 𝑖 + 2𝑑 − 1}, 𝐽𝑡 = {𝑖 + 𝑘, . . . , 𝑖 + 2𝑎 − 1} ∪ 𝑀.

When 2𝑎 < 𝑑, we choose

𝐽𝑠 = {𝑖, . . . , 𝑖 + 𝑎 − 1} ∪ 𝑀, 𝐽𝑡 = {𝑖 + 2𝑘, . . . , 𝑖 + 𝑑 + 𝑎 − 1}.

Note that for each choice the terms 𝑝𝜎𝐵,𝑣 𝑝𝜇𝐵,𝑣 and 𝑝𝜎𝐵 𝑝𝜇𝐵 appear with nonzero coefficient as claimed.
�

From the proof of Theorem 4.9, the weight of the ratio 𝑝𝜎𝐵,𝑣 𝑝𝜇𝐵,𝑣 /(𝑝𝜎𝐵 𝑝𝜇𝐵 ) can be expressed as
a ratio of the weights of 𝑑𝑤 , where w ranges over the internal vertices. Let 𝑓𝐵,𝑣 (𝑑𝑤 ) be this ratio.

Lemma 4.14. The group G acts trivially on the product (
∏

(𝐵,𝑣) 𝑓𝐵,𝑣 )
𝑛
𝑑 , where (𝐵, 𝑣) ranges over

internal diagonal vertices in the 𝑑 × 𝑑 boxes B of the ladder diagram.

Proof. When 𝑑 = 1, the statement is trivial. To prove the lemma, we will show that the weight of∏
(𝐵,𝑣) 𝑓𝐵,𝑣 is an order 𝑛/𝑑 element of G. We will describe this element precisely. Let 𝑟 = 𝑠𝑑 and

𝑛 − 𝑟 = 𝑡𝑑. We have divided the ladder diagram into a 𝑠 × 𝑡 grid of 𝑑 × 𝑑 boxes. Consider the collection
C of arrows entirely contained in the border of the 𝑑 × 𝑑 boxes. Then we will show that the weight of∏

(𝐵,𝑣) 𝑓𝐵,𝑣 is ∏
𝑎∈𝐶

𝜁−𝑑𝑎 . (14)

This is an order 𝑛/𝑑 element of G as desired. The easiest way to see that this weight is correct is to
visualize the weights using paths in the ladder diagram. We will indicate a weight by drawing paths in
the ladder diagram, possibly in reverse, and allowing multiple arrows. Each arrow appearing contributes
a weight of 𝜁𝑏+−𝑏−𝑎 , where 𝑏+ is the number of times a appears in the correct direction and 𝑏− is the
number of times it appears in the reverse direction. For example, the weight of 𝑓𝐵,𝑣 is pictured as

𝑣

Now, consider the weight of the product of 𝑓𝐵,𝑣 where B is fixed:
∏

𝑣 𝑓𝐵,𝑣 . Pictorially, this corresponds
to overlaying the diagrams for each of internal vertices v. Note that the arrows going in a positive
direction have no intersection except on the border, and every such arrow is covered exactly once.
Depending on where B is located in the ladder diagram, there could be vertices along the borders of B
or not, which changes how many times each arrow appears. If there are no vertices on a particular edge,
then there are 𝑑 −1 arrows in the reverse direction along that edge (one for each internal vertex). If there
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are border vertices, then the number of arrows follows a pattern as below (where −𝑘 indicates k arrows
in the reverse direction of the arrow directly below the label):

0

−1

.

.

.

−𝑑 + 1 0

.

.

.

−𝑑 + 2

−𝑑 + 1

0 −1 · · · −𝑑 + 1

−𝑑 + 1 −𝑑 + 2 · · · 0

The weight of the product over all boxes B—that is, the weight of
∏

(𝐵,𝑣) 𝑓𝐵,𝑣—is read off by combining
all of the 𝑑 × 𝑑 boxes to cover the ladder diagram. It is immediate from the above diagram that this gives
us the weight ∏

𝑎∈𝐶

𝜁−(𝑑−1)
𝑎

∏
𝑎∉𝐶

𝜁𝑎 .

Since
∏

𝑎 𝜁𝑎 = 1, this shows that the weight is equation (14) as desired. �

The lemma states that the action of G on (
∏

(𝐵,𝑣) 𝑓𝐵,𝑣 )
𝑛
𝑑 is trivial, so the equation (

∏
(𝐵,𝑣) 𝑓𝐵,𝑣 )

𝑛
𝑑 = 1

is homogeneous. If we wish, since the left-hand side is a monomial, we can clear the denominator to
get a polynomial equation. We call the set containing this single polynomial equation

P2. (15)

This is the last equation we need to define our family.

Definition 4.15. Let 𝑍 ⊂ P(
𝑛
𝑟)−1 × 𝐵

𝜋
−→ 𝐵 denote the family cut out by the following three types of the

equations:

1. the Plücker relations,
2. the polynomial equations P1 from equation (13),
3. the polynomial equation P2 from equation (15).

The last two equations cut out 𝐵 ⊂ C𝑚.

By construction, Z is a G-invariant algebraic variety. We use notation as for the family 𝑍̃ in equation
(12). Note that the fiber 𝑍𝑐0

is invariant under the G action, but 𝑍𝑐1
is not. However, since the action

of G on on C𝑚 is of order n, the disconnected variety 𝑍̂𝑏 := 𝑍 ∩ 𝜋−1 ({(𝑐1, . . . , 𝑐𝑚) ∈ 𝐵 : 𝑐𝑛𝑖 = 𝑏𝑖}) is
G-invariant for any 𝑏 ∈ C𝑚. We will consider the quotient family 𝑍/𝐺 → 𝐵/𝐺.

The next result gives the precise sense in which Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 is a smoothing of 𝑋𝑃𝑛,𝑟 /𝐺.

Theorem 4.16. Suppose b is generic (i.e., 𝑏𝑖 ≠ 0 for all i). Then 𝑍̂𝑏/𝐺 is a fiber of the quotient family
𝑍/𝐺 → 𝐵/𝐺, and 𝑍̂𝑏/𝐺 � Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 .
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Proof. For simplicity, we will set 𝑏𝑖 = 1 for all i and denote 𝑍̂𝑏/𝐺 by 𝑍̂1/𝐺. The variety 𝑍̂1 is
disconnected, with components we can label 𝐴1 � · · · � 𝐴𝑠 . One component, which we label 𝐴1, is the
Grassmannian Gr(𝑛, 𝑟). The quotient can be studied in two steps:

𝑍̂1/𝐺 = (
⊔

𝐴𝑖/𝐺ℎ)/(𝐺/𝐺ℎ).

Note that the stabilizer of any element of
⊔

𝐴𝑖/𝐺ℎ under the 𝐺/𝐺ℎ-action is trivial, as only 𝐺ℎ

preserves the components. Thus, the size of an orbit of a point in
⊔

𝐴𝑖/𝐺ℎ is

|𝐺/𝐺ℎ | = 𝑛𝑟 (𝑛−𝑟 )−1/(𝑛𝑛−2𝑑) = 𝑛𝑟 (𝑛−𝑟 )−𝑛𝑛/𝑑 = 𝑛(𝑟−1) (𝑛−𝑟−1)−1𝑛/𝑑.

In particular, the number of components s is at least 𝑛(𝑟−1) (𝑛−𝑟−1)−1𝑛/𝑑. On first glance, it may appear
that 𝑍̂1 has 𝑛𝑚 components, but in fact, the equations from P1 and P2 cut this down considerably. The
equations from P1 mean that we can regard all coefficients 𝑐𝑖 as a function of the coefficients 𝑑𝑣 , where
v is an internal vertex of the ladder quiver, so there are at most 𝑛(𝑟−1) (𝑛−𝑟−1) components. The single
equation in P2 is of the form 𝑓 𝑛/𝑑 , which means that in fact the largest possible number of components
is 𝑛(𝑟−1) (𝑛−𝑟−1)−1𝑛/𝑑. So

𝑠 = 𝑛(𝑟−1) (𝑛−𝑟−1)−1𝑛/𝑑.

This means that the residual 𝐺/𝐺ℎ action identifies each of the components 𝐴𝑖/𝐺ℎ , so

𝑍̂1/𝐺 = 𝐴1/𝐺ℎ � Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 .

This also shows that the orbit of a point in the base of the family Z is precisely the set {(𝑐1, . . . , 𝑐𝑚) ∈
𝐵 : 𝑐𝑛𝑖 = 𝑏𝑖}. �

4.2. Smoothing 𝑌𝑛,𝑟 and 𝑌𝑛,𝑟/𝐺

Recall from Theorem 3.7 that there is a toric variety 𝑌𝑛,𝑟 characterized as a blow-up of 𝑋𝑃𝑛,𝑟 obtained
by adding the rays required to take 𝑃𝑛,𝑟 to 𝑄𝑛,𝑟 . The variety𝑌𝑛,𝑟 is of interest as it fits into the following
diagrams:

𝑋𝑃𝑛,𝑟
𝑋𝑄𝑛,𝑟

𝑌𝑛,𝑟
VGITblow-up

mirror symmetry

𝑋𝑃𝑛,𝑟 /𝐺𝑋𝑄𝑛,𝑟
/𝐺

𝑌𝑛,𝑟 /𝐺
blow-upVGIT

𝑌𝑛,𝑟 is the toric variety associated to the fan obtained from the spanning fan of 𝑃𝑛,𝑟 by blowing up at
the rays 𝑣𝜆 ∈ 𝑁 , for 𝜆 ∈ B(𝑛, 𝑟) a redundant partition. This depends on the order in which the blow-up
is completed.

Each 𝑣𝜆 lies in the interior of an intersection of maximal cones of the spanning fan of 𝑃𝑛,𝑟 . Maximal
cones of this fan are also indexed by partitions, but not just those in B(𝑛, 𝑟): There is a maximal cone
𝐶𝜇 for each 𝜇 ∈ P (𝑛, 𝑟) corresponding to the section of O(1) indexed by 𝜇.

Definition 4.17. For each 𝜆 ∈ B(𝑛, 𝑟), let Cones(𝜆) := {𝜇 ∈ P (𝑛, 𝑟) : 𝑣𝜆 ∈ 𝐶𝜇}, the collection of all
maximal cones of the spanning fan of 𝑃𝑛,𝑟 that contain 𝑣𝜆. Fix an order on B(𝑛, 𝑟). Let Bl P denote the
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iterated blow-up of P(
𝑛
𝑟)−1 at the linear subspaces

𝑍 (𝑝𝜇 : 𝜇 ∈ Cones(𝜆)),

where we iterate over 𝜆 ∈ B(𝑛, 𝑟). We define Bl Gr(𝑛, 𝑟) to be the iterated blow-up of Gr(𝑛, 𝑟) at these
same subspaces.

Consider the Cox ring of of Bl P. In addition to the 𝑝𝜇, 𝜇 ∈ P (𝑛, 𝑟), there is a generator 𝑥𝜆 for each
𝜆 ∈ B(𝑛, 𝑟) graded by the Cartier divisor corresponding to the ray added when blowing up at the 𝜆th step.
Now, instead of blowing up 𝑋𝑃𝑛,𝑟 using toric geometry, we can view it as a subvariety of P(

𝑛
𝑟)−1, then

compute the blow-up of 𝑋𝑃𝑛,𝑟 as the main component of its proper transform in the ambient blow-up.
To write down the binomial equations, we adjust the binomial equations cutting 𝑋𝑃𝑛,𝑟 out of P(

𝑛
𝑟)−1.

Let 𝜎1 and 𝜎2 be an incomparable pair, giving rise to the binomial equation

𝑝𝜎1 𝑝𝜎2 − 𝑝𝜎1∨𝜎2 𝑝𝜎1∧𝜎2 .

Although this homogeneous for P(
𝑛
𝑟)−1, it is not when considered as an equation in the Cox ring of Bl P.

However, there is a natural minimal way to homogenize this equation by multiplying each factor by
some combination of generators 𝑥𝜆, 𝜆 ∈ B(𝑛, 𝑟). Call the subvariety cut out of Bl P by these adjusted
equations Bl 𝑋𝑃𝑛,𝑟 .

Lemma 4.18. The subvariety Bl 𝑋𝑃𝑛,𝑟 is the image of 𝑌𝑛,𝑟 under the natural embedding 𝑌𝑛,𝑟 → Bl P.

Note that we can lift the action of G on Gr(𝑛, 𝑟) and 𝑋𝑃𝑛,𝑟 to their blow-ups.

Theorem 4.19. There is a degeneration of Bl Gr(𝑛, 𝑟) to a possibly disconnected variety whose main
component is𝑌𝑛,𝑟 . There is a degeneration of Bl Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 to a possibly disconnected variety whose
main component is 𝑌𝑛,𝑟/𝐺.

Proof. The process of homogenization can also be applied to Gr(𝑛, 𝑟) viewed as a subvariety of P(
𝑛
𝑟)−1

under the Plücker embedding. We can degenerate the homogenized Plücker equations to binomials just
as in the Gelfand–Cetlin degeneration: These are the homogenized degenerate Plücker relations cutting
out 𝑌𝑛,𝑟 , except possibly with extra factors 𝑥𝜆. This proves the first statement. The proof of the second
statement is the same as that of Theorem 4.16, as G acts trivially on the 𝑥𝜆, 𝜆 ∈ B(𝑛, 𝑟). �

5. A compactification of the Eguchi–Hori–Xiong superpotential

In the final section, we give a tentative proposal for a Calabi–Yau mirror to the Fermat Calabi–Yau
hypersurface in the Grassmannian. Eguchi–Hori–Xiong constructed a Laurent polynomial that is a
mirror partner to the Grassmannian Gr(𝑛, 𝑟) [9]. It is essentially the toric Hori–Vafa mirror of 𝑋𝑃𝑛,𝑟 . If
𝑦𝑎, 𝑎 ∈ LQ1, are Cox coordinates on 𝑋𝑃𝑛,𝑟 , then the EHX mirror is

𝑊𝑞 : (C∗) | LQ1 | → C, 𝑊𝑞 =
∑

𝑎∈LQ1

𝑦𝑎,

where 𝑞 = (𝑞1, . . . , 𝑞 |LQ0 |
) are coordinates on the base of the family 𝜋 : (C∗) | LQ1 | → (C∗) |LQ0 | . By the

fiber of W we mean 𝑊−1
𝑞 (𝑐) for some c and q.

Marsh–Rietsch [18] have shown that the classical period of W, after setting 𝑞𝑖 = 1 for all i, equals
the regularized quantum period of the Grassmannian; for definitions here, see [5]. This implies that it
is a very weak mirror of the Grassmannian in the sense of [20]. There are stronger notions of mirror
symmetry. One important one is the following, due to Przyjalkowski [20]:

Definition 5.1. Let 𝑓 : (C∗)𝑛 → C be a Laurent polynomial which is a very weak mirror of a Fano
variety X. Then f is a weak mirror if the fibers of f can be compactified to Calabi–Yau varieties 𝑍∨.
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It is expected that if Z is an anticanonical Calabi–Yau hypersurface in X, then (𝑍, 𝑍∨) form a Calabi–
Yau mirror pair. This is how Fano and Calabi–Yau mirror symmetry are related when X is a toric variety.

For our proposed mirror of the Fermat Calabi–Yau hypersurface in the Grassmannian, we do not
check mirror equality of Hodge numbers (given the group action and the blow-up, the computation of
Hodge numbers did not seem straightforward to the authors). However, we show that our mirror is a
compactification and smoothing of the EHX superpotential, as one would expect.

Definition 5.2. Fix n and r, and let 𝜆 ∈ P (𝑛, 𝑟) be a partition. We say that 𝜆 is a maximal rectangle if it
is rectangular and either maximally wide or maximally tall.

Remark 5.3. The variables 𝑝𝜆, where 𝜆 is maximal rectangular, are the frozen variables for the cluster
algebra of the Grassmannian (they appear in every cluster chart).

Let 𝑍∨
𝑛,𝑟 be the family of hypersurfaces cut out of Bl Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 by the equation∑

𝜆∈A(𝑛,𝑟 )

𝑝𝑛𝜆 + 𝜓
∏

𝑝𝜇 frozen
𝑝𝜇 = 0. (16)

Note that this a 𝐻𝑛,𝑟 -equivariant equation, so 𝑍∨
𝑛,𝑟 is well-defined.

Theorem 5.4. 𝑍𝑛,𝑟 has trivial anticanonical class, so is Calabi–Yau in this sense. It is a compactification
of the fibers of the Eguchi–Hori–Xiong mirror.

Proof. We will first show the second part of the statement, and then that equation (16) is a section of
the anticanonical line bundle. The adjunction formula then implies that the anticanonical class of the
hypersurface is trivial. Let 𝐴𝑃 denote the 𝑟 (𝑛−𝑟)× | LQ1 | matrix with integer entries whose columns are
given by the rays of the spanning fan of 𝑃𝑛,𝑟 written in the basis {𝑏𝑣 }. Let 𝐴𝑃∨ denote the 𝑟 (𝑛− 𝑟) ×

(𝑛
𝑟

)
matrix with integer entries whose columns are given by the rays of the spanning fan of 𝑃∨

𝑛,𝑟 written in
the basis {𝑏∨𝑣 }. The | LQ1 | ×

(𝑛
𝑟

)
matrix

𝐴𝑡𝑃𝐴𝑃∨

defines a map

(C∗)(
𝑛
𝑟) → (C∗) | LQ1 |

by exponentiating.
This descends to a map between the dense tori in 𝑋𝑃𝑛,𝑟 and 𝑋𝑃∨

𝑛,𝑟
. If we write coordinates on the

former as 𝑦𝑎, 𝑎 ∈ LQ1, and coordinates on the latter as 𝑧𝜆, 𝜆 ∈ P (𝑛, 𝑟), then this map is

(𝑧𝜆)𝜆∈P (𝑛,𝑟 ) ↦→

( ∏
𝑎∈𝜇 𝑧

𝑛
𝜇∏

𝜇∈P (𝑛,𝑟 ) 𝑧𝜇

)
𝑎∈LQ1

.

This takes the locus 𝑊 = −𝜓 to the locus∑
𝑎∈LQ1

∏
𝑎∈𝜇

𝑧𝑛𝜇 + 𝜓
∏

𝜇∈P (𝑛,𝑟 )

𝑧𝜇 = 0,

which is a Calabi–Yau hypersurface in 𝑋𝑃∨
𝑛,𝑟

= 𝑋𝑄𝑛,𝑟 /𝐺. Note that this equation is G-invariant.
We now apply Theorem 3.7 and obtain a Calabi–Yau hypersurface in 𝑌𝑛,𝑟/𝐺. Viewing 𝑌𝑛,𝑟 as a

subvariety of Bl P, we can choose an identification of Cox rings so that this hypersurface is cut out by
the equation ∑

𝜆∈A(𝑛,𝑟 )

𝑝𝑛𝜆 + 𝜓
∏

𝜇 frozen
𝑝𝜇 = 0.
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It remains Calabi–Yau even as we deform the equations cutting out 𝑌𝑛,𝑟 , so we get a Calabi–Yau
hypersurface in Bl Gr(𝑛, 𝑟)/𝐻𝑛,𝑟 . �
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