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Abstract. This paper develops an analytic theory of Dirichlet series in several complex vari-
ables which possess sufficiently many functional equations. In the first two sections it is

shown how straightforward conjectures about the meromorphic continuation and polar divi-
sors of certain such series imply, as a consequence, precise asymptotics (previously conjec-
tured via random matrix theory) for moments of zeta functions and quadratic L-series.

As an application of the theory, in a third section, we obtain the current best known error
term for mean values of cubes of cent ral values of Dirichlet L-series. The methods utilized
to derive this result are the convexity principle for functions of several complex-variables
combined with a knowledge of groups of functional equations for certain multiple Dirichlet

series.
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1. Introduction

A Dirichlet series of type

X1
m1¼1

� � �
X1
mn¼1

1

ms1
1 � � �m

sn
1

Z 1

0

� � �

Z 1

0

aðm1; . . . ;mn; t1; . . . ; t‘Þt
�w1
1 � � � t�w‘

1 dt1 � � � dt‘

(where a ðm1; . . . ;mn; t1; . . . ; t‘Þ is a complex-valued smooth function) will be

called a multiple Dirichlet series. It can be viewed as a Dirichlet series in one

variable whose coefficients are again Dirichlet series in several other variables.

One of the simplest examples of a multiple Dirichlet series of more than one

variable is given by

X1
d

Lðs; wdÞ
jdjw

;
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where the sum ranges over fundamental discriminants of quadratic fields, wd is the
quadratic character associated to these fields, and

Lðs; wdÞ ¼
X1
n¼1

wdðnÞ
ns

is the classical Dirichlet L-function. This type of double Dirichlet series and a

method to obtain its analytic continuation first appeared in a paper of Siegel [S]

in 1956. More generally, one may consider

Zðs1; s2; . . . ; sm;wÞ ¼
X
d

Lðs1; wdÞ � Lðs2; wdÞ � � �Lðsm; wdÞ
jdjw

: ð1:1Þ

Multiple Dirichlet series arise naturally in many contexts and have been the sub-

ject of a number of papers in the recent past. See, [B-F-H-2] for an overview and

references. The reason for their interest is most apparent when they take the form

(1.1). It is easy to see that if, for fixed s1; s2; . . . ; sm, the analytic continuation of

Zðs1; s2; . . . ; sm;wÞ could be obtained to all w 2 C then standard Tauberian argu-

ments could be used to obtain information about the behavior of Lðs1; wdÞ�
Lðs2; wdÞ � � �Lðsm; wdÞ as d varies. For example, mean values could be obtained if there
is a pole at w¼ 1. The situation becomes even more interesting when it is noted that

quadratic twists of the L-series of automorphic forms on GL(m) can be viewed as

special cases of the product Lðs1; wdÞ � Lðs2; wdÞ � � �Lðsm; wdÞ. The first example of this
type of application that we are aware of is [G-H] in the case m¼ 1. Here mean value

results are obtained for quadratic Dirichlet L-series. Similar results over a function

field are obtained in [H-R], and recently, over more general function field, in [F-F].

Examples of the cases m¼ 2; 3 when the numerator is the L-series associated to a

GL(m) cusp form are given in [B-F-H-2], [B-F-H-1].

In all these examples (except for [F-F]), the analytic continuation of (1.1) was

obtained by treating the variable w separately. The fact that the L-series or products

of L-series in the numerator occurred in the Fourier coefficients of certain meta-

plectic Eisenstein series was exploited, and analytic continuation in w was achieved

by the application of Rankin-Selberg transforms.

It later became apparent, however, that there were many advantages to viewing

multiple Dirichlet series as functions of several complex variables. In particular, con-

sider (1.1) but ‘improve’ it by redefining the L-series in such a way that
Qm

i¼1 Lðsi; wdÞ
is the usual product of L-series if d is (the square free part of) a fundamental discri-

minant, and is
Qm

i¼1 Lðsi; wd0 Þ times a correction factor if d is a square multiple of the
square free part d0. The correction factors are Dirichlet polynomials with functional

equations and will be discussed further in Section 4.

The improved, or ‘perfect’ series, Z	ðs1; s2; . . . ; sm;wÞ, then possesses some un-

expected properties. In particular, in addition to the obvious functional equations

sending si ! 1� si; i ¼ 1; . . . ;m, there are some ‘hidden’ functional equations that

correspond to some surprising structure when the order of summation inZ	 is altered.
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The fact that such a phenomenon can occur was first observed by Bump and

Hoffstein in the case of m¼ 1 and a rational function field, and is mentioned in

[H]. It was first observed and applied in the case m¼ 2 in [F-H]. The possibility of

using these extra functional equations as a basis for obtaining the analytic continua-

tion of double Dirichlet series was then discussed in [B-F-H-2]. It was observed there

that in the cases where the numerator is an L-series of an automorphic form on

GLðmÞ, if m¼ 1, 2 or 3 then the functional equations of the corresponding perfect

double Dirichlet series generate a finite group. It was also noted that by applying

these functional equations to the region of absolute convergence a collection of over-

lapping regions was obtained whose convex hull was C
2. Thus by appealing to a well

known theorem in the theory of functions of several complex variables, the complete

analytic continuation of Z	 could be obtained.

In later work, [B-F-H-1], it was observed that a uniqueness principle operated in the

cases m ¼ 1; 2; 3 and the correction factors were determined by, and could be compu-

ted from, the functional equations of Z	. Curiously, for m5 4 the group of functional

equations becomes infinite and simultaneously the uniqueness principle fails. The space

of local solutions becomes 1 dimensional in the casem ¼ 4, and higher for m > 4. This

appears to correspond to an inability to analytically continue the double Dirichlet ser-

ies past a curve of essential singularities. See [B-F-H-1,2] for further details. The paper

of [F-F], in addition to providing a completely general analysis of the casem¼ 1 over a

function field, contains some further insights into this curious phenomenon.

We shall call a multiple Dirichlet series (of n complex variables) perfect if it has

meromorphic continuation to C
n and, in addition, it satisfies a group of functional

equations. The case m¼ 3 is thus of great interest as the last instance in which the

perfect multiple Dirichlet series (for the family of quadratic Dirichlet L-functions)

are understood completely. In [B-F-H-1] a description of the ‘good’ correction fac-

tors was obtained for the case of m¼ 3 and an arbitrary automorphic form f on

GL(3). These are the factors corresponding to primes not dividing 2 or the level

of f. This information was then used to obtain the analytic continuation of the asso-

ciated perfect double Dirichlet series. As a consequence, non-vanishing results for

quadratic twists of Lð1=2; f; wdÞ were obtained. Also, after taking a residue at
w¼ 1, a new proof was obtained for the analytic continuation of the symmetric

square of an automorphic form on GL(3).

One purpose of this paper is to apply the ideas of [B-F-H-1] to obtain the mero-

morphic continuation of the series Z	ðs; s; s;wÞ. After obtaining this and developing

a sieving method analogous to that used in [G-H] we reconstruct the unimproved

series of (1.1). Applying the analytic properties of this we prove the following

THEOREM 1.1. For d summed over fundamental discriminants, and any E> 0

X
jdj4x

Lð12; wdÞ
3 1�

jdj

x

� �
¼
1

2
�
6

p2
a3 �

1

2880
� xðlogxÞ6 þ

X5
i¼0

cixðlogxÞ
i
þOEðx

�1
E þEÞ:
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The constants ci are effectively computable. The following unweighted estimate also

holds:X
jdj4x

Lð12; wdÞ
3
¼
6

p2
a3 �

1

2880
� xðlog xÞ6 þ

X5
i¼0

dixðlog xÞ
i
þOE xyþE

� �
;

where the constants di are also effectively computable and y ¼ 1
36 ð47�

ffiffiffiffiffiffiffiffi
265

p
Þ 

0:853366 . . .

This improves on Soundararajan’s [So], bound of Oðx
11
12þEÞ. The weight

1� ðjdj=xÞð Þ is included in the first part to show the optimal error term obtainable

by this method. It will be shown in Section 4.4, Proposition 4.12, that we expect

the multiple Dirichlet series Z	ð12; 12; 12;wÞ to have an additional simple pole at w ¼ 3
4

with non-zero residue. Note that the function Z	ð12; 12; 12;wÞ is perfect and has

meromorphic continuation everywhere. It is unclear whether Zð12; 12; 12;wÞ has a pole

at w ¼ 3
4, assuming it has meromorphic continuation to RðwÞ > 3

4� E for some
E > 0. We expect this matter to be clarified shortly by computations being done
by Q. Zhang.

Remark. In general, for higher moments, careful analysis of Sections 2.3 and 3.1

can be used to obtain all the coefficients of the polynomial in log x of the main term

in the asymptotic formula.

The major objective of this paper is to, at least conjecturally, pass the barrier of

m5 4. The first obstacle to accomplishing this is our incomplete understanding of

the correct form of the class of perfect multiple Dirichlet series for m5 4. There is

an infinite family of choices, every member of which possesses the correct func-

tional equations. However, for any one of these choices, if an analytic continuation

could be obtained to a neighborhood including the point ð1=2; 1=2; . . . ; 1=2; 1Þ then

a sieving argument could be applied and a formula analogous to Theorem 1.1

could be proved. In particular, this would imply the truth of Conjecture 3.1 of

Conrey, Farmer, Keating, and Snaith giving the precise asymptotics for the

moments of
P

jdj4x Lð1=2; wdÞ
m for m ¼ 1; 2; 3; . . .. In [B-F-H-2] it is explained

how if the variables are specialized to s ¼ s1 ¼ � � � ¼ sm, then any multiple Dirichlet

series possessing the correct functional equations must hit a certain curve of essen-

tial singularities. A similar hypercurve is encountered for m5 4 when the variables

are not specialized. However, the point ð1=2; 1=2; . . . ; 1=2; 1Þ lies well inside the

boundary of this curve. Another way of saying this is that by taking the area of

absolute convergence of a corrected analog of (1.1) and applying the infinite group

of functional equations a region of analytic continuation is obtained. For m5 4

the point ð1=2; 1=2; . . . ; 1=2; 1Þ lies outside this region, but inside the region

contained by the curve of essential singularities. The case m ¼ 4 is particularly

intriguing, as ð1=2; 1=2; 1=2; 1=2; 1Þ lies right on the edge of the open hyperplane

of analytic continuation that can be obtained.
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In Section 3 we make the reasonable assumption that an analytic continuation

exists past the point ð1=2; 1=2; . . . ; 1=2; 1Þ for a corrected analog of (1.1). We then

calculate the contribution of the 2m polar divisors of (1.1) that pass through

this point. This gives us a description of the whole principle part in the Laurent

expansion of (1.1) around this point. This description is then translated into

Conjecture 3.1.

As far as the present authors are aware, the first examples of multiple Dirichlet

series involving integrals appear in the paper of A. Good [G] first announced in

1984. Let f ðzÞ be a holomorphic cusp form of even weight k for the modular group

G ¼ SLð2;ZÞ. By developing an ingenious generalization of the Rankin–Selberg

convolution in polar coordinates Good obtained the meromorphic continuation of

the multiple Dirichlet seriesZ 1

1

Lf
k

2
þ it

� ����� ����2t�w dt;
where Lf ðsÞ is the Hecke L-function associated to f by Mellin transform. He showed

that this function has at most simple poles at w ¼ 1
2þ ir; where w ¼ 1

4þ r2 is an eigen-

value associated to a Maass form on G. Good [G] even showed how to introduce
weighting factors into the integral which gave a functional equation in w. His

method can also be extended to obtain the meromorphic continuation ofZ 1

1

Lf ðs1 þ itÞLf ðs2 � itÞt�w dt:

In Section 2, we develop the theory of multiple Dirichlet series associated to

moments of the Riemann zeta function. In this case, the perfect object has been

found for m¼ 2 (using theta functions) and for m ¼ 4 (using Eisenstein series) by

Good [G], but his theory has never been fully worked out. We consider the multiple

Dirichlet series

Zðs1; . . . ; s2m;wÞ ¼

Z 1

1

zðs1 þ itÞ � � � zðsm þ itÞ � zðsmþ1 � itÞ � � � zðs2m � itÞt�w dt

and show that it has meromorphic continuation (as a function of 2mþ 1 complex

variables) slightly beyond the region of absolute convergence given by

RðsiÞ > 1;RðwÞ > 1 ði ¼ 1; 2; . . . ; 2mÞ with a polar divisor at w¼ 1. We also show
that Zðs1; . . . ; s2m;wÞ satisfies certain quasi-functional equations (see Section 2.2)

which allows one to meromorphically continue the multiple Dirichlet series to an

even larger region. It is proved (subject to Conjecture 2.7) that Zð12; . . . ;
1
2;wÞ has a

multiple pole at the point w¼ 1, and the leading coefficient in the Laurent expansion

is computed explicitly in Proposition 2.9. Under the assumption that Zð12 ; . . . ;
1
2 ;wÞ

has holomorphic continuation to the region ReðwÞ5 1 (except for the multiple pole

at w¼ 1, we derive the Conrey-Ghosh-Keating-Snaith conjecture (see [Ke-Sn-1] and

[C-Gh-2]) for the ð2mÞth moment of the zeta function as predicted by random matrix

theory.
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Recently [CFKRS] have presented a heuristic method via approximate functional

equations for obtaining moment conjectures for integral as well as real and complex

moments for general families of zeta and L-functions. Their method is related to

ours in that it uses a group of approximate functional equations in several complex

variables.

Remark. Notice that the methods presented in this paper do not require that the

L-functions (for which we want to obtain moments) have an Euler product. It is

only necessary that they have meromorphic continuation and satisfy a group of

functional equations.

Moments of the Riemann Zeta–Function

For R > 1, let

zðsÞ ¼
X1
n¼1

1

ns
¼
Y
p

1�
1

ps

� ��1
denote the Riemann zeta function which has meromorphic continuation to the whole

complex plane with a single simple pole at s ¼ 1 with residue 1. It is well known (see

Titchmarsh [T]) that z satisfies the functional equation zðsÞ ¼ wðsÞzð1� sÞ where

wð1� sÞ ¼
1

wðsÞ
¼ 2ð2pÞ�s cos

ps
2

	 

GðsÞ: ð2:1Þ

In 1918 Hardy and Littlewood [H-L] obtained the second momentZ x

0

jzð12þ itÞj2 dt  x log x;

and in 1926 Ingham [I] obtained the fourth momentZ x

0

jzð12þ itÞj4 dt 
1

2p2
xðlog xÞ4:

This result was not significantly improved until the work of Heath and Brown [H-B]

in 1979 where it was shown thatZ x

0

jzð12þ itÞj4 dt ¼ x � P4ðlog xÞ þOðx78þEÞ;

where P4 is a certain polynomial of degree four. More recently, Zavorotny [Z]

(1989), and by a different method, Motohashi [Mot1] (1993) has proved thatZ x

0

jzð12þ itÞj4 dt ¼ x � P4ðlog xÞ þOðx
2
3þEÞ:
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Motohashi’s work was based on earlier work of Atkinson [A]. By a careful analysis

of the Kuznetsov trace formula, Motohashi [Mot2] introduced and was able to

obtain the meromorphic continuation (in w) of the functionZ 1

1

zðsþ itÞ2zðs� itÞ2t�w dt: ð2:2Þ

Motohashi pointed out that it is, therefore, possible to view the Riemann zeta

function as a generator of Maass wave form L-functions. Motohashi [Mot3] has

generalized his methods to a wide variety of cases which include mean square and

fourth moment of the Riemann zeta function, mean square of Hecke L-series

attached to holomorphic cusp forms, and mean square of quadratic zetas. These

should be compared to the earlier work of Good [G].

There has been a longstanding folklore conjecture thatZ x

0

jzð12þ itÞj2k dt  ckxðlog xÞ
k2 : ð2:3Þ

In 1984 Conrey and Ghosh [C-Gh-2] gave the more precise conjecture that

ck ¼
gkak

Gð1þ k2Þ
; ð2:4Þ

where

ak ¼
Y
p

1�
1

p

� �k2X1
j¼0

dkðp
jÞ
2

p j
ð2:5Þ

is the arithmetic factor and gk, an integer, is a geometric factor. Here, dkðnÞ denotes

the number of representations of n as a product of k positive integers. In this nota-

tion, the result of Hardy and Littlewood states that g1 ¼ 1, while Ingham’s result is

that g2 ¼ 2. In 1998, Conrey and Ghosh [C-Gh-1] conjectured that g3 ¼ 42, and

more recently in 1999, Conrey and Gonek [C-G] conjectured that g4 ¼ 24024. Up

to this point, using classical techniques based on approximating zðsÞ by Dirichlet
polynomials, there seemed to be no way to conjecture the value of gk in general.

In accordance with the philosophy of Katz and Sarnak [K-S] that one may associate

probability spaces over compact classical groups to families of zeta and L-functions,

Keating and Snaith [Ke-Sn-2] (see also [B-H]) computed moments of characteristic

polynomials of matrices in the unitary group UðnÞ and formulated the conjecture that

gk ¼ k2!
Yk�1
j¼0

j!

ð jþ kÞ!
ð2:6Þ

for any positive integer k. This conjecture agreed with all the known results and was

strongly supported by numerical computations.

We show in the next sections that there exists a multiple Dirichlet series of several

complex variables of the type (2.2) previously introduced by Motohashi, with a polar

divisor at w¼ 1, whose residue is simply related to the constants (2.4), (2.5), (2.6). We
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further show that if one could holomorphically continue this multiple Dirichlet series

slightly beyond this polar divisor, a proof of the Conrey–Ghosh–Keating–Snaith

conjecture would follow.

2.1. THE MULTIPLE DIRICHLET SERIES FOR THE RIEMANN ZETA FUNCTION

Let s1; s2; . . . ; s2m;w denote complex variables, k be an integer, and Ei ¼ �1 for

i ¼ 1; 2; . . . ; 2m. We shall consider multiple Dirichlet series of type

ZE1;...;E2m;kðs1; . . . ; s2m;wÞ

¼

Z 1

1

zðs1 þ E1itÞ � � � zðs2m þ E2mitÞ
2pe
t

� �kit

t�w dt: ð2:7Þ

It is easy to see that the integral in (2.7) converges absolutely for RðwÞ > 1 and
RðsiÞ > 1; ði ¼ 1; 2; . . . ; 2mÞ, and defines (in this region) a holomorphic function of
2mþ 1 complex variables. These series are more general than the series (2.2) intro-

duced by Motohashi in that they contain the factor ð2pe=tÞkit. It will be shortly seen
that this factor occurs naturally because of the asymptotic formulae [T]

wðsþ itÞ ¼ e
ip
4
2p
t

� �s�12 2pe
t

� �it

1þO
1

t

� �� �
;

wðsþ itÞ ¼ e
�ip
4
2p
t

� �s�12 2pe
t

� ��it
1þO

1

t

� �� �
ðfor fixed s and t!1Þ;

ð2:8Þ

for w, the function occurring in the functional Equation (2.1) for the Riemann zeta
function.

PROPOSITION 2.1. For s > 0, the function ZE1;...;E2m;kðs1; . . . ; s2m;wÞ can be

holomorphically continued to the domain RðsiÞ > �s ð for i ¼ 1; . . . ; 2mÞ and

RðwÞ > 1þ 2m 1
2þ s
� �

. Furthermore, for k 6¼ 0;ZE1;...;E2m;k can be holomorphically

continued forRðwÞ > 0 andRðsi þ ðw=jkjÞÞ > 1þ jkj�1 ði ¼ 1; . . . ; 2mÞ, and for k ¼ 0,

it can be meromorphically continued for RðwÞ > 0 and RðsiÞ > 1 ði ¼ 1; . . . ; 2mÞ with a

single simple pole at w¼ 1 with residueX
‘1;...;‘2m
‘
E1
1
���‘

E2m
2m

¼1

‘�s11 � � � ‘�s2m2m

Proof. The first part of the Proposition follows immediately from the well-known

convexity bound

jzðsþ itÞj �s ð1þ jtjÞ
1
2þs;
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for RðsÞ > �s, where the implied constant depends at most on s. For the second

part, we need the following lemma.

LEMMA 2.2 Let B > 0 and k 2 R be fixed. For RðwÞ > 1 the integral

jIB;kðwÞj ¼

Z 1

1

Bit 2pe
t

� �kit

t�w dt

converges absolutely and defines a holomorphic function of w. Further, for

fB; kg 6¼ f1; 0g, the function IB;kðwÞ may be holomorphically continued to RðwÞ > 0,
and for 0 < RðwÞ4 1, it satisfies the bound

jIB;kðwÞj �k;w

1
j logBj if k ¼ 0;

1þ B
1�RðwÞ

k ð1þ jlogBjÞ if k 6¼ 0:

(

Finally, when B� 1; k ¼ 0, we have I1;0ðwÞ ¼ 1=ðw� 1Þ.

Proof. First, a simple computation shows that I1;0ðwÞ ¼ 1=ðw� 1Þ. Also, inte-

grating by parts, it can easily be seen that IB;0ðwÞ is a holomorphic function for

RðwÞ > 0. In this case, we have the estimate

jIB;0ðwÞj �w
1

j logBj
:

For k 6¼ 0 and B
1
k 5 ð2pÞ�1, we split the integral defining IB;k into two parts

IB;kðwÞ ¼

Z Aþ1
e

1

A

t

� �kit

t�w dtþ

Z 1

Aþ1
e

A

t

� �kit

t�w dt;

where A ¼ 2pe � B
1
k . We estimate the first integral trivially, so, for 0 < RðwÞ4 1;Z Aþ1

e A

t

� �kit

t�wdt

�����
����� < Aþ1

e

� �1�RðwÞ
�1

1�RðwÞ
<

Aþ 1

e

� �1�RðwÞ
log

Aþ 1

e

� �
�k;w B

1�RðwÞ
k ð1þ j logBjÞ:

Now, integrating by parts, we haveZ 1

Aþ1
e

A

t

� �kit

t�w dt ¼

Z 1

Aþ1
e

A

t

� �kit

ikðlogA� log t� 1Þ �
1

ikðlogA� log t� 1Þtw
dt

¼
1

ik
�

eA
Aþ1

	 
kiðAþ1Þ
e

log 1þ 1
A

� � � ew

ðAþ 1Þw
�
1

ik

Z 1

Aþ1
e

A

t

� �kit

�

�
1

ðlogA� log t� 1Þ2twþ1
dt þ

þ
w

ik

Z 1

Aþ1
e

A

t

� �kit

�
1

ðlogA� log t� 1Þtwþ1
dt:
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It follows that the last two integrals converge absolutely forRðwÞ > 0, and hence, the
function IH;k is holomorphic in this region. Moreover, we have the estimateZ 1

Aþ1
e

A

t

� �kit

t�w dt

�����
������ eRðwÞA1�RðwÞ

jkj
þ

þ
w

k

��� ��� Z 1

Aþ1
e

1

log te
A

� � � 1

t1þRðwÞ
dtþ

1

jkj

Z 1

Aþ1
e

1

log2 te
A

� � � 1

t1þRðwÞ
dt

�
jwj

RðwÞ
�
eRðwÞA1�RðwÞ

jkj
þ

eRðwÞ

jkjARðwÞ

Z 1

1þ1A

1

log2 u
�

1

u1þRðwÞ
du

�
jwj

RðwÞ
�
eRðwÞA1�RðwÞ

jkj
�k;w B

1�RðwÞ
k ;

which combined with the previous one gives the required bound for the function

IB;k. For the remaining case, B
1
k < ð2pÞ�1, we split once again the integral into

two parts

IB;kðwÞ ¼

Z 1þ1e
1

A

t

� �kit

t�w dtþ

Z 1

1þ1e

A

t

� �kit

t�w dt:

A similar argument implies that the second integral converges absolutely for

RðwÞ > 0, and that jIB;kðwÞj �k;w 1:

We now return to the proof of Proposition 2.1. For RðsiÞ > 1 ði ¼ 1; . . . ; 2mÞ;

ZE1;...;E2m;kðs1; . . . ; s2m;wÞ ¼
X

‘1;...;‘2m

‘�si1 � � � ‘�s2m2m

Z 1

1

ð‘E11 � � � ‘
E2m
2m Þ

it 2pe
t

� �kit

t�w dt;

ð2:9Þ

where the sum ranges over all 2m-tuples f‘1; . . . ; ‘2mg of positive integers. For k 6¼ 0

and 0 < RðwÞ4 1, it is clear that the series on the right side of (2.9) is absolutely

convergent provided RðsiÞ ði ¼ 1; . . . ; 2mÞ are sufficiently large. In fact, the esti-
mates from Lemma 2.2 imply that we have absolute convergence even for

Rðsi þ w
jkjÞ > 1þ jkj�1 ði ¼ 1; . . . ; 2mÞ. For k ¼ 0, we break the sum on the right side

of (2.9) into two partsX
‘1;...;‘2m

¼
X

‘1;...;‘2m
‘
E1
1
���‘

E2m
2m

¼1

þ
X

‘1;...;‘2m
‘
E1
1
���‘

E2m
2m

6¼1

: ð2:10Þ

By Lemma 2.2 it immediately follows that the first sum in (2.10) will contribute a

pole at w ¼ 1 with residue precisely as stated in Proposition 2.1. It is also clear from

Lemma 2.2 that the second sum in (2.10) will give a holomorphic contribution to

(2.9) provided RðsiÞ ði ¼ 1; . . . ; 2mÞ are sufficiently large so that the sum over

‘1; . . . ; ‘2m converges absolutely. To show convergence for RðsiÞ > 1;
ði ¼ 1; . . . ; 2mÞ; is more delicate and we give the details.
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It follows from Lemma 2.2 that for RðsiÞ ¼ s > 1; ði ¼ 1; . . . ; 2mÞ;

X
‘1;...;‘2m

‘
E1
1
���‘

E2m
2m

6¼1

‘�s11 � � � ‘�s2m2m

Z 1

1

ð‘E11 � � � ‘
E2m
2m Þ

itt�w dt

�w

X
‘1;...;‘2m

‘
E1
1
���‘

E2m
2m

6¼1

1

ð‘1 � � � ‘2mÞ
s

1

j log ‘E11 � � � ‘
E2m
2m j

: ð2:11Þ

We now break the sum on the right side of (2.11) into two partsX
‘1;...;‘2m

‘
E1
1
���‘

E2m
2m

6¼1

¼
X

‘1;...;‘2m
‘
E1
1
���‘

E2m
2m

2ð0;12ð[Þ2;1Þ

þ
X

‘1;...;‘2m
‘
E1
1
���‘

E2m
2m

2ð12;1Þ[ð1;2Þ

ð2:12Þ

The first series on the right side of (2.12) is obviously convergent for s > 1. We shall

show that the second one is also convergent.

Without loss of generality, let us write

‘E11 � � � ‘
E2m
2m ¼

‘1 � � � ‘r
‘rþ1 � � � ‘2m

:

It follows, upon setting ‘1 � � � ‘r ¼ k; ‘rþ1 � � � ‘2m ¼ k� a, that

X
‘1;...;‘2m

‘1 ���‘r
‘rþ1 ���‘2m

2ð12;1Þ[ð1;2Þ

1

ð‘1 � � � ‘2mÞ
s

1��� log ‘1���‘r
‘rþ1���‘2m

���
¼
X1
k¼2

drðkÞ

ks

Xk�1
a¼1

d2m�rðkþ aÞ

ðkþ aÞs
�

1

logð1þ a
kÞ
�

�
X1
k¼3

drðkÞ

ks

Xk
2½ �

a¼1

d2m�rðk� aÞ

ðk� aÞs
�

1

logð1� a
kÞ
�
X1
k¼2

drðkÞ

ks

Xk�1
a¼1

d2m�rðkþ aÞ

ðkþ aÞs
�
k

a
þ

þ
X1
k¼3

drðkÞ

ks

Xk
2½ �

a¼1

d2m�rðk� aÞ

ðk� aÞs
�
k

a
�m;r;E

X1
k¼2

1

ks�E

Xk�1
a¼1

k

aðkþ aÞ
þ

þ
X1
k¼3

1

ks�E

Xk
2½ �

a¼1

k

aðk� aÞ
�
X1
k¼2

logk

ks�E
;

for some arbitrarily small E > 0. Clearly, the last sum converges if s > 1. This

completes the proof of Proposition 2.1. &

We now deduce a more precise form of the residue given in Proposition 2.1. This is

given in the next proposition.
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PROPOSITION 2.3. Fix 2> 0. Let RðsiÞ > 2þ E, Ei ¼ �1; ði ¼ 1; . . . ; 2mÞ, and

define r to be the number of Ei ¼ 1; ði ¼ 1; . . . ; 2mÞ. If ZE1;...;E2m;k denotes the multiple

Dirichlet series defined in ð2:7Þ, then we have

Res
w¼1

½ZE1;...;E2m;0ðs1; . . . ; s2m;wÞ� ¼ Rrðs1; . . . ; s2mÞ:
Y
14i4 r

rþ14j4 2m

zðsi þ sjÞ;

where Rrðs1; . . . ; s2mÞ can be holomorphically continued to the region RðsiÞ > 1
2� E.

Further,

Rr
1

2
; . . . ;

1

2

� �
¼
Y
p

1�
1

p

� �m2 X1
m¼0

drðp
mÞd2m�rðp

mÞp�m

 !
;

and in particular,

Rm
1

2
; . . . ;

1

2

� �
¼ am;

the constant defined in ð2:5Þ.

Proof. Define

Urðs1; . . . ; s2mÞ ¼
X

‘1;...;‘2m
‘1���‘r¼‘rþ1���‘2m

‘�s11 � � � ‘�s2m2m

It follows from Proposition 2.1, that up to a permutation of the variables s1; . . . ; sm,

the function Ur is precisely the residue of ZE1;...;E2m;0ðs1; . . . ; s2m;wÞ at w¼ 1.

If f ðnÞ is a multiplicative function for which the sum
P1

n¼1 f ðnÞ converges

absolutely, then we have the Euler product identityX1
n¼1

f ðnÞ ¼
Y
p

ð1þ f ð pÞ þ f ð p2Þ þ f ð p3Þ þ � � �Þ: ð2:13Þ

It follows from (2.13) that

Urðs1; . . . ; s2mÞ ¼
Y
p

X1
m¼0

X
e1þ���þer¼m

ei50; ði¼1;...;2mÞ
erþ1þ���þe2m¼m

p�ðe1s1þ���þe2ms2mÞ

0BBBB@
1CCCCA:

Let us now define

Rrðs1; . . . ; s2mÞ ¼ Urðs1; . . . ; s2mÞ �
Y
14i4r

rþ14j42m

zðsi þ sjÞ
�1: ð2:14Þ

By carefully examining the Euler product for the right-hand side of (2.14), one sees

that Rrðs1; . . . ; s2mÞ is holomorphic for RðsiÞ > 1
2� E; ði ¼ 1; . . . ; 2mÞ.

Now, X
e1þ���þer¼m

ei50; ði¼1;...;2mÞ
erþ1þ���þe2m¼m

1 ¼ drðp
mÞd2m�rðp

mÞ:
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Consequently, if we specialize the variables to s1 ¼ s2 ¼ � � � ¼ s2m ¼ s, we obtain

Rrðs; . . . ; sÞ ¼
Y
p

1�
1

p2s

� �m2 X1
m¼0

drðp
mÞd2m�rðp

mÞp�2ms

 !
:

The proof of Proposition 2.3 immediately follows upon letting s! 1
2.

2.2. QUASI-FUNCTIONAL EQUATIONS

Fix variables s1; s2; . . . ; s2m;w. Let Ds1; . . . ; s2m;w denote the infinite-dimensional

vector space, defined over the field

Ks1;...;s2m ¼ Cðð2pÞs1 ; . . . ; ð2pÞs2mÞ;

generated by the multiple Dirichlet series

ZE1;...;E2m;kðS1; . . . ;S2m;W Þ;

where the variables Ej; k;Sj, and W range over the values

Ej 2 f�1g; ð j ¼ 1; . . . ; 2mÞ k 2 Z;

Sj 2 fsj; 1� sjg; ð j ¼ 1; . . . ; 2mÞ;

W ¼ wþ
X2m
j¼1

dj sj �
1

2

� �
with dj 2 f0; 1g; ð j ¼ 1; . . . ; 2mÞ.
For j ¼ 1; 2; . . . ; 2m, we will define involutions gj:Ds1;...;s2m;w ! Ds1;...;s2m;w.

DEFINITION 2.4. For j ¼ 1; 2; . . . ; 2m, we define an action gj on

ZE1;...;E2m;kðS1; . . . ;S2m;W Þ 2 Ds1;...;s2m;w

(the action denoted by a right superscript) as follows:

ZE1;...;E2m;kðS1; . . . ;S2m;W Þ
gj

¼ e
ipEj
4 ð2pÞSj�

1
2ZE1;...;�Ej;...;E2m;kþEj ðS1; . . . ; 1� Sj; . . . ;S2m;Wþ Sj�12

Þ:

The involutions gjð j ¼ 1; . . . ; 2mÞ generate a finite Abelian group G2m of 2
2m ele-

ments which, likewise, acts on Ds1;...;s2m;w.

We will also denote by gj ð j ¼ 1; 2; . . . ; 2mÞ, the affine transformations induced by
this action

ðs1; . . . ; s2m;wÞ �!
gj

ðs1; . . . ; 1� sj; . . . ; s2m; sj þ w� 1=2Þ:

By Proposition 2.1, we know that ZE1;...;E2m;kðs1; . . . ; s2m;wÞ has holomorphic

continuation to the region

0 < RðsiÞ < 1; ði ¼ 1; . . . ; 2mÞ; RðwÞ > 1þm: ð2:15Þ
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We would like to use the functional Equation (2.1) to obtain a functional equation

for the multiple Dirichlet series ZE1;...;E2m;kðs1; . . . ; s2m;wÞ. To abbreviate notation,

we let Zðs1; . . . ; s2m;wÞ ¼ ZE1;...;E2m;kðs1; . . . ; s2m;wÞ:

We shall need an asymptotic expansion of Stirling type [T]

wðsþ itÞ¼eip4
2p
t

� �s�12 2pe
t

� �it

1þ
XN
n¼1

cnt
�nþOðt�N�1Þ

( )
;

wðs� itÞ¼eip4
2p
t

� �s�12 2pe
t

� ��it
1þ

XN
n¼1

�cnt
�nþOðt�N�1Þ

( )
ðfor fixed s and t!1Þ;

ð2:16Þ

where cn are certain complex constants. Such expansions are not explicitly worked

out in [T], but they are not hard to obtain.

It now follows from Definition 2.4, Stirling’s asymptotic expansion (2.16), and the

functional Equation (2.1), that in the region (2.15), we have for g 2 G2m, the quasi-

functional equation

Zðs1; . . . ; s2m;wÞ  Zðs1; . . . ; s2m;wÞ
g
þ
X1
n¼1

c0nðgÞZðs1; . . . ; s2m;wþ nÞg; ð2:17Þ

where c0nðgjÞ ¼ cn if Ej ¼ þ1 and c0nðgjÞ ¼ �cn if Ej ¼ �1, for j ¼ 1; 2; . . . ; 2m, and in

general, c0nðgÞ is a linear combination of cn 0 and �cn 0 0 with n 0, n 004 n.

We shall be mainly interested in g 2 G2m for which the action given in

Definition 2.4

ZE1;...;E2m;0ðs1; . . . ; s2m;wÞ �!ZE1;...;E2m;0ðs1; . . . ; s2m;wÞ
g

ð2:18Þ

stabilizes k ¼ 0. An element g 2 G2m is said to stabilize k relative to fE1; . . . ; E2mg
provided

ZE1;...;E2m;kðs1; . . . ; s2m;wÞ
g
¼ Cðs1; . . . ; s2mÞ � ZE0

1
;...;E0

2m
;k0 ðs

0
1; . . . ; s

0
2m;w

0Þ

for some Cðs1; . . . ; s2mÞ 2 Ks1;...;s2m with k ¼ k0.

DEFINITION 2.5. Fix Ei ¼ �1; ði ¼ 1; . . . ; 2mÞ. We define G2mðE1; . . . ; E2mÞ to be the
subset of G2m (defined in Definition 2.4) consisting of all g 2 G2m which stabilize 0

relative to fE1; . . . ; E2mg.

PROPOSITION 2.6. Let 14 r4 2m, and

Ei1 ¼ Ei2 ¼ � � � ¼ Eir ¼ þ1; Eirþ1 ¼ Eirþ2 ¼ � � � ¼ Ei2m ¼ �1:

Then G2mðE1; . . . ; E2mÞ is the subgroup of G2m which is generated by the elements gim � gin
with 14m4 r; rþ 14n4 2m.

Proof. Note that if we write g ¼ gi � gj (with i 6¼ j) then under the action (2.18) we

see that
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fk ¼ 0g �!
g

fk ¼ Ei þ Ejg:

So if we choose i from the set fi1; . . . ; irg and j from the set firþ1; . . . ; i2mg then we see

that fk ¼ 0g is stabilized. It easily follows that these elements generate a group and

every element of this group stabilizes 0 relative to fE1; . . . ; E2mg. Furthermore, every
element which stabilizes 0 relative to fE1; . . . ; E2mg must lie in this group.

Remark. We introduced the group G2mðE1; . . . ; E2mÞ because it is precisely this
group which gives the reflections of the polar divisor at w¼ 1 of the multiple

Dirichlet series ZE1;...;E2m;0ðs1; . . . ; s2m;wÞ. This will be further explained in the next

section.

2.3. A FUNDAMENTAL CONJECTURE FOR THE RIEMANN ZETA FUNCTION

We observed in Proposition 2.1 that the hyperplane w� 1 ¼ 0 belongs to the polar

divisor of the multiple Dirichlet series ZE1;...;E2m;k if and only if k ¼ 0. It was also seen

that this hyperplane is the only possible pole in the region F defined by

F ¼ fðs1; . . . ; s2m;wÞ 2 C
2mþ1

jRðsiÞ > 0 ði ¼ 1; . . . ; 2mÞ;RðwÞ > 1þmg [

[ fðs1; . . . ; s2m;wÞ 2 C
2mþ1

jRðwÞ > 0;RðsiÞ > 2 ði ¼ 1; . . . ; 2mÞg:

Now, the set
T

gEG2m gðF Þ is nonempty, since it contains points for which
RðsiÞ  1=2ði ¼ 1; . . . ; 2mÞ and RðwÞ is sufficiently large. It follows from the quasi-
functional Equation (2.17) that the multiple Dirichlet series ZE1;...;E2m;0 have mero-

morphic continuation to the convex closure of the region
S

gEG2m gðF Þ with poles, pre-
cisely, at the reflections of the hyperplane w� 1 ¼ 0 under G2mðE1; . . . ; E2mÞ. In order
to obtain the continuation, it is understood that we first multiply ZE1;...;E2m;0 by certain

linear factors in order to cancel its poles. We propose the following conjecture.

CONJECTURE 2.7. The functions ZE1;...;E2m;0 have meromorphic continuation to a

tube domain in C
2mþ1 which contains the point ð12 ; . . . ;

1
2 ; 1Þ. All these functions have the

same polar divisor passing through this point consisting of all the reflections of the

hyperplane w� 1 ¼ 0 under the group G2mðE1; . . . ; E2mÞ. Moreover, the functions

ZE1;...;E2m;0
1
2 ; . . . ;

1
2;w

� �
are holomorphic for RðwÞ > 1.

THEOREM 2.8. Conjecture 2:7 implies the Keating–Snaith–Conrey–Farmer

Conjecture ð2:3Þ.

Proof. From now on, we fix

E1 ¼ E2 ¼ � � � ¼ Em ¼ þ1; Emþ1 ¼ Emþ2 ¼ � � � ¼ E2m ¼ �1;
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and let G0
2m denote the group G2mðE1; . . . ; E2mÞ. The reflections of the hyperplane

w� 1 ¼ 0 under the group G0
2m are given by

d1s1 þ � � � þ d2ms2m þ w�
d1 þ � � � þ d2m þ 2

2
¼ 0; ð2:19Þ

where di ¼ 0 or 1 and d1 þ � � � þ dm ¼ dmþ1 þ � � � þ d2m.
In this and the next section we require a version of the Wiener–Ikehara Tauberian

theorem. Stark has proved a vast generalization of this theorem, [St]. We will quote

here a limited a case of his result which is sufficient for our needs.

TAUBERIAN THEOREM (Stark). Let SðxÞ be a nondecreasing function of x and let

ZðwÞ ¼

Z 1

1

SðtÞ � t�w
dt

t
:

Let PðwÞ ¼ gM þ gM�1ðw� 1Þ þ � � � þ g0ðw� 1Þ
M; ðM5 0Þ be a polynomial with

gM 6¼ 0 such that ZðwÞ � PðwÞðw� 1Þ�M�1 is holomorphic for RðwÞ > 1 and continu-

ous for RðwÞ ¼ 1. Then

SðxÞ 
gM
M!

� xðlog xÞM; ðas x !1Þ:

We now let zðtÞ ¼ zð1=2þ itÞm and SðxÞ ¼
R x

0 jzðtÞj
2 dt in the Tauberian theorem.

It follows by integration by parts thatZ 1

1

SðtÞ � t�w
dt

t
¼
1

w

Z 1

1

jzðtÞ j 2t�w dt:

Consequently, it is enough to show that

lim
w!1

ðw� 1Þm
2þ1ZE1;...;E2m;0ðs1; . . . ; s2m;wÞ ¼ g2ma2mm

2!;

where

g2m ¼
Ym�1
‘¼0

¼
‘!

ð‘þmÞ!
;

and a2m is the constant given in (2.5).

Let Uðs1; . . . ; s2m;wÞ denote the function defned by

1

w� 1
Rmðs1; . . . ; s2mÞ

Ym
i¼1

Y2m
j¼mþ1

zðsi þ sjÞ:

Then Conjecture 2.7 implies that

ZE1;...;E2m;0ðs1; . . . ; s2m;wÞ �
X
gEG0

2m

Uðgðs1; . . . ; s2m;wÞÞ ð2:21Þ

is holomorphic around ð12 ; . . . ;
1
2 ; 1Þ. The proof of Theorem 2.8 is an immediate

consequence of the following proposition.
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PROPOSITION 2.9. For m ¼ 1; 2; . . . ; let G0
2m denote the subgroup of G0

2m generated

by the involutions gij ¼ gi � gj; ði ¼ 1; . . . ;m and j ¼ mþ 1; . . . ; 2mÞ. Then we have

lim
w!1

lim
ðs1;...;s2mÞ!ð12;...;

1
2Þ

ðw� 1Þm
2þ1

X
gEG0

2m

Uðgðs1; . . . ; s2m;wÞÞ

24 35 ¼ a2m g2m m2!;

where

g2m ¼
Ym�1
‘¼0

‘!

ð‘þmÞ!
;

and a2m is the constant given in ð2:5Þ.

Proof. We start by taking the Taylor expansion of

Uðs1; . . . ; s2m;wÞ ¼ a2m
f 	ðs1; . . . ; s2mÞ

ðw� 1Þ
Qm

i¼1

Q2m
j¼mþ1ðsi þ sj � 1Þ

ð2:22Þ

around ðs1; . . . ; s2mÞ ¼ ð12 ; . . . ;
1
2Þ. Here

f 	ðs1; . . . ; s2mÞ ¼ 1 þ
X1
n1¼0

� � �
X1
n2m¼0

n1þ���þn2m51

kðn1; . . . ; n2mÞ s1 �
1

2

� �n1

� � � s2m �
1

2

� �n2m

;

(with kðn1; . . . ; n2mÞ 2 CÞ, will be a holomorphic function which is symmetric sepa-

rately with respect to the variables s1; . . . ; sm and smþ1; . . . ; s2m.

Now, make the change of variables si ¼
1
2þ ui for i ¼ 1; 2; . . . ; 2m, and

w ¼ vþ 1. Then, for i ¼ 1; . . . ;m and j ¼ mþ 1; . . . ; 2m, the involutions gij are
transformed to

ðu1; . . . ; ui; . . . ; um; . . . ; uj; . . . ; u2m; vÞ �!
gij

ðu1; . . . ;�uj; . . . ; um; . . . ;�ui; . . . ; u2m; ui þ uj þ vÞ:

Henceforth, we denote by G0
2m the group generated by the above involutions.

Then by (2.22), it is enough to prove that

lim
v 7! 0

lim
ðu1;...;u2mÞ! ð0;...;0Þ

vm
2þ1

X
g2G0

2m

Hf gðu1; . . . ; u2m; vÞð Þ

24 35 ¼ g2m m2!; ð2:23Þ

where

Hf ðu1; . . . ; u2m; vÞ ¼
1

v
�

f ðu1; . . . ; u2mÞQm
i¼1

Q2m
j¼mþ1ðui þ ujÞ

;

and f (which is simply related to f 	) is a certain holomorphic function and symmetric

separately with respect to the variables u1; . . . ; um and umþ1; . . . ; u2m. It also satisfies

f ð0; . . . ; 0Þ ¼ 1.
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The proof of the Proposition is an immediate consequence of the following

Lemma.

LEMMA 2.10. The limit ð2:23Þ exists.

Proof. Let f ¼
P

k50 fk, where fk (for k ¼ 0; 1; 2; . . .) is a homogeneous poly-

nomial of degree k and which is also symmetric separately with respect to the

variables u1; . . . ; um and umþ1; . . . ; u2m. Here f0 ¼ 1. It follows that Hf ¼
P

k50Hfk :

Since the action of the group G0
2m commutes with permutations of the variables

u1; . . . ; u2m, it easily follows thatX
g2G0

2m

Hfk gðu1; . . . ; u2m; vÞð Þ

is also symmetric separately with respect to the variables u1; . . . ; um and

umþ1; . . . ; u2m.

Define

Nfkðu1; . . . ; u2m; vÞ ¼

" Y1
d1¼0

� � �
Y1
d2m¼0

d1þ���þdm¼dmþ1þ���þd2m

ðvþ d1u1 þ � � � þ d2mu2mÞ

#
�

�
X
g2G0

2m

Hfk gðu1; . . . ; u2m; vÞð Þ:

Then Nfk is invariant under the group G0
2m, and it is symmetric separately in the

variables u1; . . . ; um, and umþ1; . . . ; u2m. Moreover, by checking the action of the

group G0
2m on the productYm

i¼1

Y2m
j¼mþ1

ðui þ ujÞ;

it follows that Nfk is a rational function

Nfk ¼
N	

fk

D	
fk

ð2:24Þ

with denominator

D	
fk
ðu1; . . .;u2m;vÞ¼

Ym
i¼1

Y2m
j¼mþ1

ðuiþujÞ
Y

14i<j4m

ðui�ujÞ
Y

mþ14i><j42m

ðui�ujÞ: ð2:25Þ

The function Nfk is, in fact, a polynomial in the variables u1; . . . ; u2m; v. To see this,

we first observe that, for 14 i < j4m or mþ 14 i < j4 2m,

N 	
fk
ð. . . ; ui; . . . ; uj; . . . ; vÞ ¼ �N	

fk
ð. . . ; uj; . . . ; ui; . . . ; vÞ: ð2:26Þ

This implies that

N	
fk
ð. . . ; ui; . . . ; ui; . . . ; vÞ ¼ 0
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which gives

ðui � ujÞ jN
	
fk
ðu1; . . . ; u2m; vÞ; ð2:27Þ

for 14 i < j4m or mþ 14 i < j4 2m. On the other hand, it can be observed that

D	
fk
ðu1; . . . ; u2m; vÞ ¼ �D	

fk
ðgijðu1; . . . ; u2m; vÞÞ; ð2:28Þ

for i ¼ 1; . . . ;m and j ¼ mþ 1; . . . ; 2m. Since the function Nfk is invariant under the

group G0
2m, it follows from (2.24), and (2.28) that

N	
fk
ðu1; . . . ; u2m; vÞ ¼ �N	

fk
ðgijðu1; . . . ; u2m; vÞÞ; ð2:29Þ

for 14 i < j4m or mþ 14 i < j4 2m. This together with (2.27) implies that

ðui þ ujÞ jN
	
fk
ðu1; . . . ; u2m; vÞ; ð2:30Þ

for 14 i4m and mþ 14 j ¼ 2m. Finally, it follows from (2.27) and (2.30) that for

RðvÞ > 0, the limit

lim
ðu1;...;u2mÞ 7! ð0;...;0Þ

X
g2G0

2m

Hfk gðu1; . . . ; u2m; vÞð Þ

exists. Our lemma is proved.

Now, set ui ¼ umþi ¼ i � E (for i ¼ 1; 2; . . . ;m� 1), um ¼ 0 and u2m ¼ m � E. By
induction over m, it can be checked that

fd1u1þ � � � þ d2mu2m jdi ¼ 0;1;d1þ � � � þ dm ¼ dmþ1þ � � � þ d2m ¼ f0;1; . . . ;m2g:

ð2:31Þ

From Lemma 2.10 and (2.31), it follows that for k ¼ 0; 1; 2; . . . ,X
g2G0

2m

Hfk gðu1; . . . ; u2m; vÞð Þ ¼
PkðE; vÞQm2

‘¼0ðvþ ‘EÞ
; ð2:32Þ

where PkðE; vÞ is a homogeneous polynomial of degree k in the two variables E, v.
Consequently

lim
v 7! 0

lim
E 7! 0

vm
2þ1

X
g2G0

2m

Hfk gðu1; . . . ; u2m; vÞð Þ ¼ 0

if k > 0, and the limit exists if k ¼ 0. Using that f0 ¼ 1, the proposition follows by

taking the residue at v ¼ 0 on both sides of (2.32).

3. Moments of Quadratic Dirichlet L-Functions

Let

wdðnÞ ¼

�
d

n

�
if d � 1 ðmod 4Þ,

4d

n

� �
if d � 2; 3 ðmod 4Þ,

8>>><>>>:
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denote Kronecker’s symbol which is precisely the Dirichlet character associated to

the quadratic field Qð
ffiffiffi
d

p
Þ. For RðsÞ > 1 we define

Lðs; wdÞ ¼
X1
n¼1

wdðnÞ
n3

;

to be the classical Dirichlet L-function associated to wd.
We shall always denote by

P
jdj a sum ranging over fundamental discriminants of

quadratic fields. We shall consider moments as x!1. Jutila [J] was the First to

obtain the momentsX
jdj4x

L
1

2
; wd

� �
 a1

6

p2
x logðx

1
2Þ ð3:1Þ

and

X
jdj4x

L
1

2
; wd

� �2
 2 �

a2
3!

6

p2
x log3ðx

1
2Þ ð3:2Þ

with

am ¼
Y
p

1� 1
p

	 
mðmþ1Þ
2

1þ 1
p

	 
 1� 1ffiffiffi
P

p

	 
�m
þ 1þ 1ffiffiffi

P
p

	 
�m
2

þ
1

p

0@ 1A; ðm ¼ 1; 2; . . .Þ:

ð3:3Þ

Subsequently, Soundararajan [So] showed that

X
jdj4x

L
1

2
; wd

� �3
 16 �

a3

6!

6

p2
x log6ðx

1
2Þ: ð3:4Þ

He also conjectured that

X
jdj4x

L
1

2
; wd

� �4
 768 �

a4
10!

6

p2
x log10ðx

1
2Þ: ð3:5Þ

Motivated by the fundamental work of Katz and Sarnak [K-S], who introduced

symmetry types associated to families of L-functions, the previous results (3.1),

(3.2), (3.4), (3.5), and calculations of Keating and Snaith [Ke-Sn-2] based on random

matrix theory, Conrey and Farmer have made the following conjecture.

CONJECTURE 3.1. For every positive integer m, and x!1,

X
jdj4x

L
1

2
; wd

� �m


6

p2
am �

Ym
‘¼1

‘!

ð2‘Þ!
� xðlog xÞM;

where M ¼
mðmþ1Þ
2 .
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3.1. THE MULTIPLE DIRICHLET SERIES FOR THE FAMILY OF QUADRATIC

L-FUNCTIONS

For w, s1, s2; . . . ; sm 2 C with RðwÞ > 1 and RðsiÞ > 1 ði ¼ 1; 2; . . . ;mÞ, consider the
absolutely convergent multiple Dirichlet series

Zðs1; s2; . . . ; sm;wÞ ¼
X
d

Lðs1; wdÞ � Lðs2; wdÞ � � �Lðsm; wdÞ
jdjw

ð3:6Þ

where the sum ranges over fundamental discriminants of quadratic fields.

Recently, (see [B-F-H-1]), for the special cases m ¼ 1; 2; 3 a new proof of Conjec-

ture 3.1, based on the meromorphic continuation of Zðs1; . . . ; sm;wÞ, was obtained.

Unfortunately, the method of proof breaks down when m5 4 because there are

not enough functional equations of Zðs1; . . . ; sm;wÞ to obtain its meromorphic

continuation slightly beyond the first significant polar divisor at w¼ 1, and, s1 !
1
2 ;

s2 !
1
2 ; . . . ; sm ! 1

2.

We shall show that Zðs1; . . . ; sm;wÞ (suitably modified by breaking it into two parts

and multiplying by appropriate gamma factors) satisfies the functional equations

ðs1; . . . ; sm;wÞ!
ai
ðs1; . . . ; 1� si; . . . ; sm;wþ si �

1
2Þ; ði ¼ 1; 2; . . . ;mÞ: ð3:7Þ

We then show that for RðsiÞ sufficiently large ði ¼ 1; 2; . . . ;mÞ, that Zðs1; . . . ; sm;wÞ
has a simple pole at w¼ 1, and that the residue has analytic continuation to the

region

RðsiÞ >
1

2
� E; ði ¼ 1; 2; . . . ;mÞ;

for any fixed E > 0. The residue of Zðs1; . . . ; sm;wÞ at w¼ 1 and s1 !
1
2 ; . . . ; sm ! 1

2

can be computed exactly and coincides with the constant in Conjecture 3.1. This is

the basis for Conjecture 3.6 given in Section 3.2.

In order to determine the residues and poles of Zðs1; . . . ; sm;wÞ, it is necessary to

introduce a modifed multiple Dirichlet series defined by

Z�
n ðs1; . . . ; sm;wÞ ¼

X
d�n ðmod 4Þ

�d>0

d�sq: free

Lðs1; wdÞ � � �Lðsm; wdÞ
jdjw

: ð3:8Þ

We set

Z�ðs1; . . . ; sm;wÞ ¼ Z�
1 ðs1; . . . ; sm;wÞ þ

þ 4�wðZ�
2 ðs1; . . . ; sm;wÞ þ Z�

3 ðs1; . . . ; sm;wÞÞ: ð3:9Þ

Further, we define

cZþðs1; . . . ; sm;wÞ ¼
Ym
i¼1

p�
si
2G

si
2

	 
 !
� Zþðsi . . . ; sm;wÞ ð3:10Þ
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and

cZ�ðs1; . . . ; sm;wÞ ¼
Ym
i¼1

p�
siþ1

2 G
si þ 1

2

� � !
� Z�ðs1; . . . ; sm;wÞ: ð3:11Þ

The following two propositions summarize the analytic properties of the func-

tions Z�.

PROPOSITION 3.2. For s > 0, the functions Z� can be meromorphically continued

to the domain

RðsiÞ > �s ði ¼ 1; 2; . . . ;mÞ; RðwÞ > 1þm � ð12þ sÞ:

The only poles in this region are at si ¼ 1, ði ¼ 1; . . . ;mÞ. Moreover, both cZ� are invari

ant under the finite abelian group Gm ðof 2m elementsÞ generated by the involutions

ðs1; . . . ; sm;wÞ �!
ai

ðs1; . . . ; 1� si; . . . ; sm;wþ si �
1
2Þ; ði ¼ 1; 2; . . . ;mÞ:

Proof. Note that the term corresponding to d ¼ 1 in the definition of Z� as a

Dirichlet series (see (3.8), (3.9)) contributes zðs1Þ � � � zðsmÞ which has poles at si ¼ 1 for
i ¼ 1; . . . ;m. The functional equation of Lðs; wdÞ (see [D])may be written in the form

Lðs; wdÞ ¼ p�
sþa
2 G

sþ a

2

	 

Lðs; wdÞ

¼ jDj
1
2�sLð1� s; wdÞ;

where a ¼ 0, 1 is chosen so that wdð�1Þ ¼ ð�1Þa, and

D ¼
d if d � 1 ðmod 4Þ
4d if d � 2; 3 ðmod 4Þ

�
is the conductor of wd. It follows from (3.12) that for RðsÞ > �s, and d > 1,

jLðs; wdÞj ¼ Oðjdj
1
2þsÞ; ð3:13Þ

where the O constant depends at most on JðsÞ. Plugging the estimate (3.13)
into the Definition (3.8) of Z�

n ðs1; s2; . . . ; sm;wÞ (with n ¼ 1; 2; 3) viewed as an
infinite series, we see that the series (with terms d > 1) converges absolutely

provided RðwÞ > 1þm � ð 12þ sÞ. This establishes the first part of Proposition 3.2.
Now, both cZ� are invariant under permutations of the variables s1; s2; . . . ; sm.

Therefore, to prove the invariance under the group Gm, it suffices to show the

invariance under the transformation a1, say. To show this invariance, we invoke
the functional equation (3.12) with s ¼ s1. The invariance under the transformation

a1 immediately follows. &
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PROPOSITION 3.3. The functions zð2wÞZ� can be meromorphically continued for

RðwÞ > 0 and RðsiÞ sufficiently large ði ¼ 1; 2; . . . ;mÞ. They are holomorphic in this

region except for a simple pole at w¼ 1 with residue

Res
w¼1

zð2wÞZþðs1; . . . ; sm;wÞ
$ %

¼ Res
w¼1

zð2wÞZ�ðs1; . . . ; sm;wÞ½ �

¼
1

2

X
n1;...;nm

n1���nm¼&

Q
pjn1���nm

ð1þ p�1Þ�1

ns11 � � � n
sm
m

:

Here & denotes any square integer, and the sum ranges over all m-tuples fn1; . . . ; nmg

of positive integers.

Proof. It follows from (3.8) that

Z�
1 ðs1; . . . ; sm;wÞ ¼

X
n1;...;nm

1

ns11 � � � n
sm
m

X
�>d0

d�1 ðmod 4Þ
d�sq: free

wdðn1 � � � nmÞ
jdjw

: ð3:14Þ

For any fixed m-tuple fn1; . . . ; nmg of positive integers, we may write

n1 � � � nm ¼ 2
cnN2M2 so that

� n is square-free

� pjN) pjn ð3:15Þ

� n and M are both odd and coprime:

It immediately follows from (3.15) that the inner sum in (3.14) can be rewritten as

X
�d>0

d�1 ðmod 4Þ
d�sq: free

wdðn1 � � � nmÞ
jdjw

¼
X
�d>0

d¼1 ðmod 4Þ
d�sq:freeðd;MÞ¼1

wdð2Þ
c
� wdðnÞ

jdjw
¼

X
�d>0

d�1 ðmod 4Þ
d�sq:free
ðd;MÞ¼1

w2ðd Þ
c
� wnðd Þ

jdjw

¼
1

2

X
�d>0

d�sq:free
ðd;2MÞ¼1

w2ðd Þ
c
� wnðd Þ

jdjw
þ
1

2

X
�d>0

d�sq:free
ðd;2MÞ¼1

w2ðd Þ
c
� w�1ðd Þ � wnðd Þ
jdjw

: ð3:16Þ

Here we have used the law of quadratic reciprocity

wdð2Þ ¼
n w2ðdÞ ¼ ð�1Þ

d2�1
8 if d � 1 ðmod 4Þ;

0 if d � 2; 3 ðmod 4Þ;

and

wdðnÞ ¼ wnðd Þ � ð�1Þ
ðd�1Þðn�1Þ

4 ; ðd; n; oddÞ:

Further, for d odd, 12 ð1þ w�1ðd ÞÞ is 1 or 0 according as d � 1 or 3 (mod 4). This
last assertion follows from the identity
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w�1ðd Þ ¼
�4

d

� �
¼ ð�1Þ

jd j�1
2 þ

sgnðd Þ�1
2 if d � 1 ðmod 2Þ,

0 if d � 0 ðmod 2Þ.

�
In order to complete the proof of Proposition 3.3 we require the following lemma.

LEMMA 3.4. Let w be a primitive quadratic Dirichlet character of conductor n, and

let b be any positive integer. If Lbðw; wÞ is the function defined by

Lbðw; xÞ ¼
X
d>0

d�sq:free
ðd;bÞ¼1

wðd Þ
dw

then zð2wÞLbðw; wÞ can be meromorphically continued to RðwÞ > 0. It is analytic every-
where in this region, unless n ¼ 1 ði.e., Lðw; wÞ ¼ zðwÞÞ, when it has exactly one simple

pole at w¼ 1 with residue

Res
w¼1

zð2wÞLbðw; wÞ½ � ¼
Y
pjb

1þ
1

p

� ��1
:

Proof. The proof of Lemma 3.4 is a simple consequence of the elementary

identity

Lbðw; wÞ ¼
Lðw; wÞ
zð2wÞ

�
Y
pjb

ð1þ wðpÞp�wÞ�1
Y
pjn

ð1� p2wÞ�1:

It immediately follows from (3.16) and Lemma 3.4 that

X
�d>0

d�1 ðmod 4Þ
d�sq:free

wdðn1 � � � nmÞ
jdjw

¼ 1
2L2Mðw; w

c
2 � wnÞ þ

1
2L2Mðw; w

c
2 � w�1 � wnÞ; ð3:17Þ

and that the right-hand side of (3.17) has a meromorphic continuation to <ðwÞ > 0.

Moreover, it is holomorphic in this region unless n ¼ 1 and c � 0 (mod 2), in which

case there is exactly one simple pole at w¼ 1 with residue

Res
w¼1

zð2wÞ �
X
�d>0

d�1 ðmod 4Þ
d�sq:free

wdðn1 � � � nmÞ
jdjw

2664
3775 ¼

1

2

Y
pj2M

1þ
1

p

� ��1
: ð3:18Þ

Now, if we sum both sides of (3.18) over all m-tuples fm1; . . . ;mng, it is clear that

there will only be a contribution to the residue coming from m-tuples where

m1 � � �mn ¼ &. Combining equations (3.14) and (3.18), and then removing the factor
1þ 2�1 when n1 � � � nm is odd gives
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Res
w¼1

zð2wÞ � Z�
1 ðs1; . . . ; sm;wÞ

$ %
¼
1

2

X
n1...nm

n1���nm¼&

Q
pj2n1���nm

ð1þ p�1Þ�1

ns11 � � � n
sm
m

¼
1

2

X
2jn1���nm
n1���nm¼&

Q
pjn1���nm

ð1þ p�1Þ�1

ns11 � � � n
sm
m

þ
1

3

X
2jn1���nm
n1���nm¼&

Q
pjn1���nm

ð1þ p�1Þ�1

ns11 � � � n
sm
m

: ð3:19Þ

In a completely analogous manner, we can also obtain

Res
w¼1

zð2wÞ � Z�
n ðs1; . . . ; sm;wÞ

$ %
¼
1

3

X
2jn1���nm
n1���nm¼&

Q
pjn1m

ð1þ p�1Þ�1

ns11 � � � n
sm
m

ð3:20Þ

for the cases v ¼ 2; 3.

The completion of the proof of Proposition 3.3 now immediately follows from

equations (3.9), (3.19) and (3.20) after separating the cases when the product

n1 � � � nm is even or odd. &

PROPOSITION 3.5. Let <ðsiÞ be sufficiently large for i ¼ 1; 2; . . . ;m. Then

Res
w¼1

zð2wÞ � Zþðs1; . . . ; sm;wÞ
$ %

¼ 1
2Rðs1; . . . ; smÞ �

Ym
i¼1

zð2siÞ
Y

14i<j4m

zðsi þ sjÞ;

where Rðs1; . . . ; smÞ can be holomorphically continued to the region RðsiÞ > 1
2� E

for some fixed E > 0. Further, R 1
2; . . . ;

1
2

� �
¼ am; where am is the constant given

in ð3:3Þ.

Proof. If f ðnÞ is a multiplicative function for which the sum
P1

n¼1 f ðnÞ converges

absolutely, then we have the Euler product identity

X1
n¼1

f ðnÞ ¼
Y
p

ð1þ f ð pÞ þ f ð p2Þ þ f ð p3Þ þ � � �Þ: ð3:20Þ

It now follows from Proposition 3.3 and (3.20) that

Res
w¼1

zð2wÞZþðs1;...;sm;wÞ
$ %

¼
1

2

Y
p

1þ 1þ
1

p

� ��1X1
m¼1

X
e1þ���þem¼2m
ei50;ði¼1;...;mÞ

p�ðe1s1þ���þemsmÞ

2664
3775;

where the product converges for <ðsiÞ >
1
2, (for i ¼ 1; 2; . . . ;m). On the other hand,

the function Rðs1; . . . ; smÞ defined by

MULTIPLE DIRICHLET SERIES AND MOMENTS OF ZETA AND L-FUNCTIONS 321

https://doi.org/10.1023/B:COMP.0000018137.38458.68 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000018137.38458.68


Y
p

1þ 1þ
1

p

� ��1X1
m¼1

X
e1þ���þem¼2m

ei50;ði¼1;...;mÞ

p�ðe1s1þ���þemsmÞ

2664
3775Ym

i¼1

zð2siÞ
�1

Y
14i<j4m

zðsiþsjÞ
�1

ð3:21Þ

is holomorphic for <ðsiÞ >
1
2� E; ði ¼ 1; 2; . . . ;mÞ for some fixed small E > 0. This

establishes the first part of Proposition 3.5.

Now, the number of terms in the inner sumX
e1þ���þem¼2m

ei 5 0;ði¼1;...;mÞ

p�ðe1s1þ���þemsmÞ

of formula (3.21) is precisely

dmð p
2mÞ ¼

ðmþ 2m� 1Þ!
ðm� 1Þ! � ð2mÞ!

:

If we specialize to s1 ¼ � � � ¼ sm ¼ s, we get

Y
p

1þ 1þ
1

p

� ��1X1
m¼1

X
e1þ���þem¼2m
ei50;ði¼1;...;mÞ

p�ðe1þ:���:þemÞ
s

2664
3775

¼
Y
p

1þ 1þ
1

p

� ��1X1
m¼1

dmðp
2mÞp�2ms

" #
:

It follows from (3.21) that for <ðsÞ5 1
2,

Rðs1; . . . ; sÞ ¼
Y
p

1þ 1þ
1

p

� ��1X1
m¼1

dmðp
2mÞp�2ms

" #
� zð2sÞ�M

and

R
1

2
; . . . ;

1

2

� �
¼
Y
p

1�
1

p

� �M

1þ 1þ
1

p

� ��1X1
m¼1

dmðp
2mÞp�m

 !" #
:

If we apply the binomial formula to ð1� p�
1
2Þ
�m

þ ð1þ p�
1
2Þ
�m in the definition

of am given in (3.3) we obtain Rð12; . . . ;
1
2Þ ¼ am. This completes the proof of

Proposition 3.5.
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3.2. A FUNDAMENTAL CONJECTURE FOR THE FAMILY OF QUADRATIC DIRICHLET

L-FUNCTIONS

In view of the invariance of cZ� under the group Gm, it follows (as in Section 2.3)

from Proposition 3.5 that the polar divisors of cZ� must contain the 2m hyperplanes

E1s1 þ � � � þ Emsm þ w�
E1 þ � � � þ Em þ 2

2
¼ 0; ð3:22Þ

where each Ei ¼ 0 or 1 for i ¼ 1; . . . ;m. All the hyperplanes (3.22) pass through the
point ð12; . . . ;

1
2; 1Þ. We propose the following conjecture.

CONJECTURE 3.6. The functions cZ� have meromorphic continuation to a tube

domain in C
mþ1 which contains the point ð12; . . . ;

1
2; 1Þ; and both these functions have the

same polar divisor. The part of the polar divisor passing through ð12; . . . ;
1
2; 1Þ consists of

all the hyperplanes ð3:22Þ. Moreover, the functions Z�ð12; . . . ;
1
2;wÞ are holomorphic for

<ðwÞ > 1.

THEOREM 3.7 For m even, Conjecture 3:6 implies the Keating–Snaith–Conrey–

Farmer Conjecture 3:1.

Proof. We need to again apply Stark’s version of the Wiener–Ikehara Tauberian

theorem as quoted in the proof of Theorem 2.8. Here we take SðxÞ ¼
P

jdj4x

Lð1=2; wdÞ
m. Writing SðxÞ as a Riemann–Stieltjes integral, it follows by integration by

parts, thatZ 1

1

SðtÞ � t�w
dt

t
¼
1

w

X
d

L 1
2 ; wd
� �m
jdjw

:

Since we have assumed m to be even, it follows from (3.8), (3.9) that Z�ð12 ; . . . ;
1
2;wÞ

is a Dirichlet series satisfying the conditions of the Tauberian theorem. To prove

Conjecture 3.1, it is enough to show that

lim
w!1

ðw� 1ÞMþ1Z� 1
2 ; . . . ;

1
2;w

� �
¼
3

p2
gmamM!;

where

M ¼
mðmþ 1Þ

2
; gm ¼

Ym
‘¼1

‘!

ð2‘Þ!
;

and am is the constant given in (3.3).

Let Tðs1; . . . ; sm;wÞ denote the function defined by

1

2ðw� 1Þ
Rðs1; . . . ; smÞ

Ym
i¼1

p�
siþa

2 G
si þ a

2

	 

zð2siÞ

Y
14i<j4m

zðsi þ sjÞ; ð3:23Þ

where a ¼ 0; 1 is determined by ð�1Þa ¼ �1. Then Conjecture 3.6 implies that

zð2wÞcZ�ðs1; . . . ; sm;wÞ �
X
a2Gm

Tðaðs1; . . . ; sm;wÞÞ ð3:24Þ
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is holomorphic around 1
2 ; . . . ;

1
2 ; 1

� �
. The Proof of Theorem 3.7 is an immediate

consequence of the following Proposition.

PROPOSITION 3.8. For m ¼ 1; 2; 3; . . . ; let Gm denote the direct product of m

groups of order 2 generated by the involutions ð3:7Þ. Let

Uðs1; . . . ; sm;wÞ ¼
1

w� 1
Rðs1; . . . ; smÞ

Ym
i¼1

zð2siÞ
Y

14i< j4m

zðsi þ sjÞ:

Then we have

lim
w!1

lim
ðs1;...;smÞ!ð12;...;

1
2Þ

ðw� 1ÞMþ1
X
a2Gm

Uðaðs1; . . . ; sm;wÞÞ

" #
¼
6

p2
amgmM!;

where

M ¼
mðmþ 1Þ

2
; gm ¼

Ym
‘¼1

‘!

ð2‘Þ!
;

and am is the constant given in ð3:3Þ.

Proof. We start by taking the Taylor expansion of

Uðs1; . . . ; sm;wÞ ¼
am

w� 1
�

f 	ðs1; . . . ; smÞQm
i¼1ð2si � 1Þ

Q
14i<j4mðsi þ sj � 1Þ

ð3:25Þ

around ðs1; . . . ; smÞ ¼ ð12 ; . . . ;
1
2Þ. Here

f 	ðs1; . . . ; smÞ ¼ 1þ
X1
‘1¼0

� � �
X1
‘m¼0

‘1þ���þ‘m51

kmð‘1; . . . ; ‘mÞ s1 �
1

2

� �‘1

� � � sm �
1

2

� �‘m

;

(with kmð‘1; . . . ; ‘mÞ 2 C), will be a holomorphic function which is symmetric func-

tion with respect to the variables s1; . . . ; sm.

Now, make the change of variables si ¼
1
2þ Ei for i ¼ 1; 2; . . . ;m, and w ¼ vþ 1.

The involutions (3.7) are transformed to

ðE1; . . . ; Ei; . . . ; Em; vÞ �!
ai
ðE1; . . . ;�Ei; . . . ; Em; vþ EiÞ; ði ¼ 1; 2; . . . ;mÞ:

Henceforth, we denote by Gm the group generated by the above involutions.

Then by (3.25), it is enough to prove that

lim
v!0

lim
ðE1;...;EmÞ!ð0;...;0Þ

vMþ1
X
a2Gm

Hf ðaðE1; . . . ; Em; vÞÞ

" #
¼ 2mgmM!; ð3:26Þ

where

Hf ðE1; . . . ; Em; vÞ ¼
1

v
�

f ðE1; . . . ; EmÞQm
i¼1

Ei
Q
14i<j4mðE1 þ EjÞ

;
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and f (which is simply related to f 	 ) is a certain holomorphic symmetric function

with respect to the variables E1; . . . ; Em. It satisfies f ð0; . . . ; 0Þ ¼ 1.
The proof of Proposition 3.8 is an immediate consequence of the following two

lemmas. &

LEMMA 3.9. The limit ð3:26Þ exists.

Proof. Let f ¼
P

k50 fk, where fk (for k ¼ 0; 1; 2; . . .) is a symmetric and homo-

geneous polynomial of degree k. Here f0 ¼ 1. It follows that Hf ¼
P

k50Hfk : Since

the action of the group Gm commutes with permutations of the variables E1; . . . ; Em,
it easily follows thatX

a2Gm

HfkðaðE1; . . . ; Em; vÞÞ

is also a symmetric function with respect to E1; . . . ; Em.
Define

NfkðE1; . . . ; Em; vÞ ¼
Ym
i¼1

Ei
Y

i4i<j4m

ðE2i ¼ E2j Þ

 ! X
a2Gm

Hfk ðaðE1; . . . ; Em; vÞÞ:

Then Nfk is a symmetric function in the variables E1; . . . ; Em, and it is a rational
function

Nfk ¼
N	

fk

D	
fk

ð3:27Þ

with denominator of the form

D	
fk
ðE1; . . . ; Em; vÞ ¼

Y1
d1¼0

� � �
Y1
dm¼0

ðvþ d1E1 þ � � � þ dmEmÞ: ð3:28Þ

It follows that

Nfkð. . . ; Ei; . . . ; Ej; . . . ; vÞ ¼ �Nfkð. . . ; Ej; . . . ; Ei; . . . ; vÞ; ð3:29Þ

which implies that

Nfkð. . . ; Ei; . . . ; Ej; . . . ; vÞ ¼ 0:

This gives

ðEj � EjÞ jN	
fk
ðE1; . . . ; Em; vÞ: ð3:30Þ

Furthermore, since
P

a2Gm
HfkðaðE1; . . . ; Em; vÞÞ is invariant under the group Gm, it

follows that

Nfkð. . . ; si; . . . ; vÞ ¼ �Nfk ð. . . ;�si; . . . ; vþ siÞ ð3:31Þ

which implies that Nfkð. . . ; 0; . . . ; vÞ ¼ 0: Consequently,

si jN
	
fk
ðE1; . . . ; Em; vÞ: ð3:32Þ
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Also, in the same manner, (3.29) and (3.31) imply that

ðsi þ sjÞ jN
	
fk
ðE1; . . . ; Em; vÞÞ: ð3:33Þ

Finally, it follows from (3.27), (3.28), (3.30), (3.32), and (3.33) that for RðvÞ > 0, the
limit

lim
ðE1;...;EmÞ!ð0;...;0Þ

X
a2Gm

HfkðaðE1; . . . ; Em; vÞÞ

exists. It further follows that if we set Ei ¼ i � E (for i ¼ 1; 2 . . . ;m) then for

K ¼ 0; 1; 2; 3; . . . ;

X
a2Gm

HfkðaðE1; . . . ; Em; vÞÞ ¼
PkðE; vÞQM
‘¼0ðvþ ‘EÞ

; ð3:34Þ

where PkðE; vÞ is a homogeneous polynomial of degree k in the two variables E; v.
Consequently

lim
v!0
lim
E!0

vMþ1
X
a2Gm

HfkðaðE1; . . . ; Em; vÞÞ ¼ 0

if k > 0, and the limit exists if k ¼ 0. This completes the proof of Lemma 3.9. &

LEMMA 3.10. Let

HðE1; . . . ; Em; vÞ ¼
1

v
�

1Qm
i¼1 Ei

Q
14 i<j4mðEi þ EjÞ

:

Then

lim
v!0

lim
ðE1;...;EmÞ!ð0;...;0Þ

X
a2Gm

HðaðE1; . . . ; Em; vÞÞ ¼ 2mgmM!:

Proof. We know from Lemma 3.9 that the above limit exists, so we can compute

the limit by setting Ej ¼ jE (for j ¼ 1; 2; . . . ;m) and letting E! 0. It follows from

(3.34) thatX
a2Gm

HðaðE; 2E; . . . ;mE; vÞÞ ¼
kmQM

‘¼0ðvþ ‘EÞ

for some constant km. By taking the reside at w¼ 0 on both sides, we have

1

m!

Y
14i<j4m

1

ðiþ jÞ
¼

km
M!

:

By induction over m, one can show that km ¼ 2mgmM!, and the lemma

follows.
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4. Cubic Moments of Quadratic L-series

As mentioned in the introduction, in the particular cases when m4 3 it is possible to

define an analog of the multiple Dirichlet series given in (3.6). In this analog the sum

is not restricted to fundamental discriminants, but ranges over all integers d. When

an appropriate definition is given for
Qm

i¼1 Lðsi; wdÞ for general d one can extend the
multiple Dirichlet series to a meromorphic function of s1; s2; . . . ; sm;w in C

mþ1. In

this section we will explicitly provide this continuation in the case m¼ 3 and

s1 ¼ s2 ¼ s3 ¼ s. This work relies heavily on the results of [B-F-H-1]. We will then

develop a sieving method analogous to that used in [G-H] to isolate fundamental

discriminants and will prove as a consequence Theorem 1.1.

4.1. SOME FOUNDATIONS

The L series zðsÞ3 can actually be associated to a certain Eisenstein series F on GLð3Þ,
and Lðs;FÞ ¼ zðsÞ3.
For future convenience, we will write

Lðs;F Þ ¼
X1
1

cðnÞ

ns
; ð4:1Þ

where cðnÞ ¼
P

d1d2d3¼n
1, and we have the Euler product decomposition

Lðs;F Þ ¼
Y
p

ð1� p�sÞ�3; ð4:2Þ

the product being over all primes p of Q.

As in the previous sections, let wd denote the primitive quadratic character associ-
ated to the quadratic field Qð

ffiffiffi
d

p
Þ. If F is twisted by wd, then the associated L-series

becomes

Lðs;F; wdÞ ¼ Lðs; wdÞ
3
¼
Y
p

ð1� wdð pÞp
�sÞ

�3; ð4:3Þ

and by (3.12) the functional equation is given by

ðjDj3Þs=2GdðsÞLðs;F; wdÞ ¼ ðjDj3Þð1�sÞ=2Gdð1� sÞLð1� s;F; wdÞ: ð4:4Þ

Here D ¼ 4d or D ¼ d is the conductor of wd and GdðsÞ denotes the product of

gamma factors.

The gamma factors (4.4), described in (3.12), depend only on the sign of d.

Although we will not require many explicit properties of the gamma factors, the

following upper bound will be convenient. For s1 > s2 and t real, it follows from

Stirling’s formula that for large jtj, independent of d,

jGdðs1 þ itÞj

jGdðs2 � itÞj
� ðjtj þ 1Þ3ðs1�s2Þ=2: ð4:5Þ

When all primes are included in the product (4.3) the functional equation (4.4) has

its optimal form. However, it is often convenient to omit factors corresponding to
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‘bad’ primes, for example those contained in S, a finite set of primes including 2.

Let M ¼
Q

p2S p. For such M;S, we denote the L-series with Euler factors

corresponding to primes dividing M removed as follows:

LMðs;FÞ ¼
Y
p=2S

ð1� p�sÞ�3 ¼ Lðs;F Þ
Y
p2S

ð1� p�sÞ3: ð4:6Þ

When twisted by wd, the L-series Lðs;F; wdÞ will have a perfect functional equa-
tion of the form (4.4) when wd is a primitive character. This corresponds to the
case where d is square free. It is very interesting to note that often, when d is

not square free, it is possible to complete Lðs;F; wdÞ by multiplying by a certain
Dirichlet polynomial in such a way that the resulting product has a functional

equation of precisely the same form (4.4), with D replaced by jdj or j4dj. For

the simplest example, with m¼ 1, see [G-H]. What is more remarkable is the fact

that some very stringent additional conditions can be imposed on the Dirichlet

polynomial.

To be more precise, let l1; l2 > 0, l1; l2 jM, and a1; a2 2 f1;�1g and let wa1l1 ; wa2l2 be
the quadratic characters corresponding to a1l1; a2l2 as defined above. We then

formulate the following collection of properties for two classes of Dirichlet poly-

nomials associated to F.

PROPERTY 4.1. For n; d positive integers, ðnd;MÞ ¼ 1, we write d ¼ d0d
2
1 , n ¼ n0n

2
1,

with d0; n square free and d1; n1 positive. Let cðnÞ denote the coefficients of Lðs;FÞ as

defined earlier.

For complex numbers A
ðaÞ
d;pe ;B

ðaÞ
d;pe ðdepending on d; a 2 Z; 14 e4aÞ, let Pða1l1Þd0;d1

ðsÞ;

Qða2l2Þ
n0;n1

ðwÞ be Dirichlet polynomials defined by

P
ða1l1Þ
d0;d1

ðsÞ ¼
Y
pakd1

ð1þ A
ðaÞ
d0�a1l1;p

p�s þ � � � þ A
ðaÞ
d0�a1l1;p6a

p�6asÞ

and

cðn0n
2
1ÞQ

ða2l2Þ
n0;n1

ðwÞ ¼ cðn0n
2
1Þ
Y
pbkn1

ð1þ B
ðbÞ
n0�a2l2;p

p�w þ � � � þ B
ðbÞ
n0�a2l2;p2b

p�2bwÞ:

We say that P;Q satisfy the conditions of Property 4:1 if the following identities hold:

d 3s1 P
ða1l1Þ
d0;d1

ðsÞ ¼ d
3ð1�sÞ
1 P

ða1l1Þ
d0;d1

ð1� sÞ; ð4:7Þ

nw1 cðn0n
2
1ÞQ

ða2l2Þ
n0;n1

ðwÞ ¼ n1�w1 cðn0n
2
1ÞQ

ða2l2Þ
n0;n1

ð1� wÞ ð4:8Þ

P
ða1l1Þ
d0l3;d1

ðsÞ ¼ P
ða1l1l3Þ
d0;d1

ðsÞ; Q
ða2l2Þ
n0l3;n1

ðwÞ ¼ Qða2l2l3Þ
n0;n1

ðwÞ; ð4:9Þ
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ðwhere d0l3; n0l3 are positive square free numbersÞ, and if in addition, the following

interchange of summation is valid for s and w having sufficiently large real parts:X
ðd;MÞ¼1

LMðs;F; wd0wa1l1Þwa2l2ðd0ÞP
ða1l1Þ
d0;d1

ðsÞ

dw

¼
X

ðn;MÞ¼1

LMðw; ~wn0wa2l2Þwa1l1ðn0Þcðn0n
2
1ÞQ

ða2l2Þ
n0;n1

ðwÞ

ns
: ð4:10Þ

Here ewn0 denotes the quadratic character with conductor n0 defined by ewn0 ð	Þ ¼ ð 	n0
Þ.

Recall 2jM, so ð2; n0Þ ¼ 1.

It was observed in [B-F-H-1] that the three properties (4.7), (4.8) and (4.10) were

sufficient to determine the polynomials P and Q, precisely, in the cases of GL(1),

GL(2), GL(3). This unique determination of P and Q corresponded to a finite group

of functional equations of the double Dirichlet series given in (4.10) and this in turn

made it possible to obtain an analytic continuation of the double Dirichlet series in

these three cases. It was also noted that for m5 4 the corresponding group of func-

tional equations becomes infinite and that simultaneously the polynomials P;Q are

no longer uniquely determined by the properties (4.7), (4.8), and (4.10). The space of

local solutions becomes one-dimensional in the case m¼ 4, and higher for m > 4.

In [B-F-H-1] a complete description of certain factors of the polynomials P;Q was

obtained for the case of m¼ 3 and an arbitrary automorphic form f on GL(3). These

were the factors corresponding to the ‘good’ primes, i.e., primes not dividing 2 or the

level of f. It was also verified that for sums over positive integers n; d relatively prime

to the ‘bad’ primes, the relations (4.7), (4.8), (4.9), and (4.10) hold. In addition, it was

verified that for fixed d ¼ d0d
2
1 and E > 0;RðsÞ5 1

2.

P
ða1l1Þ
d0;d1

ðsÞ � jdjE: ð4:11Þ

The implied constant depends only on E. This bound was then used to obtain the
analytic continuation of the double Dirichlet series on the left hand side of (4.10).

As a consequence, non vanishing results for quadratic twists of Lð12; f; wdÞ were
obtained and also, after taking a residue at w¼ 1, a new proof was obtained for

the analytic continuation of the symmetric square of f.

As the technique is new, there may be some advantage to presenting the details of

the analytic continuation argument specialized to the very concrete case where

Lðs; f; wdÞ ¼ Lðs;F; wdÞ ¼ Lðs; wdÞ
3, and we will do so below.

4.2 THE CUBIC MOMENT, CONTINUED

Our object will be to obtain the analytic continuation in ðs;wÞ, with

RðsÞ5 1
2;RðwÞ >

4
5, and an estimate for the growth in vertical strips w¼ nþ it (for

fixed n and s) of the double Dirichlet series

Zðs;wÞ ¼
X

D¼fund:disc

Lðs; wDÞ
3

jDjw
: ð4:12Þ
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To accomplish this, we will obtain the analytic properties of a building block: For

l1; l2 > 0; l1; l2jM and a1; a2 2 f1;�1g, we define

ZMðs;w; wa2l2; wa1l1Þ ¼
X

ðd;MÞ¼1

LMðs;F; wd0wa1l1 Þwa2l2 ðd0ÞP
ða1l1Þ
d0;d1

ðsÞ

dw
; ð4:13Þ

where we recall that we sum over d5 1 and use the decomposition d ¼ d0d
2
1 , with d0

square free and d1 positive.

The following proposition will provide a useful way of collecting the properties of

the multiple Dirichlet series ZMðs;w; wa2l2; wa1l1 Þ. For a positive integer M, define

DivðM Þ ¼ fa � l j a¼ � 1; 14 l; l jMg;

which has cardinality 2dðM Þ ¼ 2
P

djM 1. Let Z
!

Mðs;w; wa2l2; wDivðMÞÞ denote the

2dðM Þ by 1 column vector whose jth entry is ZMðs;w; wa2l2 ; w
ðjÞÞ, where wðjÞ

ð j ¼ 1; 2; . . . ; 2dðM Þ Þ ranges over the characters wa1l1 with a1 ¼ �1; 14 l1; l1 jM.

Then, we will prove

PROPOSITION 4.2. There exists a 2dðM Þ by 2dðM Þ matrix Fða2l2ÞðwÞ such that for

any fixed w, w 6¼ 1, and for any s with sufficiently large real part ðdepending on wÞY
pjðM=l2Þ

ð1� p�2þ2wÞ � Z
!

Mðs;w; wa2l2; wDivðMÞÞ

¼ Fða2l2ÞðwÞZ
!

Mðsþ w� 1=2; 1� w; wa2l2; wDivðMÞÞ:

The entries of Fða2l2ÞðwÞ, denoted by Fða2l2Þ
i;j ðwÞ, are meromorphic functions in C.

Proof. By Property 4.1,

ZMðs;w; wa2l2; wa1l1Þ ¼
X

ðn;MÞ¼1

LMðw; ~wn0wa2l2 Þwa1l1 ðn0Þcðn0n
2
1ÞQ

ða2l2Þ
n0;n1

ðwÞ

ns
: ð4:14Þ

Now

LMðw; ~wn0wa2l2 Þ ¼ LMðw; ~wn0wa2l2 Þ �
Y
pjM

ð1� ~wn0wa2l2 ð pÞp
�wÞ; ð4:15Þ

where LMðw;ewn0wa2l2Þ satisfies the functional equation
GEðwÞðn0l2Da2l2 Þ

w=2Lðw;ewn0wa2l2 Þ ¼ GEð1� wÞðn0l2Da2l2 Þ
ð1�wÞ=2Lð1� w;ewn0wa2l2 Þ:

ð4:16Þ

Here E ¼ ewn0wa2l2ð�1Þ,

GEðwÞ ¼
p�w=2Gðw=2Þ if E ¼ 1,
pðwþ1Þ=2Gððwþ 1Þ=2Þ if E ¼ �1,

�
ð4:17Þ

and

Da2l2 ¼
1 if a2l2 � 1 ðmod 4Þ
4 otherwise.

n
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Combining this with the functional equation for Q given in (4.8), we obtain

ZMðs;w; wa2l2; wa1l1 Þ ¼
X

a3¼1;�1

X
ðn;MÞ¼1;n�a3ð4Þ

GEða3a2l2Þð1� wÞðl2Dael2 Þ
1=2�w

GEða3a2l2ÞðwÞn
sþw�1=2

�

� wa1l1ðn0ÞLMð1� w; ~wn0wa2l2Þcðn0n
2
1ÞQ

ða2l2Þ
n0;n1

ð1� wÞ�

�
Y

pjðM=l2Þ

ð1� ~wn0wa2l2ðpÞp
�wÞ�

�
Y

pjðM=l2Þ

ð1� ~wn0wa2l2ðpÞp
�1þwÞ

�1:

Here EðaÞ denotes the sign of a. Note that we are leaving out terms in the product
where pjl2 as the character vanishes here.

Multiplying by
Q

pjðM=l2Þ
ð1� p�2þ2wÞ and reorganizing, we obtainY

pjðM=l2Þ

ð1�p�2þ2wÞ�ZMðs;w;wa2l2;wa1l1 Þ

¼
X

a3¼1;�1

GEða3a2l2Þð1�wÞ

GEða3a2l2ÞðwÞðl2Da2l2 Þ
w�1=2

X
l3;l4jðM=l2Þ;ðl4;2Þ¼1

mðl3Þwa2l2ðl3l4Þl
�w
3 l�1þw4 �

�
X

ðn;MÞ¼1;
n�a3 ð4Þ

A2ð1�w; ~wn0wa2l2 ÞLMð1�w; ~wn0wa2l2Þcðn0n
2
1ÞQ

ða2l2Þ
n0;n1

ð1�wÞwa1l1l3l4ðn0Þ

nsþw�1=2
;

where

A2ðw; ~wn0wa2l2 Þ ¼
1 if 2jl2,
1þ ~wn0wa2l2 ð2Þ2

�w if a2l2 � 1 ðmod 4Þ,
1� 2�2w if a2l2 � �1 ðmod 4Þ.

8<:
We have used here the fact that ewn0ðl3Þewn0 ðl4Þ ¼ wl3l4 ðn0Þ, and the identity

ð1� 2�2þ2wÞð1� ~wn0wa2l2ð2Þ2
�1þwÞ

�1
¼ A2ð1� w; ~wn0wa2l2 Þ;

for a2l2 � �1; 1 ðmod 4Þ.

Using w�1 to sieve congruence classes of n ðmod 4Þ:

1
2ð1þ a3w� 1ðn0ÞÞ ¼

1 if n0 � a3 ðmod 4Þ,
0 if n0 � �a3 ðmod 4Þ;

�
we finally obtain (in the case of a2l2 � 1ðmod 4Þ)Y

pjðM=l2Þ

ð1�p�2þ2wÞ �ZMðs;w;wa2l2 ;wa1l1Þ

¼
1

2
� l1=2�w2 �

X
l3;l4jðM=l2Þ

mðl3Þwa2l2ðl3l4Þl
�w
3 l�1þw4

X
a3¼1;�1

GEða3a2l2Þð1�wÞ

GEða3a2l2ÞðwÞ
�

�ðZMðsþw�1=2;1�w;wa2l2 ;wa1l1l3l4 Þþ

þ a3ZMðsþw�1=2;1�w;wa2l2 ;w�a1l1l3l4ÞÞ:

ð4:18Þ
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If a2l2 � �1; 2 ðmod 4Þ, we have a similar expression. Actually, it can be easily

observed that just the behavior at the finite place 2 changes.

This completes the proof of Proposition 4.2. &

The function ZMðs;w; wa2l2 ; wa1l1Þ defined in (4.13) also possesses a functional equa-
tion as s! 1� s. To describe this, let dðMÞ be as before, and let

Z
!

Mðs;w; wDivðMÞ; wa1l1Þ denote the 2dðMÞ by 1 column vector whose jth entry is

ZMðs;w; wðjÞ; wa1l1 Þ, where wð jÞðj ¼ 1; 2; . . . ; 2dðMÞÞ ranges over the characters wa2l2
with a2 ¼ �1; 14 l2; l2jM.

Then we have the following.

PROPOSITION 4.3. There exists a 2dðMÞ by 2dðMÞ matrix Cða1l1ÞðsÞ such that for

any fixed s, s 6¼ 1, and for any w with sufficiently large real part ðdepending on sÞ

Z
!

Mðs;w; wDivðMÞ; wa1l1Þ �
Y

pjðM=l1Þ

ð1� p�2þ2sÞ3

¼ Cða1l1ÞðsÞZ
!

Mð1� s;wþ 3s� 3=2; wDivðMÞ; wa1l1 Þ:

The entries of Cða1l1ÞðsÞ, denoted by Cða1l1Þ
i;j ðsÞ, are meromorphic functions in C.

Proof. First, write

LMðs;F; wd0wa1l1 Þ ¼ Lðs;F; wa1d0l1Þ �
Y

pjðM=l1Þ

ð1� wa1d0l1 ð pÞp
�sÞ

3

¼ Lðs;F; wa1d0l1Þ �
X

l j ðM=l1 Þ

mðl Þwa1d0l1 ðl Þl
�s

 !3
: ð4:19Þ

By (4.4)

Lðs;F; wa1d0l1Þ ¼ ðd0l1Da1d0l1 Þ
3=2�3s GEð1� sÞ3

GEðsÞ
3

Lð1� s;F; wa1d0l1 Þ; ð4:20Þ

where GE and Da1d0l1 is given by (4.17) and E equals the sign of a1d0l1.
On the other side of the functional equation (4.20), we have

Lð1� s;F; wa1d0l1 Þ ¼ LMð1� s;F; wa1d0l1 Þ �
Y

pjðM=l1Þ

ð1� wa1d0l1 ð pÞp
�1þsÞ

�3:

In view of the elementary identityY
pjðM=l1Þ

ð1� p�2þ2sÞ ¼ A2ð1� s; wa1d0l1 Þ
Y

pjðM=l1Þp 6¼2

ð1þ wa1d0l1 ð pÞp
�1þsÞ�

�
Y

pjðM=l1Þ

ð1� wa1d0l1ð pÞp
�1þsÞ;

where

A2ðs; wa1d0l1Þ ¼
1 if 2jl1,
1þ wa1d0l1 ð2Þ2

�s if a1d0l1 � 1 ðmod 4Þ,
1� 2�2s if a1d0l1 � �1 ðmod4Þ,

8<: ð4:21Þ
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it immediately follows that

Lð1� s;F; wa1d0l1Þ �
Y

pjðM=l1Þ

ð1� p�2þ2sÞ3

¼ LMð1� s;F; wa1d0l1Þ � A2ð1� s;F; wa1d0l1Þ
3
�
Y

pjðM=l1 Þ

p 6¼2

ð1þ wa1d0l1 ðpÞp
�1þsÞ

3

¼ LMð1� s;F; wa1d0l1Þ � A2ð1� s; wa1d0l1Þ
3
�

X
ljðM=l1 Þ

ðl;2Þ¼1

wa1d0l1ðl Þl
�1þs

0B@
1CA
3

:

Combining the above with (4.7), (4.13), (4.20), we obtain

ZMðs;w;wa2l2 ;wa1l1Þ �
Y

pjðM=l1Þ

ð1�p�2þ2sÞ3

¼
X

ðd;MÞ¼1

ðl1Da1d0l1 Þ
3=2�3sGEða1Þð1� sÞ3

GEða1ÞðsÞ
3

�
LMð1� s;F;wa1d0l1Þ

dwþ3s�3=2
�P

ða1l1Þ
d0;d1

ð1� sÞwa2l2 ðd0Þ�

�
X

ljðM=l1Þ

mðlÞwa1d0l1ðlÞl
�s

 !3
�A2ð1� s;wa1d0l1 Þ

3
�

X
ljðM=l1 Þ

ðl;2Þ¼1

wa1d0l1ðlÞl
�1þs

0B@
1CA
3

:

ð4:22Þ

Write

X
ljðM=l1Þ

mðl Þwa1d0l1 ðl Þl
�s

 !3
¼

X
lajðM=l1Þ

mðlaÞwa1d0l1 ðlaÞl
�s
a �

X
lbjðM=l1Þ

mðlbÞwa1d0l1ðlbÞl
�s
b �

X
lgjðM=l1Þ

mðlgÞwa1d0l1 ðlgÞl
�s
g ;

and similarly, write

X
ljðM=l1Þ

ðl;2Þ¼1

wa1d0l1 ðl Þl
�1þs

0B@
1CA
3

¼
X

l~a jðM=l1 Þ

ðl~a ;2Þ¼1

wa1d0l1ðl~aÞl
�1þs
~a �

X
l ~b
jðM=l1 Þ

ðl ~b
;2Þ¼1

wa1d0l1ðl ~bÞl
�1þs
~b

�

�
X

l~g jðM=l1Þ

ðl~g ;2Þ¼1

wa1d0l1 ðl~gÞl
�1þs
~g :

It is quite clear that (4.22) decomposes into a linear combination of the functions

ZMð1� s;wþ 3s� 3=2; wð	Þ; wa1l1Þ
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depending upon the congruence class of a1l1 modulo 4. Since the shape of the final

result is very similar in all the three cases (as in the previous proposition, just the

behavior at the finite place 2 changes), we will just consider the case of

a1l1 � �1 ðmod 4Þ, say. The character w	 takes one of the two forms wlalblgl ~al ~bl~gwa2l2 ;
w�1wlalblgl~al ~bl~gwa2l2 . Note that for d0 � 1 ðmod 4Þ; wa1d0l1 ð2Þ ¼ 0 and wa1d0l1ðl

0Þ ¼

wa1l1ðl
0Þwd0 ðl

0Þ ¼ wa1l1ðl
0Þwl 0 ðd0Þ, for ðl 0; 2Þ ¼ 1. For d0 � �1 ðmod 4Þ and any

l > 0; wa1d0l1 ðlÞ ¼ wlða1l1Þwlðd0Þ. Using this and the character w�1 to separate the con-
gruence classes, 1;�1 ðmod 4Þ, we combine (4.22) with the definition of ZM in (4.13)

to obtain

ZMðs;w; wa2l2 ; wa1l1 Þ �
Y

pjðM=l1Þ

ð1� p�2þ2sÞ3

¼ l3=2�3s1

GEða1Þð1� sÞ3

GEða1ÞðsÞ
3

�
1

2

*
43=2�3sð1� 2�2þ2sÞ3�

�
X

lajðM=l1Þ;ð2;laÞ¼1

mðlaÞwa1l1ðlaÞl
�s
a �

X
lbjðM=l1Þ;ð2;lbÞ¼1

mðlbÞwa1l1 ðlbÞl
�s
b �

�
X

lgjðM=l1Þ;ð2;lgÞ¼1

mðlgÞwa1l1 ðlgÞl
�s
g �

X
l~ajðM=l1Þ;ð2;l~aÞ¼1

wa1l1 ðl~aÞl
�1þs
~a �

�
X

l ~bjðM=l1Þ;ð2;l ~bÞ¼1

wa1l1 ðl ~bÞl
�1þs
~b

�
X

l~gjðM=l1Þ;ð2;l~gÞ¼1

wa1l1ðl~gÞl
�1þs
~g �

� ðZMð1� s;wþ 3s� 3=2; wlalblgl~al ~bl~gwa2l2 ; wa1l1 Þ þ

þ ZMð1� s;wþ 3s� 3=2; w�1wlalblgl~al ~bl~gwa2l2 ; wa1l1ÞÞþ

þ
X

lajðM=l1Þ

mðlaÞwla ða1l1Þl
�s
a �

X
lbjðM=l1Þ

mðlbÞwlbða1l1Þl
�s
b �

X
lgjðM=l1Þ

mðlgÞwlg ða1l1Þl
�s
g �

�
X

l~ajðM=l1Þ

wl~a ða1l1Þl
�1þs
~a �

X
l ~bjðM=l1Þ

wl ~bða1l1Þl
�1þs
~b

�
X

l~gjðM=l1Þ

wl~g ða1l1Þl
�1þs
~g �

�ðZMð1� s;wþ 3s� 3=2; wlalblgl~al ~bl~gwa2l2 ; wa1l1Þ �

� ZMð1� s;wþ 3s� 3=2; w�1wlalblgl~al ~bl~gwa2l2 ; wa1l1ÞÞ
+
: ð4:23Þ

This rather complicated formula is the content of Proposition 4.3, where it is expres-

sed in a considerably more compact way.

This completes the proof of Proposition 4.3. &

4.3. THE ANALYTIC CONTINUATION OF ZMðs;w; wa2 l2 ; wa1 l1 Þ

We begin by recalling some fundamental concepts from the theory of several

complex variables. Our basic reference is Hörmander [Hö].

334 ADRIAN DIACONU ET AL.

https://doi.org/10.1023/B:COMP.0000018137.38458.68 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000018137.38458.68


DEFINITION 4.4. An open set R in C
m is called a domain of holomorphy if there

are no open sets R1 and R2 in C
m such that Ø 6¼ R1 � R2 \ R;R2 is connected and

not contained in R, and for any holomorphic function f in R there exists a holo-

morphic function f2 in R2 satisfying f ¼ f2 in R1.

DEFINITION 4.5. An open set O in C
m is called a tube if there is an open set o in

Rm, called the base of O, such that O ¼ fs jRðsÞ 2 og.

We will denote by R̂, the convex hull of a subset R � Rm or C
m. It is easy to see

that the convex hull Ô of a tube O is a tube with base ô.

PROPOSITION 4.6. If O is a connected tube, then any holomorphic function in O can

be extended to a holomorphic function f̂ in Ô.

PROPOSITION 4.7. Let R and R 0 be domains of holomorphy in C
m and C

n,

respectively, and let f be an analytic map of R into C
n. Then the set

Rf ¼ fs 2 R j f ðsÞ 2 R 0g

is a domain of holomorphy.

In order to analytically continue ZMðs;w; wa2l2 ; wa1l1Þ as a function of two complex
variables s;w, we repeatedly apply the functional equations given in Propositions

4.2, 4.3.

Accordingly, we define two involutions on C �C:

a: ðs;wÞ ! ð1� s;wþ 3s� 3=2Þ and b : ðs;wÞ ! ðsþ w� 1=2; 1� wÞ:

Then a; b generate D12, the dihedral group of order 12, and a2¼ b2¼ 1;
ðabÞ6¼ ðbaÞ6¼ 1. Note that ab 6¼ ba.
We will find it useful in the following to define three regions R1;R2;R3 as follows:

Write s;w as s¼ sþ it; w¼ nþ ig.
The tube region R1 is defined to be the set of all points ðs;wÞ such that ðs; nÞ lie

strictly above the polygon determined by ð0; 5=2Þ; ð3=2; 0Þ, and the rays

n ¼ �3sþ 5=2 for s4 0 and n ¼ �sþ 3=2 for s5 3=2. Note that R1 is the convex

closure of the region given in Figure 1 which is bounded by the dotted lines and the

two rays n ¼ �3sþ 5=2 for s4 0 and n ¼ �sþ 3=2 for s5 3=2, which is the actual

region that comes up in the proof of Propositions 4.8, 4.9.

The tube region R2 is defined to be the set of all points ðs;wÞ such that ðs; nÞ lie
strictly above the line segment connecting ð�1=2; 3Þ and ð3=2; 0Þ and the rays

n ¼ �2sþ 2 for s4 � 1=2, and n ¼ �sþ 3=2 for s5 3=2.

The tube region R3 is defined to be the set of all points ðs;wÞ such that ðs; nÞ lie
strictly above the line n ¼ �2sþ 2.
These regions are related by the involutions a; b as described in the following

proposition. The proof, a simple exercise, is omitted.
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PROPOSITION 4.8. The regions R1 and aðR1Þ have a nonempty intersection, and the

convex hull of R1 [ aðR1Þ equals R2. Similarly, R2 and bðR2Þ have a nonempty

intersection and the convex hull of R2 [ bðR2Þ equals R3. Finally, R3 and aðR3Þ have a
nonempty intersection and the convex hull of R3 [ aðR3Þ equals C

2.

Figure 1.

Figure 2.
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Let

Pðs;wÞ ¼ ðs� 1Þ3ðw� 1Þ: ð4:24Þ

We will begin by demonstrating the following proposition:

PROPOSITION 4.9. Let R1 be the tube region defined above. The function

Pðs;wÞZMðs;w; wa2l2 ; wa1l1 Þ

is analytic in R1.

Proof. Consider first the left-hand side of the expression for ZMðs;w; wa2l2 ; wa1l1 Þ
given in (4.10). If the sum were restricted only to square free d ¼ d0, then the usual

Phragmen–Lindelöf bounds or Lðs; wd0Þ would imply absolute convergence for n > 1
when s > 1, for n > ð�3=2Þsþ 5=2 when 04s4 1 and for n > �3sþ 5=2 when
s < 0. Because we have the bound (4.11) and functional equation (4.7) applied to

P
ða1;l1Þ
d0;d1

ðsÞ, precisely the same estimates apply as we sum over all d. Consequently,

ZMðs;w; wa2;l2 ; wa1;l1 Þ converges above the given lines, and the factor ðs� 1Þ
3 in Pðs;wÞ

cancels the pole at s ¼ 1.

Noting that both sides of the expression converge when n; s > 1, we now change

the order of summation and examine the right-hand side. Here the coefficients cðnÞ

Figure 3.
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are order 3 divisor functions and are bounded above by nc for any E > 0. Con-
sequently, applying Phragmen–Lindelöf again to Lðw; wn0 Þ and the corresponding
estimate and functional equations for cðn0n

2
1ÞQ

ða2l2Þ
n0;n1

ðwÞ, we obtain convergence of

ZMðs;w; wa2l2 ; wa1l1 Þ for s > 1 when n > 1, for s > ð�1=2Þnþ 3=2 when 04n4 1

and s > �nþ 3=2 when n < 0. The factor w� 1 in Pðs;wÞ cancels the pole at

w¼ 1. These regions overlap when n; s > 1, and thus by Proposition 4.6,

ZMðs;w; wa2l2 ; wa1l1 ÞPðs;wÞ has an analytic continuation to the convex closure of
the regions, which is R1 described above.

This completes the proof of Proposition 4.14. &

Our plan is now to apply the involutions a; b; a in that order to R1, and use

Propositions 4.2 and 4.3 to extend the analytic continuation to C
2. To aid in this,

it will be useful to introduce some additional notation to make the content of these

propositions a bit clearer and easier to apply. Let

Aðs;wÞ � AMðs;wÞ ¼
Y
pjM

ð1� p�2þ2sÞ3

and

Bðs;wÞ � BMðs;wÞ ¼
Y
pjM

ð1� p�2þ2wÞ; ð4:25Þ

and let ~Cða1l1Þðs;wÞ ¼ Cða1l1ÞðsÞ
Q

pjl1
ð1� p�2þ2sÞ3; ~Fða2l2Þðs;wÞ ¼ Fða2l2ÞðwÞ

Q
pjl2
ð1�

p�2þ2wÞ:

The following is a reformulation of the content we require now from Propositions

4.2 and 4.3. For ðs;wÞ such that both sides are contained in a connected region of

analytic continuation for Pðs;wÞZMðs;w; wa2l2 ; wa1;l1 Þ

Aðs;wÞZ
!

Mðs;w; wDivðMÞ; wa1l1Þ ¼
~Cða1l1Þðs;wÞZ

!

Mðaðs;wÞ; wDivðMÞ; wa1l1 Þ ð4:26Þ

and

Bðs;wÞZ
!

Mðs;w; wa2l2 ; wDivðMÞÞ

¼ ~Fða2l2Þðs;wÞZ
!

Mðbðs;wÞ; wa2l2 ; wDivðMÞÞ: ð4:27Þ

&

The following proposition will now complete the analytic continuation of

ZMðs;w; wa2l2 ; wa1l1 Þ.

PROPOSITION 4.10. Let

Pðs;wÞ ¼ s3ðs� 1Þ3ðsþ w� 3=2Þ3ð2sþ w� 1Þ3ðsþ w� 1=2Þ3ð2sþ w� 2Þ3�

� wðw� 1Þð3sþ w� 5=2Þð3sþ 2w� 3Þð3sþ w� 3=2Þ:
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Then the following product has an analytic continuation to an entire function in C
2:

~ZMðs;w; wa2l2 ; wa1l1 Þ :¼ Aðs;wÞAðaðs;wÞÞAðbðs;wÞÞAðbaðs;wÞÞBðs;wÞ�

� Bðaðs;wÞÞPðs;wÞZMðs;w; wa2l2 ; wa1l1Þ:

Proof. In Proposition 4.9 we established the continuation of ZMðs;w; wa2l2 ; wa1l1 Þ
Pðs;wÞ in R1. As a2 ¼ 1 and ~Cða1l1Þðs;wÞ is meromorphic in C

2, it follows that

~Cða1l1Þðs;wÞZ
!

Mðaðs;wÞ; wDivðMÞ; wa1;l1ÞPðaðs;wÞÞ

is a meromorphic function in aðR1Þ. From (4.23), we observe that poles can just

occur at the points s ¼ 1; 3; 5; . . . or s ¼ 2; 4; 6; . . . (depending on Eða1ÞÞ. However,
except for the possible pole at s ¼ 1, all the others are canceled by the trivial zeros

of Lð1� s; wd0Þ. We can conclude from Proposition 4.9 and (4.26) that

Aðs;wÞPðs;wÞPðaðs;wÞÞZ!
Mðs;w; wDivðMÞ; wa1l1Þ is analytic in R1 [ aðR1Þ;R1 and

aðR1Þ having a substantial intersection (containing RðsÞ;RðwÞ > 1). Thus by Propo-
sition 4.6, this function is analytic in R2, the convex hull of the union.

Since b2 ¼ 1 and ~Fða2l2Þðs;wÞ is moromorphic in C
2, it follows from what we have

just proved that

~Fða2l2Þðs;wÞAðbðs;wÞÞPðbðs;wÞÞPðabðs;wÞÞZ
!

Mðbðs;wÞ; wa2l2 ; wDivðMÞÞ

is a meromorphic function in bðR2Þ. As before, all the poles, except the possible one
at w¼ 1, of ~Fða2l2Þðs;wÞ are canceled by trivial zeros of L-functions. From (4.27), we

conclude that

Aðs;wÞAðbðs;wÞÞBðs;wÞPðs;wÞPðaðs;wÞÞPðbðs;wÞÞPðabðs;wÞÞZ
!

Mðs;w;wa2l2 ;wDivðMÞÞ

ð4:28Þ

is an analytic function in R2 [ bðR2Þ. As this has a non-empty intersection, it follows
from Proposition 4.6 again that (4.28) is analytic in R3, the convex hull of

R2 [ bðR2Þ.
To complete the argument, apply a to (4.26), obtaining

Aðaðs;wÞÞZ
!

Mðaðs;wÞ; wDivðMÞ; wa1l1 Þ ¼
~Cða1l1Þðaðs;wÞÞZ

!

Mðs;w; wDivðMÞ; wa1l1 Þ:

Multiplying the above by Aðs;wÞAðbðs;wÞÞBðs;wÞPðs;wÞPðaðs;wÞÞPðbðs;wÞÞ
Pðabðs;wÞÞ and applying (4.28), we see that

Aðs;wÞAðaðs;wÞÞAðbðs;wÞÞBðs;wÞPðs;wÞPðaðs;wÞÞPðbðs;wÞÞ�

� Pðabðs;wÞÞZ
!

Mðaðs;wÞ; wDivðMÞ; wa1l1 Þ
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is analytic for ðs;wÞ 2 R3. Replacing ðs;wÞ by aðs;wÞ, we obtain

Aðs;wÞAðaðs;wÞÞAðbðs;wÞÞAðbaðs;wÞÞBðs;wÞBðaðs;wÞÞPðs;wÞPðaðs;wÞÞ�

� Pðbðs;wÞÞPðbaðs;wÞÞPðabðs;wÞÞPðabaðs;wÞÞZ
!

Mðs;w; wDivðMÞ; wa1l1 Þ

is analytic for ðs;wÞ 2 aðR3Þ. Combining this with the fact that (4.28) is analytic in
R3, we obtain the analytic of

Aðs;wÞAðaðs;wÞÞAðbðs;wÞÞAðbaðs;wÞÞBðs;wÞBðaðs;wÞÞPðs;wÞPðaðs;wÞÞ �

�Pðbðs;wÞÞPðbaðs;wÞÞPðabðs;wÞÞPðabaðs;wÞÞZ
!

Mðs;w;wDivðMÞ;wa1l1Þ

in R3 [ aðR3Þ. As this has a nonempty intersection, it follows from Proposition 4.6
again that the above is analytic in C

2, the convex hull of R3 [ bðR3Þ.
In fact, Pðabðs;wÞÞ;Pðabaðs;wÞÞ have one factor in common: 2wþ 3s� 3, and so

in the last step we included one unnecessary multiple of 2wþ 3s� 3. Removing this,

we complete the proof of Proposition 4.10. &

4.4. AN ESTIMATE FOR ZMð
1
2 ;w; wa2 l2 ; wa1 l1 Þ IN VERTICAL STRIPS

In this section we will use the analytic continuation and functional equations (4.26),

(4.27) for Z
!

Mðs;w; wDivðMÞ; wa1l1Þ to locate poles and obtain an estimate for the
growth of this function in a vertical strip. Before doing this, however, we need some

additional notation.

Let Z
!

Mðs;wÞ denote the 4dðMÞ
2-dimensional column vector consisting of the

concatenation of the 2dðMÞ column vectors Z
!

Mðs;w; wa2l2 ; wDivðMÞÞ for a2 2 f1;�1g

and all l2jM. Then by Propositions 4.2 and 4.3, combined with (4.26), (4.27), there

exist 4dðMÞ
2 by 4dðMÞ

2 matrices FMðs;wÞ;CMðs;wÞ such that

AMðs;wÞZ
!

Mðs;wÞ ¼ CMðs;wÞZ
!

Mðaðs;wÞÞ ð4:29Þ

and

BMðs;wÞZ
!

Mðs;wÞ ¼ FMðs;wÞZ
!

Mðbðs;wÞÞ ð4:30Þ

Here AMðs;wÞ;BMðs;wÞ are given by (4.25). The matrices FMðs;wÞ;CMðs;wÞ are

constructed from blocks of ~Fða2l2Þðs;wÞ and ~Cða1l1Þðs;wÞ on the diagonal.

Next, we use Proposition 4.7 to show that the function ~ZMð1=2;w; wa2l2 ; wa1l1 Þ,
defined in Proposition 4.10, is of finite order. Although it seems to be a one-variable

problem, the theory of several complex variables is still needed in the proof.

PROPOSITION 4.11. The entire function

~ZM
1

2
;w; wa2l2 ; wa1l1

� �
is of the first order.
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Proof. First, the convexity bound Lð1=2; wd0Þ �E d
1
4þE
0 together with (4.11), implies

that

ZM
1

2
;w; wa2l2 ; wa1l1

� �
�E 1;

for RðwÞ ¼ n > 7
4þ E. Applying (4.29) and (4.30) several times in succession, we

obtain

Z
!

Mðs;wÞ ¼ BMðs;wÞ
�1FMðs;wÞAMðbðs;wÞÞ

�1CMðbðs;wÞÞBMðabðs;wÞÞ
�1
�

� FMðabðs;wÞÞAMðbabðs;wÞÞ
�1CMðbabðs;wÞÞBMððabÞ

2
ðs;wÞÞ�1�

� FMððabÞ
2
ðs;wÞÞZ

!

Mðs; 5=2� 3s� wÞ:

For s ¼ 1, we observe that Z
!

Mð1=2;wÞ is related to Z
!

Mð1=2; 1� wÞ by the func-

tional equation (4.31). Using Stirling’s formula, we can bound from above the entries

of the right hand side matrices in (4.31), obtaining

ZM
1

2
; nþ it; wa2l2 ; wa1l1

� �
�E ð1þ jtjÞC;

where C is an absolute positive constant and n < � 3
4� E.

The proof of Proposition 4.11 is based on an application of Proposition 4.7 to the

function f:C2
! C, defined by

f ðs;wÞ ¼ Gðsþ 5ÞGðwþ 5Þ ~ZMðs;w; wa2l2 ; wa1l1Þ:

Now let O0 be the tube region whose base is given in Figure 1. This tube already
appeared at the end of the proof of Proposition 4.9 (its convex hull is R1). Reflecting

several times under a; b; a; b . . ., until it stabilizes and then taking the union, we
obtain a tube whose base is R2 with a hole in the middle (see Figure 4 below).

This hole is a tube with base a polygon, which lies inside the open ball Bð0; 4Þ (of

radius 4 centered at the origin) in R2. The function ~ZMðs;w; wa2l2 ; wa1l1 Þ is obviously
of polynomial growth in =ðsÞ and =ðwÞ as long as ðs;wÞ 2 O0, and s; n are both boun-
ded. Applying Stirling’s formula in equations (4.18) and (4.23), we observe that the

same holds when a; b are applied. Combining this with Stirling’s formula, we
conclude that the function f ðs;wÞ is bounded in the tube O 0 with base the annulus

o 0 ¼ fðs; nÞ 2 R2
j 16 < s2 þ n2 < 25g. See Figure 5 below.

Let R � C
2 be the tube whose base is Bð0; 5Þ in R2, and let R 0 ¼ Bð0;mÞ 2 C,

where m is an upper bound for f on the annulus O 0. Since Bð0; 5Þ in R2 is a convex

set, it follows that R is a domain of holomorphy. Obviously, R 0 is also a domain of

holomorphy. Applying Proposition 4.7, it follows that

Gðsþ 5ÞGðwþ 5Þ ~ZMðs;w; wa2l2 ; wa1l1Þ

MULTIPLE DIRICHLET SERIES AND MOMENTS OF ZETA AND L-FUNCTIONS 341

https://doi.org/10.1023/B:COMP.0000018137.38458.68 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000018137.38458.68


is bounded in R, since in this case, the set Rf contains the annulus O
0 whose convex

closure contains R. In particular, the function is bounded in the tube with base given

by the polygon in Figure 4. Proposition 4.11 immediately follows.

One of the key ingredients in what follows, is that the series

X
d0

L
1

2
þ it; wd0

� ����� ����4jd0j�n ð4:32Þ

Figure 4.

Figure 5.
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is convergent, for n ¼ RðwÞ > 1. Here the summation is over all positive or negative
square free integers. This follows from the work of Heath-Brown [H-B]. Applying

the Cauchy-Schwartz inequality, we deduce thatX
d

jcdj L
1

2
þ it; wd

� ����� ����3jdj�n ð4:33Þ

is convergent, for n ¼ RðwÞ > 1, and any sequence cd such that cd �E d
E. Here the

summation is over all intergers. &

We now show:

PROPOSITION 4.12. Let w¼ nþ it. For E > 0;�E4n, and any a1; a2 2 f1;�1g;

l1; l2jM the function ZMð1=2;w; wa2l2 ; wa1l1Þ is an analytic function of w, except for

possible poles at w ¼ 3
4 and w¼ 1. If ðl1; l2Þ ¼ 1 or 2 and jtj > 1, then it satisfies the

upper bounds

ZM
1

2
; nþ it; wa2l2 ; wa1l1

� �
�E 1;

for 1þ E < n, and

ZM
1

2
;nþit;wa2l2 ;wa1l1

� �
�EM

3ð1�nÞþn1ðEÞjtj5ð1�nÞþn2ðEÞ
X

a¼1;�1

X
ljM

X
ðd0;MÞ¼1

L 1
2;wd0wal
� ��� ��3
d1þE0

;

for �E4n4 1þ E. The functions v1ðEÞ; v2ðEÞ are some explicitly computable functions

satisfying

lim
E!0

v1ðEÞ ¼ lim
E!0

v2ðEÞ ¼ 0:

Proof. The first bound in the region 1þ E < n is immediate by the remarks
concerning (4.33). The bound for �E4n4 1þ E is more difficult to obtain. We shall
first obtain a bound for ZM

1
2 ; nþ it; wa2l2 ; wa1l1
� �

; (i.e., for n ¼ �E), and then apply a
convexity argument to complete the proof for �E < n < 1þ E.
Recall the functional equations

aðs;wÞ ¼ 1� s; 3sþ w�
3

2

� �
ðsee Equation ð4:23ÞÞ;

bðs;wÞ ¼ sþ w�
1

2
; 1� w

� �
ðsee Equation ð4:18ÞÞ:

Fix ðs;wÞ ¼ ð12 ;�Eþ itÞ. We then have

bðs;wÞ ¼ ð�Eþ it; 1þ E� itÞ; abðs;wÞ ¼ ð1þ E� it;�1=2� 2Eþ 2itÞ;

babðs;wÞ ¼ ð�Eþ it; 3=2þ 2E� 2itÞ; ababðs;wÞ ¼ ð1þ E� it;�Eþ itÞ;

and

bababðs;wÞ ¼
1

2
; 1þ E� it

� �
:

MULTIPLE DIRICHLET SERIES AND MOMENTS OF ZETA AND L-FUNCTIONS 343

https://doi.org/10.1023/B:COMP.0000018137.38458.68 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000018137.38458.68


We shall estimate ZM ð12 ; nþ it; wa2l2 ; wa1l1Þ by alternately applying the functional
equations b; a as above. Note that each time we apply b the value of w is either
�Eþ it or � 1

2� 2Eþ 2it, and each time we apply a, the value of s is �Eþ it. It

is thus sufficient to obtain upper bounds in only these cases. We proceed to do

this.

Now, it immediately follows from (4.18) and Stirling’s asymptotic formula for the

Gamma function that away from poles,

ZMðs;�Eþ it; wa2l2 ; wa1l1Þ

�E l
1
2þE
2

X
l3;l4jM=l2

ME
X

a3¼1;�1

j t j
1
2þE�

�

����Zm s�
1

2
� Eþ it; 1þ E� it; wa2l2 ; wa1l1l3l4

� ������
þ

þ

����ZM s�
1

2
� Eþ it; 1þ E� it; wa2l2 ; w�a1l1l3l4

� ������:
Since M is even and squarefree, we also have ðl2; l1l3l4Þ ¼ 1 or 2: The characters

wa1l1l3l4 and w�a1l1l3l4 can be replaced by wa1d2 ; w�a1d2 with d2 squarefree.

Similarly, for w¼ � 1
2� Eþ it, we have, after replacing l2 by d3 and l1 by d2

that

ZM s;�
1

2
� 2Eþ 2 it; wa2d3 ; wa1d2

� �
�E d

1þE
3

X
l3;l4jM=d3

MEl
1
2

3l
�32
4

X
a3¼1;�1

j t j1þE�

�

����Zm s� 1� 2Eþ 2 it;
3

2
þ 2E� 2 it; wa2d3 ; wa1d4

� ������
þ

þ

����ZM s� 1� 2Eþ 2 it;
3

2
þ 2E� 2 it; wa2d3 ; w�a1d4

� ������;
where we have denoted by d4, the squarefree part of d2l3l4. Note that

ðd3; d4Þ ¼ 1 or 2.

In a similar manner, we consider s ¼ �Eþ it in (4.23). It follows from Stirling’s

formula that away from poles,

ZMð�Eþ it;w; wa2l2 ; wa1d2Þ

�E jd2 � t j
3
2þ3E

X
la;lb;lg;l�a;l �b;l�gjðM=l1Þ

M3E�

�

����ZM 1þ E� it;w� 3Eþ 3it�
3

2
; wlalblgl�a;l �b;l�g � wa2l2 ; wa1d2

� �����þ�
þ

����ZM 1þ E� it;w� 3Eþ 3it�
3

2
; w� lalblgl�a; l �b; l�g � wa2l2 ; wa1;d2

� ������:
As before, ðlalblgl�al �bl�g; d2Þ ¼ 1 or 2. We can replace lalblgl�al �bl�g by d3, squarefree. We

again obtain that ðd3; d2Þ ¼ 1 or 2.
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It now follows from the previous estimates and remarks that

ZM
1
2;�Eþ it; wa2l2 ; wa1l1
� �
�Ej t j

5þ10E M10Ed
1
2þE
1 d

3
2þ3E
2 d1þ2E3 l

1
2

3 l
�32
4 d

3
2þ3E
4 d

1
2þE
5 � S

¼j t j5þ10E M10Eðd1d2Þ
1
2þE�

� ðd2d3Þ
1
2þEðd3d4Þ

1
2þEðd4d5Þ

1
2þEd

1
2þE
2 l

1
2

3 l
�32
4 d

1
2þE
4 � S;

where d1 ¼ l2; dj ¼ 2
aj bj; aj ¼ 0 or 1, and bj j

M
2 ; ðbj; bjþ1Þ ¼ 1 ðj ¼ 1; 2; . . . ; 5Þ, and S is

a sum of absolute values of the multiple Dirichlet series ZM at various arguments of

the characters. We can take

S ¼
X

a¼1;�1

X
ljM

ZM
1

2
; 1þ E; wal

� �

¼
X

a¼1;�1

X
ljM

X
d¼d0d

2
1

ðd;MÞ¼1

jLð12 ;F; wd0walÞP
ðal Þ
d0;d1

ð1=2Þ j

d1þE
:

The positive integer d4 is such that d4 ¼ d2l3l4 modulo squares, and l3; l4 jM. Since

M is square free, it follows that

ordp
d2l3d4

l34

� �
4 2;

for any prime dividing M
2 . Consequently,

jt j5þ10E M10Eðd1d2Þ
1
2þEðd2d3Þ

1
2þEðd3d4Þ

1
2þEðd4d5Þ

1
2þEd

1
2þE
2 l

1
2

3 l
�32
4 d

1
2þE
4 �E M

3þ16E jt j5þ10E :

We finally arrive at the bound

ZM
1
2;�Eþ it; wa2l2 ; wa1l1
� �
�E M

3þ30E j t j5þ10E �

�
X

a¼1;�1

X
ljM

X
d¼d0d

2
1

ðd;MÞ¼1

jLð12 ;F; wd0walÞP
ðal Þ
d0;d1

ð1=2Þ j

d1þE
:

ð4:34Þ

We now need to establish that ZMð
1
2 ;w; wa2l2 ; wa1l1Þ is analytic for w in the region

described in the proposition. We have already shown, in Proposition 4.10 that the

product

Aðs;wÞAðaðs;wÞÞAðbðs;wÞÞAðbaðs;wÞÞBðs;wÞBðaðs;wÞPðs;wÞZ!Mðs;w;wDivðMÞ;wa1l1 Þ:

is an entire function of s;w. Specializing to s ¼ 1
2, we see that the only possible poles

of Z
!

Mð
1
2;w; wDivðMÞ; wa1l1Þ could occur at zeros of

Að1=2;wÞAðað1=2;wÞÞAðbð1=2;wÞÞAðbað1=2;wÞÞBð1=2;wÞBðað1=2;wÞÞPð1=2;wÞ:
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Zeros of Pð1=2;wÞ can only occur on the real line, at w ¼ 0; 34 ; 1. The other terms in

the product have factors of the form ð1� p�2þ2wÞ for p jM. Thus the only potential

locations for poles in the region under consideration are w ¼ 1þ it, for a discrete

sequence of t 6¼ 0. Such poles cannot occur, however, for the following reason.

For any s;w with <ðsÞ5 1
2 and <ðwÞ > 1; Z

!
Mðs;w; wDivðMÞ; wa1l1 Þ is an analytic

function of s and w. Suppose Z
!

Mð
1
2 ;w; wDivðMÞ; wa1l1 Þ has a pole of order g > 0 at

w ¼ 1þ it0. Then

lim
ðs;wÞ!ð12;lþit0Þ

P0ðs;wÞZ
!

Mðs;w; wDivðMÞ; wa1l1 Þ 6¼ 0;

where P0ðs;wÞ is a product of g linear factors of the form w� 1� it0; sþ w�

3=2� it0; 2sþ w� 2� it0 or 3sþ w� 5=2� it0. These correspond to potential zeros

of the products Aðbðs;wÞÞ;Aðbaðs;wÞÞ;Bðs;wÞ and Bðaðs;wÞÞ. By the analyticity in
s;w, we can interchange the limits:

lim
w!lþit0

P0ðs;wÞ lim
s!1

2

Z
!

Mðs;w; wDivðMÞ; wa1l1 Þ

¼ lim
s!1

2

lim
w!1þit0

P0ðs;wÞZ
!

Mðs;w; wDivðMÞ; wa1l1 Þ:

On the right-hand side, for any s with <ðsÞ5 1
2, let

TðsÞ ¼ lim
w!1þit0

P0ðs;wÞZ
!

Mðs;w; wDivðMÞ; wa1l1 Þ:

Then TðsÞ is an analytic function around s ¼ 1
2. Since for <ðsÞ sufficiently large the

right-hand side of (4.10) converges absolutely, it is clear that if P0ðs;wÞ contains a
factor of the form w� 1� it0 then TðsÞ ¼ 0 for all such s. This would imply that

the left-hand side equals zero, which contradicts our assumption. In a similar way

we will eliminate the possibility of the other three factors dividing P0ðs;wÞ.
By applying (4.30) to bðs;wÞ and setting w ¼ 3=2þ it0 � s, we obtain the

relationY
pjM

1� p�2ð3=2þit0�sÞ
� �

Z
!

Mð1þ it0; s� 1=2� it0Þ

¼ FMðs� 1=2� it0ÞZ
!

Mðs; 3=2þ it0 � sÞ:

For <ðsÞ sufficiently large and l0 6¼ 0, the left-hand side of the above converges abso-

lutely and, hence, the right-hand side is an analytic function of s. Consequently,

P0ðs; 3=2þ it0 � sÞ times the right-hand side will vanish identically if P0ðs;wÞ
contains a factor of sþ w� 3=2� it0. As Fðs� 1=2� it0Þ does not vanish identically,

it follows that the right-hand side of (4.36) equals zero if we approach along the line

w ¼ 3=2þ it0 � s. This is a contradiction, so P0ðs;wÞ does not contain a factor of
sþ w� 3=2� it0.
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Similarly, applying (4.29), (4.30) and setting w ¼ 2þ it0 � 2s, we obtain the

relationY
pjM

ð1�p�4þ4s�2it0ÞÞ
Y
pjM

ð1�p�4þ2s�4it0ÞÞ
Y
pjM

ð1�p�3þ2s�2it0ÞÞ3Z
!

Mð1þit0;s�1�2it0Þ

¼Fða2l2Þð2s�1�it0ÞCMð2s�1�it0ÞFMð2s�1�it0ÞZMðs;2þit0�2sÞ:

By the same argument as above, P0ðs;wÞ does not contain a factor of 2sþ w�

2� it0.

Finally, applying (4.29) to aðs;wÞ and setting w ¼ 5=2þ it0 � 3s, we obtain the

relationY
pjM

ð1� p�2sÞ3 Z
!

Mð1� s; 1þ it0Þ ¼ CMð1� sÞZ
!

Mðs; 5=2þ it0 � 3sÞ;

from which it follows that P0ðs;wÞ does not contain a factor of 3sþ w� 5=2� it0.

The possibility of a pole at w ¼ 0 can be eliminated in the same way.

To see that there may, actually, be a pole at w ¼ 3
4, observe that the transformation

ab relates the hyperplane w ¼ 1 to 3sþ 2w� 3 ¼ 0. Since w ¼ 1 may certainly be a

pole, it follows from (4.18) and (4.23) that 3sþ 2w� 3 ¼ 0 may be a pole.

This establishes the analyticity of Zð12 ;wÞ for �E < <ðwÞ < 1þ E, except possibly
at w ¼ 3

4 ; 1.

The upper bound follows from (4.11), (4.34) and the Phragmen–Lindelöf

principle.

This completes the proof of Proposition 4.12.

4.5. THE SIEVING PROCESS

In this section we will use the series ZM as building blocks to construct

Zðs;wÞ ¼
X
d

Lðs; wd0Þ
3

jdjw
; ð4:35Þ

where the sum ranges over square free integers d0 and for each d0, d is the associated

fundamental discriminant. This is simply the series (4.12), as wd0 ¼ wd. The series
Zðs;wÞ will then inherit its analytic properties from those of ZM.

Our object is to prove

THEOREM 4.13. Let the series Zðs;wÞ be as defined above, and choose any E > 0.
When the specialization s ¼ 1

2 is made, Zð12 ;wÞ is an analytic function of w for <ðwÞ > 4
5

except for a pole of order 7 at w ¼ 1. For w ¼ nþ it, with n > 4
5 ;Zð

1
2 ;wÞ satisfies the

upper bound

Z
1

2
;w

� �
�E

1 if 1þ E < n;
ð1þ jtjÞ5ð1�nÞþvðEÞ if 4

5 >< n4 1þ E,

�
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where vðEÞ is an explicitly computable function satisfying limE!0 vðEÞ ¼ 0.
Also,

lim
w!1

ðw� 1Þ7Z 1
2 ;w
� �

¼
6a3
4p2

;

where a3 is given by ð3:3Þ.

In this section let r denote a positive square free integer with ðr; 2Þ ¼ 1. We also

fix the notation a1; a2 2 f1;�1g and l1; l2 2 f1; 2g. Let F, as before, be the GLð3Þ

Eisenstein series associated to Lðs; wd0Þ
3, so Lðs;F; wd0Þ ¼ Lðs; wd0Þ

3. For any l j r,

define

Z
ðl Þ
a1l1;a2l2

ðs;wÞ ¼
X

ðd0 ;2Þ¼1;ðd1 ;2l Þ¼1

d¼d0d
2
1

L2ðs;F; wd0wa1l1 Þwa2l2 ðd0ÞP
ða1l1Þ
d0;d1

ðsÞ

dw
ð4:36Þ

and as usual d0 varies over positive square free integers and d1 varies over positive

integers.

If we then define

Za1l1;a2l2 ðs;w; rÞ ¼
X
ljr

mðl ÞZðl Þ
a1l1;a2l2

ðs;wÞ; ð4:37Þ

where m denotes the usual Möbius function, it is easy to check that

Za1l1;a2l2 ðs;w; rÞ ¼
X

ðd0d1 ;2Þ¼1;d1¼0 ðmod rÞ

d¼d0d
2
1

L2ðs;F;wd0wa1l1 Þwa2l2 ðd0ÞP
ða1l1Þ
d0;d1

ðsÞ

dw
: ð4:38Þ

In the next proposition we demonstrate that Z
ðl Þ
a1l1;a2l2

ðs;wÞ, and hence Za1l1;a2l2 ðs;w; rÞ

can be written as a linear combination of the functions ZMðs;w; wa2l2 ; wa1l1Þ whose
analytic properties have already been studied in the preceding sections.

PROPOSITION 4.14. We have

Z
ðl Þ
a1l1;a2l2

ðs;wÞ �
Y
pjl

ð1� p�2s Þ3

¼
1

2

X
l3jl

l�w3

Y
pjl3

ð1� p�2sÞ3�

�
X

m1;m2;m3jðl=l3Þ

wa1l1l3ðm1m2m3Þwa2l2ðl3Þ
ðm1m2m3Þ

s �

� ðZ2lðs;w; wa2l2wm1m2m3 ; wa1l1l3Þþ
þ Z2lðs;w; wa2l2wm1m2m3 ; wa1l1l3 Þþ
þ w�1ðm1m2m3ÞZ2lðs;w; wa2l2wm1m2m3 ; wa1l1l3 Þ�
� w�1ðm1m2m3ÞZ2lðs;w; wa2l2w�m1m2m3 ; wa1l1l3 ÞÞ:
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Proof. Referring to (4.36) and (4.9), write

Z
ðl Þ
a1l1;a2l2

ðs;wÞ ¼
X
l3jl

X
ðd0d1;2l Þ¼1

L2ðs;F; wd0l3wa1l1Þwa2l2 ðd0l3ÞP
ða1l1l3Þ
d0;d1

ðsÞ

dw
0 l

w
3 d

2w
1

:

Replacing L2ðs;F; wd0l3wa1l1Þ by L2lðs;F; wd0l3wa1l1 Þ �
Q

pjlð1� wd0l3wa1l1ðpÞp
�sÞ

�3 and

multiplying both sides by
Q

pjlð1� p�2sÞ3, the result follows after some simple mani-

pulations, and the use of w�1 to distinguish the cases m1m2m3 � 1 (mod 4) and

m1m2m3 � 3 (mod 4).

This completes the proof of Proposition 4.14. &

It follows from Propositions 4.12, 4.14, and the definition of Za1l1;a2l2ðs;w; rÞ in (4.37)

that for E > 0, if w ¼ nþ it, with n > �E, then Za1l1;a2l2ð1=2;w; rÞ is analytic except for

possible poles at w ¼ 3
4 ; 1, and satisfies the upper bound

Za1l1;a2l2
1
2 ;�Eþ it; r
� �

�E r
3þv3ðEÞjtj5þv4ðEÞ

X
a¼1;�1

X
lj2r

X
d0

��L 1
2 ; wd0wal
� ���3

d1þE0

;

with v3ðEÞ; v4ðEÞ some explicitly computable functions satisfying limE!0 v3ðEÞ ¼
limE!0 v4ðEÞ ¼ 0. For n > 1, the series Za1l1;a2l2ð1=2;w; rÞ converges absolutely,

by (4.11) and (4.33), and a factor of r2n factors out of the denominator.

Thus Za1l1;a2l2 ð1=2; 1þ Eþ it; rÞ �E r
�2�2E. Combining these bounds and applying

Phragmen–Lindelöf, we obtain, for �E < n < 1þ E and jtj > 1,

Za1l1;a2l2
1
2 ; nþ it; r
� �

�E r
3�5nþv3ðEÞjtj5�5nþv4ðEÞ

X
a¼1;�1

X
lj2r

X
d0

��L 1
2 ; wd0wal
� ���3

d1þE0

:

ð4:39Þ

We now define

Za1l1;a2l2 ðs;wÞ ¼
X
ðr;2Þ¼1

mðrÞZa1l1;a2l2 ðs;w; rÞ;

and observe that

Za1l1;a2l2 ðs;wÞ ¼
X

ðd0;2Þ¼1

L2ðs; wd0wa1l1Þ
3wa2l2 ðd0Þ

dw
0

;

where the sum is over odd, square free positive integers d0. The sum over r has removed

all d1 6¼ 1 from the sum. Applying the bound of (4.39) and taking n > n0 > 4
5, we have

Za1l1;a2l2
1
2; nþ it
� �

�E jtj
5�5nþv4ðEÞ

X
ðr;2Þ¼1

ð2rÞ3�5nþv3ðEÞ
X

a¼1;�1

X
lj2r

X
d0

��L 1
2 ; wd0wal
� ���3

d1þE0

�E jtj
5�5nþv4ðEÞ

X
a¼1;�1

X
l

X
d0

��L 1
2 ; wd0wal
� ���3

d1þE0 l5n�3�v3ðEÞ

X
r 0 5 1

1

r 05n�3�v3ðEÞ

�n0;E jtj
5�5nþv4ðEÞ;

ð4:40Þ
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if E is chosen sufficiently small. In (4.40), the last estimate follows from (4.33).
We have thus proved

PROPOSITION 4.15. For any a1; a2 2 f1;�1g and l1; l2 2 f1; 2g, the series

Za1l1;a2l2
1
2;w
� �

is analytic for w ¼ nþ it when n > 4
5, except possibly for a pole at w ¼ 1.

For jtj > 1 it satisfies the upper bound

Za1l1;a2l2
1
2 ; nþ it
� �

�E jtj
5�5nþv4ðEÞ:

To complete the proof of the first part of Theorem 4.13, we make choices of

1;�1; 2;�2 for a1l1 and a2l2 and take linear combinations of Za1l1;a2l2 ð1=2;wÞ to iso-

late sums over d0 > 0; d0 < 0, and for each sign, sums over d0 � 1 (mod 8), d0 � 5

(mod 8), d0 � 3 (mod 4) and d0 � 1 (mod 4). After these sums are isolated, the 2-fac-

tor of the L-series can be restored, and the analyticity of Z 1
2;w
� �

for w 6¼ 1 together

with the upper bound stated in Theorem 4.13 follows.

It now remains to calculate the order of the pole and compute the leading coeffi-

cient in the Laurent expansion at w ¼ 1. This can be done directly from the analytic

information and functional equations we have accumulated about Za1l1;a2l2 ðs;wÞ.

However, it is an intricate computation, and so we will instead make use of the com-

putations already performed in Section 3 for a general multiple Dirichlet series.

In the notation of Section 3, taking m ¼ 3;Zðs;wÞ ¼ Zðs; s; s;wÞ, where

Zðs1; s2; s3;wÞ is defined by (3.6). In the previous work of this section we considered

the L-series Lðs;F Þ ¼ zðsÞ3. Here F was an Eisenstien series on GLð3Þ specialized to
the center of the critical strip. We could just have easily have considered the L-series

associated to F 0, a general minimal parabolic Eisenstein series. In the case of F, the

Euler product parameters at a prime p were ap ¼ bp ¼ gp ¼ 1 and the corresponding
local factor of the Euler product was ð1� p�sÞ�3. For the more general F 0, we can take

ap ¼ p�E1 ; bp ¼ p�E2 ; gp ¼ pE1þE2 . The corresponding local factor of Lðs;F 0Þ is then

equal to ðð1� p�s�E1 Þð1� p�s�E2 Þð1� p�sþE1þE2 ÞÞ�1. Applying exactly the same argu-

ments as before, we may obtain the analytic continuation of the more general object

Zðsþ E1; sþ E2; s� E1� E2;wÞ ¼
X
d

Lðsþ E1;wd0 ÞLðsþ E2;wd0 ÞLðs� E1� E2;wd0 Þ
jdjw

in a neighbourhood of s ¼ 1=2 and E1 ¼ E2 ¼ 0. Setting s1 ¼ sþ E1; s2 ¼ sþ E2 and
s3 ¼ s� E1 � E2, we are in a position to take advantage of the calculations done
in Section 3, as we have established the conjectured analytic continuation. This

completes the proof of Theorem 4.13.

It is worth remarking that we could just as easily have proved the more general

analytic continuation of Zðs1; s2; s3;wÞ. However, our intent was to make the out-

lines of the technique as clear as possible. Writing out the explicit details in greater

generality would have made it significantly harder to distinguish the ideas through

the notation.
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We now have only a small additional piece of work to do to complete the proof of

the first part of Theorem 1.1. Applying the integral transform

1

2pi

Z 2þi1
2�i1

xwdw

wðwþ 1Þ
¼

ð1� 1=xÞ if x > 1;
0 if 0 < x4 1;

�
we obtain first

1

2pi

Z 2þi1
2�i1

Zð1=2;wÞxwdw

wðwþ 1Þ
¼
X
jdj<x

L
1

2
; wd

� �3
1�

jdj

x

� �
:

Moving the line of integration to <ðwÞ ¼ 4
5þ E, for E > 0, we pick up from the pole at

w ¼ 1 a polynomial type expression of the form xðA6ðlog xÞ6þA5ðlog xÞ5

þ � � � þ A0Þ, where the constants A6; . . . ;A0 are computable and

A6 ¼
6a3
8p26!

;

i.e., 1=2 the constant of Theorem 4.13, divided by 6!. The integral at <ðwÞ ¼ 4
5þ E

converges absolutely by the upper bound estimate of Theorem 4.13, and con-

tributes an error on the order of x
4
5þE. This completes the proof of the first part of

Theorem 1.1 &

4.6. AN UNWEIGHTED ESTIMATE

In this section we will prove the second part of Theorem 1.1. An essential ingredient

of an estimate for such a theorem, and, more generally, an estimate for an unweigh-

ted sum
P

d<x ad when ad is not known to be non-negative, is an estimate for sums of

ad over short intervals. In our case, if d is square free then ad ¼ Lð1=2; wdÞ
3, while if

d ¼ d0d
2
1 with d0 square free, then

ad ¼ Lð1=2; wd0 Þ
3Pd0;d1ð1=2Þ; ð4:41Þ

where d�E � Pd0;d1 ð1=2Þ � d E. Here Pd0;d1ð1=2Þ is a linear combination of P
ða1l1Þ
d0;d1

ð1=2Þ.

As a first step we will require the following.

PROPOSITION 4.16. For x > 0 sufficiently large, E > 0, and 35 < y04 1,X
jd�xj<xy0

Lð1=2; wd0 Þ
2
�E x

y0þE:

The sum here is over d of the form d ¼ d0m
2 for some m, with d0 square free and either

positive or negative.

Proof. The easiest way to prove the Proposition is to apply Theorem 4.1 of [C-N]

to the analog of ZMðs;w; w1; w1Þ of (4.13) in the case of GLð2Þ, i.e., when
LMðs;F; wd0 Þ ¼ LMðs; wd0 Þ

2 for d0 square free. Then all coefficients are nonnegative.
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There are four gamma factors, so A ¼ 2 in their notation, and the result with

exponent 3=5 follows immediately, by ignoring all but the square free terms.

(The sum over m does not affect the exponent.) The derivation of the analytic

continuation and functional equation of ZMðs;w; w1; w1Þ is done precisely as in the
preceding sections and is omitted. Alternatively, and more traditionally, one could

obtain this analytic continuation by considering the Rankin–Selberg convolution of

a half-integral weight Eisenstein series with itself. The analysis, however, is

considerably more complicated.

Fix an x, and r <
ffiffiffi
x

p
. The following Proposition will begin the proof of our esti-

mate for unweighted sums of coefficients of Za1l1;a2l2 ðs;w; rÞ. To simplify notation we

will suppress a1; a2; l1; l2 and write

aðd Þ ¼ L2ð1=2; wd0wa1l1 Þ
3wa2l2ðd0ÞP

ða1l1Þ
d0;d1

ð1=2Þ: ð4:42Þ

Thus

Za1l1;a2l2 ð1=2;w; rÞ ¼
X

ðd0d1;2Þ¼1;d1�0ðmod rÞ

d¼d0d
2
1

aðd Þ

dw
: ð4:43Þ

&

PROPOSITION 4.17. Fix x;T > 0; r square free, a1; a2 2 f1;�1g; l1; l2 2 f1; 2g, and

E > 0. Let

I1ðrÞ ¼
1

2pi

Z 1þEþiT
1þE�iT

Za1l1;a2l2ð1=2;w; rÞx
w dw

w
:

Then for any 15y0 > 3=5

I1ðrÞ ¼
X

d<x;d�0ðmod r2Þ

aðd Þ þOE xErE
x

r2

	 
ð1þy0Þ=2� �
þOE xErE

1

T

x

r2

	 
ð3�y0Þ=2� �
:

Proof. Applying the integral transform

1

2pi

Z 1þEþiT
1þE�iT

xwdw

w
¼

1 if x > 1;
0 if 0 < x < 1

n
þOE x1þEmin 1;

1

Tj logðxÞj

� �� �
to Za1l1;a2l2ð1=2;w; rÞ and interchanging the order of summation and integration, as

we are in a region of absolute convergence, we obtain

I1ðrÞ ¼
X

d<x;d�0ðmod r2Þ

aðd Þ þ E1;

where

E1 �E

X
d�0ðmod r2Þ;d 6¼0

jaðd Þj
x

d

	 
1þE
min 1;

1

Tj logðx=dÞj

� �
:
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Break the sum E1 into three pieces: E1 ¼ E2 þ E3 þ E4, where the sums are over

d < 1
2x; d > 2x and 12x < d < 2x, respectively. Write d ¼ d0m

2r2, with d0 square free.

By its definition in (4.42), together with the bound of (4.11), we have the bound

aðd Þ �E jLð1=2; wd0wa1l1 Þj
3 � d E: ð4:44Þ

Applying (4.44) to E2;E3, we see that E2;E3 �E x
1þEr�2�2ET�1 follows immediately

from the absolute convergence of
P

Lð1=2; wd0Þ
3
jd0j

�1�E (which follows, as remarked

before, from Heath-Brown’s results [H-B]).

To analyze E4, note that we are summing over the range
1
2xr

�2 < d0m
2 < 2xr�2, so

E4 �E

X
d�0ðmod r2Þ;12x<d<2x

jaðd Þj �min 1;
1

Tj logðx=d Þj

� �
: ð4:45Þ

We are summing over the range 12xr
�2 < dr�2 ¼ d0m

2 < 2xr�2. Consequently, for

any y0 > 0 we may write d0m
2 ¼ ½xr�2 þ d 0ðxr�2Þy0 þ d 00�: As d 0; d 00 vary over the

ranges 04 jd 0j � ðxr�2Þ1�y0 and 04 d 00 � ðxr�2Þy0 , the full range of values of

d0m
2 will be hit. We will treat the cases d 0 ¼ 0;�1 and d 0 6¼ 0;�1 separately.

Write E4 ¼ E5 þ E6 where E5 is the sum over d with d
0 ¼ 0;�1. The choosing 1 in

the minimum of (4.45) we have

E5 �
X

d 0¼0;�1

X
04d 00�ðxr�2Þy0

jaðd Þj ¼
X 	

jaðd Þj;

where
P	 denotes the sum ranging over d 0; d0;m satisfying d 0 ¼ 0;�1 and

04 jd0m
2 � xr�2 � d 0ðxr�2Þy0 j � ðxr�2Þy0 :

Also, by (4.44)

aðd Þ �E r
ExEjLð1=2; wd0wa1l1Þj

3:

It follows by the Cauchy–Schwartz inequality that

E5 �E r
ExE

X 		
jLð1=2; wd0wa1l1 Þj

4
	 
1=2 X 		

jLð1=2; wd0wa1l1 Þj
2

	 
1=2
;

where
P		 denotes the sum ranging over d0;m satisfying the condition

d0 �
xr�2

m2

���� ����� ðxr�2Þy0

m2
:

Using [H-B] to bound the sum of fourth powers by x, and using Proposition 4.16 to

bound the sum over squares we obtain

E5 �E r
ExE

x

r2

	 
ð1þy0Þ=2X1
m¼1

m�1�y0 �E r
ExE

x

r2

	 
ð1þy0Þ=2
: ð4:46Þ

To bound E6 we first use the same argument as above to bound the sum over d
00 for

fixed d 0. We then observe that for d 0 6¼ 0;�1 and any d 00 we have j logðd=xÞj�1 �
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ðxr�2Þ1�y0=jd 0j. Taking the log term in the minimum of (4.45) and summing over

d 0 6¼ 0 we obtain

E6 �E r
ExE

x

r2

	 
ð1þy0Þ=2
T�1

X
d 0 6¼0;�1

ðxr�2Þ1�y0=jd 0j �E r
ExET�1 x

r2

	 
ð3þy0Þ=2
: ð4:47Þ

This completes the proof of Proposition 4.17. &

Continuing with the proof of the Theorem, we now define, for E > 0, and any
�E4s4 1� E

I2ðr; sÞ ¼
1

2pi

Z sþiT

s�iT

Za1l1;a2l2 ð1=2;w; rÞx
w dw

w
ð4:48Þ

and

I3ðr; sÞ ¼
1

2pi

Z 1þEþiT
sþiT

Za1l1;a2l2 ð1=2;w; rÞx
w dw

w
;

I4ðr; sÞ ¼
1

2pi

Z s�iT

1þE�iT

Za1l1;a2l2ð1=2;w; rÞx
w dw

w
:

Thus,

I1ðrÞ ¼ x
X6
i¼0

diðrÞðlog xÞ
i
þ I2ðr; sÞ þ I3ðr; sÞþ

þ I4ðr; sÞ þ ds �
4

3
x
3
4 �Res

w¼34

ðZa1l1;a2l2 ð1=2;w; rÞÞ; ð4:49Þ

for some computable constants diðrÞ. The main term is contributed by the seventh

order pole at w ¼ 1 and the residue term comes from the possible pole at w ¼ 3
4,

provided �E < s < 3
4� E for some sufficiently small E > 0. Here ds ¼ 1 if

�E < s < 3
4� E and ds ¼ 0, otherwise. Note that there is no pole at w ¼ 0, so there

are no additional error terms.

It immediately follows from Proposition 4.17 and (4.49) that

X
d<x

d square free

ad ¼
X
r4

ffiffi
x

p
mðrÞ

"
x
X6
i¼0

diðrÞðlog xÞ
i
þ I2ðr; sÞ þ I3ðr; sÞ þ I4ðr; sÞþ

þds �
4

3
x
3
4 �Res

w¼34

ðZa1l1;a2l2ð1=2;w; rÞÞ þOE xErE
x

r2

	 
ð1þy0Þ=2� �
þ

þOE xErE
1

T

x

r2

	 
ð3�y0Þ=2� �#
ð4:50Þ

The sum
P

r4
ffiffi
x

p mðrÞx
P6

i¼0 diðrÞðlog xÞ
i will give the main term of the second part

of Theorem 1.1 with a negligible error of Oðx
1
2þEÞ. Thus, to complete the proof of
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Theorem 1.1 it remains to estimate the integrals and error terms in (4.50). These will

be estimated by breaking the sum over r into 14 r4 xg and xg < r4
ffiffiffi
x

p
for some

0 < g4 1
2 to be chosen later. We note that we will make different choices of T and s

depending on whether 14 r4 xg or xg < r4
ffiffiffi
x

p
. After computing all the error

terms, we will make an optimal choice of the variables g; s;T; y0.
In order to estimate the integrals in (4.50), we make use of the upper bound (4.39).

It follows that for �E4n < 1,

Za1l1;a2l2
1
2; nþ it; r
� �

�E r
3�5nþv3ðEÞð1þ jtjÞ5�5nþv4ðEÞ

X
a¼1;�1

X
lj2r

X
d0

jLð12 ; wd0walÞj
3

d1þE0

: ð4:51Þ

&

PROPOSITION 4.18. Let x;T > 0; r square free, and E > 0. The integral I2ðr;�EÞ
given in ð4:48Þ satisfies

I2ðr;�EÞ ¼
1

2pi

Z �EþiT

�E�iT

Za1l1;a2l2ð1=2;w; rÞx
w dw

w

�E r
3þv5ðEÞT

9
2þv6ðEÞ

X
a¼1;�1

X
lj2r

X
d0

jLð12 ; wd0walÞj
3

d1þE0

;

where v5ðEÞ and v6ðEÞ are some explicitly computable functions satisfying

lim
E!0

v5ðEÞ ¼ lim
E!0

v6ðEÞ ¼ 0:

Proof. The ultimate effect of this proposition is to save a power of T1=2 in the

estimate for I2. To accomplish this, our goal is to apply the functional equation

(4.31) to Za1l1;a2l2ð1=2;�Eþ it; rÞ, reflecting it into a region where it converges

absolutely. This functional equation reflects Z into a new series which is actually a

linear combination of convergent series. This combination is summed over divisors

of 2r and also over ratios of gamma factors corresponding to L series with both

positive and negative conductors. The easiest way to deal with this is to use the

following notation:

Let ~b ¼ ðb1; b2; b3; b4; b5Þ, where each bi 2 f0; 1g. Let D ~b denote the product of

gamma factors

D ~b ðwÞ ¼ Gðwþ b1ÞGðwþ b2Þ
3Gð2w� 1=2þ b3ÞGðwþ b4Þ

3Gðwþ b5Þ;

where GðwÞ ¼ p�w=2Gðw=2Þ.
Then for fixed x andT, it follows from (4.31) and the explicit forms of the functional

equations of Proposition 4.2 and 4.3 given by (4.18) and (4.23) that we may reflect

Za1l1;a2l2ð1=2;w; rÞ into a complicated sum of Dirichlet series evaluated at 1� w.
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By a similar argument to the one given in the proof of Proposition 4.13, it can be

observed that the bound for the integral I2 follows, if we show the estimate

I
b
!ðy;T; EÞ :¼

Z T

T

D b
!ð1þ Eþ itÞ

D b
!ð�E� itÞ

�
yit

Eþ it
dt �E T

9
2þ10E; ð4:52Þ

where y is any positive number.

To prove the estimate (4.52), we first observe that from Stirling’s formula, we have

D b
!ð1þ Eþ itÞ

D b
!ð�E� itÞ

¼ jtj5þ10Eþ10itecitc 0ðE; b
!
Þ 1þO 1

jtj

� �� �
; ð4:53Þ

for certain constants, c; c 0ðE; b
!
Þ.

Replacing the ratio on the left-hand side of (4.53) with the main term, the contri-

bution from the error term is easily seen to be bounded above by OðT4þEÞ, and using
the expansion

1

Eþ it
¼ �

i

t
1þ

iE
t

� �
þ

iE
t

� �2
þ � � �

 !
;

it is enough to prove thatZ T

1

tuþ10ityitdt� T uþ12 if u5 0,
T
1
2 if u < 0:

�
ð4:54Þ

This is a simple consequence of the following lemma [T].

LEMMA 4.19. Let FðxÞ be a real function, twice differentiable, and let F 00ðxÞ5
m > 0, or F 00ðxÞ4�m < 0, for any x, a4 x4 b. Let GðxÞ=F 0ðxÞ be monotonic, and

jGðxÞj4M. Then

Z b

a

GðxÞeiFðxÞ dx

�����
�����4 8Mffiffiffiffi

m
p :

Choosing FðtÞ ¼ tð10 log tþ log yÞ and GðtÞ ¼ tu, we can divide the interval ½1;T �

in several subintervals such that the conditions in the Lemma 4:19 are satisfied in

each subinterval. The bound ð4:54Þ follows:

This completes the proof of Proposition 4:18: &

LEMMA 4.20. Let 0 < g < r and x!1. Then for any E > 0,

X
xg4r4xr

ru
X

a¼1;�1

X
lj2r

X
d0

L 1
2 ; wd0wal
� ��� ��3

d1þE0

�E
xrðuþ1ÞþE if u > �1;
xgðuþ1ÞþE if u < �1.

�
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Proof. Let S denote the quadruple sum given above. By interchanging sums and

writing 2r ¼ l � r1, we easily see that

S ¼
X

a¼1;�1

X
l4 2xr

X
d0

2�u
X
2r�0ðlÞ

ð2rÞu �
jL 1

2 ; wd0wal
� �

j3

d1þE0

�
X

a¼1;�1

X
l4 2xr

X
d0

X
2
lx

g4r142
1x

r

l uþ1þEru1 �
jL 1

2 ; wd0wal
� �

j3

d1þE0

:

Now, if u < �1, the inner sum over r1 is a convergent series which is bounded by

xgðuþ1ÞþE. The remaining sums are absolutely convergent and bounded by (4.33). This

establishes the first case of the Lemma.

If u > �1, then the inner sum over r1 is bounded by
2
l x

r
� �uþ1þE

. The result then

again immediately follows from (4.33). This completes the proof of Lemma 4.20. &

We now proceed to systematically estimate the integrals and error terms in (4.50).

Consider first the case r > xg for some g to be determined later. Choosing T ¼

xð3�y0Þ=2; s ¼ 1� E, and summingoverxg < g4 x
1
2,wefind that the error contributions.

OE

	
xErE

x

r2

	 
1þy0
2


; OE

	
xErE

1

T

x

r2

	 
3�y0
2



ð4:55Þ

are dominated by the first, which contributes (changing E as appropriate)

X
xg4r4x

1
2

xErE
x

r2

	 
1þy0
2

�E x
1þy0
2 �gy0þE: ð4:56Þ

Applying 4.51 and Lemma 4.20 to the definition of I2ðr; sÞ given in (4.48), it follows
that X

xg4r4x
1
2

jI2ðr; 1� EÞj �E x
1�gþE; ð4:57Þ

again changing E as appropriate. Similarly, using (4.51) and Lemma 4.20, the inte-
grals I3ðr; 1� EÞ and I4ðr; 1� EÞ contribute a smaller amount than the above error
terms.

Finally, we consider the case when r < xg. For this case, we choose s ¼ �E, T ¼ xa

rb

with a� bg > 0 where 0 < a; b will be chosen later. First, we consider the error from
the pole at w ¼ 3

4. It follows from (4.51) and Lemma 4.20 that the contribution is

bounded byX
r<xg

r�
3
4þEx

3
4 � x

g
4þ
3
4þE:

This error will be negligible compare to the others and can be discarded. The error

coming from the I2 integral can be estimated using Proposition 4.18 and Lemma

4.20. We obtain
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X
r<xg

I2ðr;�EÞ � x
9
2aþE

X
r<xg

r3�
9
2bþE

X
a¼1;�1

X
lj2r

X
d0

L 1
2 ; wd0wal
� ��� ��3

d1þE0

� x
9
2a

xg 4�
9
2bþEð Þ if b < 8

9

xE if b < 8
9.

(
ð4:59Þ

We now estimate the errors contributed by (4.55). FirstX
r<xg

xErE
x

r2

	 
1þy0
2

� x
1þy0
2 þE: ð4:60Þ

Secondly, we have

X
r<xg

xErE
1

T

x

r2

	 
3�y0
2

� x�aþ
3�y0
2 þE

X
r<xg

rb�3þy0

�
x
3�y0
2 �aþE if 3� y0 � b > 1;

x
3�y0
2 �aþgy0�2gþE if 3� y0 � b < 1;

(
ð4:61Þ

where a ¼ a� gb. All the other error terms contribute a smaller amount. We leave
them as an exercise.

Collecting all the error terms in (4.56), (4.57), (4.58), (4.59), (4.60), and (4.61), we

see that if b > 8
9 and 3� y0 � b < 1, then the total error is

Oðx1�gþE þ x
1þy0
2 þE þ x

9
2aþE þ x

3�y0
2 �aþgy0�2gþEÞ: ð4:62Þ

If we equalize these four error terms above, and solve in terms of y0, it follows that

g ¼
1� y0
9

; a ¼
1þ y0
9

; a ¼ 0 ¼) a ¼ gb:

The condition 3� y0 � b < 1 implies that b > 2� y0 which implies that

a ¼ gb > gð2� y0Þ which gives

1þ y0
9

>
1� y0
2

ð2� y0Þ:

These inequalities imply that y0 > 1
18 ð29�

ffiffiffiffiffiffiffiffi
265

p
Þ:With this choice, the total error in

(4.62) is Oðx 1
36ð47�

ffiffiffiffiffiffi
265

p
ÞþEÞ; where 1

36 ð47�
ffiffiffiffiffiffiffiffi
265

p
Þ  0:853366::: This completes the

Proof of Theorem 1.1. &
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