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Abstract
Given a permutation statistic st, define its inverse statistic ist by ist(𝜋) � st(𝜋−1). We give a general approach,
based on the theory of symmetric functions, for finding the joint distribution of st1 and ist2 whenever st1 and st2
are descent statistics: permutation statistics that depend only on the descent composition. We apply this method to
a number of descent statistics, including the descent number, the peak number, the left peak number, the number of
up-down runs and the major index. Perhaps surprisingly, in many cases the polynomial giving the joint distribution
of st1 and ist2 can be expressed as a simple sum involving products of the polynomials giving the (individual)
distributions of st1 and st2. Our work leads to a rederivation of Stanley’s generating function for doubly alternating
permutations, as well as several conjectures concerning real-rootedness and 𝛾-positivity.
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1. Introduction

Let 𝔖𝑛 denote the symmetric group of permutations of the set [𝑛] � {1, 2, . . . , 𝑛}. We call 𝑖 ∈ [𝑛 − 1]
a descent of 𝜋 ∈ 𝔖𝑛 if 𝜋(𝑖) > 𝜋(𝑖 + 1). Let

des(𝜋) �
∑

𝜋 (𝑖)>𝜋 (𝑖+1)
1 and maj(𝜋) �

∑
𝜋 (𝑖)>𝜋 (𝑖+1)

𝑖

be the number of descents and the sum of descents of 𝜋, respectively. The descent number des and
major index maj are classical permutation statistics dating back to MacMahon [17].

Given a permutation statistic st, let us define its inverse statistic ist by ist(𝜋) � st(𝜋−1). This paper is
concerned with the general problem of finding the joint distribution of a permutation statistic st and its
inverse statistic ist over the symmetric group𝔖𝑛. This was first done by Carlitz, Roselle and Scoville [5]
for des and by Roselle [20] for maj. Among the results of Carlitz, Roselle and Scoville was the elegant
generating function formula

∞∑
𝑛=0

𝐴𝑛 (𝑠, 𝑡)
(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 𝑥

𝑛 =
∞∑

𝑖, 𝑗=0

𝑠𝑖𝑡 𝑗

(1 − 𝑥)𝑖 𝑗 (1.1)

for the two-sided Eulerian polynomials 𝐴𝑛 (𝑠, 𝑡) defined by

𝐴𝑛 (𝑠, 𝑡) �
∑
𝜋∈𝔖𝑛

𝑠des(𝜋)+1𝑡ides(𝜋)+1

for 𝑛 ≥ 1 and 𝐴0(𝑠, 𝑡) � 1.1 (Throughout this paper, all polynomials encoding distributions of
permutation statistics will be defined to be 1 for 𝑛 = 0.) Roselle gave a similar formula for the joint
distribution of maj and imaj over𝔖𝑛. Note that extracting coefficients of 𝑥𝑛 from both sides of Equation
(1.1) yields the formula

𝐴𝑛 (𝑠, 𝑡)
(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 =

∞∑
𝑖, 𝑗=0

(
𝑖 𝑗 + 𝑛 − 1

𝑛

)
𝑠𝑖𝑡 𝑗 , (1.2)

which Petersen [19] later proved using the technology of putting balls in boxes. Equation (1.2) may be
compared with the formula

1Carlitz, Roselle and Scoville actually considered the joint distribution of ascents (elements of [𝑛 − 1] which are not descents)
and inverse ascents, but this is the same as the joint distribution of descents and inverse descents by symmetry.
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𝐴𝑛 (𝑡)
(1 − 𝑡)𝑛+1 =

∞∑
𝑘=0

𝑘𝑛𝑡𝑘 (1.3)

for the (ordinary) Eulerian polynomials

𝐴𝑛 (𝑡) �
∑
𝜋∈𝔖𝑛

𝑡des(𝜋)+1.

Several years after the work of Carlitz–Roselle–Scoville and Roselle, Garsia and Gessel [11] used
the theory of P-partitions to derive the formula

∞∑
𝑛=0

𝐴𝑛 (𝑠, 𝑡, 𝑞, 𝑟)
(1 − 𝑠) (1 − 𝑞𝑠) · · · (1 − 𝑞𝑛𝑠) (1 − 𝑡) (1 − 𝑟𝑡) · · · (1 − 𝑟𝑛𝑡) 𝑥

𝑛 =
∞∑

𝑖, 𝑗=0
𝑠𝑖𝑡 𝑗

𝑖∏
𝑘=0

𝑗∏
𝑙=0

1
1 − 𝑥𝑞𝑘𝑟 𝑙

(1.4)

for the quadrivariate polynomials

𝐴𝑛 (𝑠, 𝑡, 𝑞, 𝑟) �
∑
𝜋∈𝔖𝑛

𝑠des(𝜋) 𝑡ides(𝜋)𝑞maj(𝜋)𝑟 imaj(𝜋) .

The Garsia–Gessel formula (1.4) specializes to both the Carlitz–Roselle–Scoville formula (1.1) for
(des, ides) as well as Roselle’s formula for (maj, imaj).

The two-sided Eulerian polynomials have since received renewed attention due to a re-
fined 𝛾-positivity conjecture of Gessel, which was later proven by Lin [16]. The joint statistic
(des,maj, ides, imaj) and the sum des+ ides have also been studied in the probability literature; see, for
example, [4, 6, 7, 27].

Throughout this paper, let us call a pair of the form (st, ist) a two-sided permutation statistic and
the distribution of this statistic over 𝔖𝑛 the two-sided distribution of st. If we are taking st to be a pair
(st1, st2) such as (des,maj), then we consider (st1, ist1, st2, ist2) a two-sided statistic as well.

1.1. Descent statistics

We use the notation 𝐿 � 𝑛 to indicate that L is a composition of n. Every permutation can be uniquely de-
composed into a sequence of maximal increasing consecutive subsequences—or equivalently, maximal
consecutive subsequences with no descents—which we call increasing runs. The descent composition
of 𝜋, denoted Comp(𝜋), is the composition whose parts are the lengths of the increasing runs of 𝜋 in
the order that they appear. For example, the increasing runs of 𝜋 = 72485316 are 7, 248, 5, 3, and 16,
so Comp(𝜋) = (1, 3, 1, 1, 2).

A permutation statistic st is called a descent statistic if Comp(𝜋) = Comp(𝜎) implies st(𝜋) = st(𝜎)—
that is, if st depends only on the descent composition. Whenever st is a descent statistic, we may write
st(𝐿) for the value of st on any permutation with descent composition L. Both des and maj are descent
statistics, and in this paper, we will also consider the following descent statistics:
◦ The peak number pk. We call i (where 2 ≤ 𝑖 ≤ 𝑛 − 1) a peak of 𝜋 ∈ 𝔖𝑛 if 𝜋(𝑖 − 1) < 𝜋(𝑖) > 𝜋(𝑖 + 1).

Then pk(𝜋) is the number of peaks of 𝜋.
◦ The left peak number lpk. We call 𝑖 ∈ [𝑛 − 1] a left peak of 𝜋 ∈ 𝔖𝑛 if either i is a peak of 𝜋, or if
𝑖 = 1 and 𝜋(1) > 𝜋(2). Then lpk(𝜋) is the number of left peaks of 𝜋.

◦ The number of biruns br. A birun of a permutation 𝜋 is a maximal monotone consecutive subsequence.
Then br(𝜋) is the number of biruns of 𝜋.

◦ The number of up-down runs udr. An up-down run of 𝜋 is either a birun of 𝜋, or 𝜋(1) if 𝜋(1) > 𝜋(2).
Then udr(𝜋) is the number of up-down runs of 𝜋.2

2Equivalently, udr(𝜋) is equal to the length of the longest alternating subsequence of 𝜋, which was studied in depth by Stanley
[22].
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For example, if 𝜋 = 624731598, then the peaks of 𝜋 are 4 and 8; the left peaks of 𝜋 are 1, 4 and 8;
the biruns of 𝜋 are 62, 247, 731, 159 and 98; and the up-down runs of 𝜋 are 6, 62, 247, 731, 159 and
98. Therefore, we have pk(𝜋) = 2, lpk(𝜋) = 3, br(𝜋) = 5 and udr(𝜋) = 6. Other examples of descent
statistics include the number of valleys, double ascents, double descents and alternating descents (see
[29] for definitions).

In this paper, we give a general approach to the problem of finding the two-sided distribution of st
whenever st is a descent statistic. In fact, our approach can be used to find distributions of mixed two-
sided statistics: The joint distribution of st1 and ist2 when st1 and st2 are (possibly different) descent
statistics. Our approach utilizes a theorem of Foulkes [9] at the intersection of permutation enumeration
and symmetric function theory: The number of permutations 𝜋 with prescribed descent composition
L whose inverse 𝜋−1 has descent composition M is equal to the scalar product 〈𝑟𝐿 , 𝑟𝑀 〉 of two ribbon
skew Schur functions (defined in Section 2.1). Thus, if f is a generating function for ribbon functions
that keeps track of a descent statistic st1 and g is a similar generating function for a descent statistic st2,
then the scalar product 〈 𝑓 , 𝑔〉 should give a generating function for (st1, ist2).

To illustrate this idea, let us sketch how our approach can be used to rederive the formula (1.1) of
Carlitz, Roselle and Scoville for the two-sided Eulerian polynomials. We have

1
1 − 𝑡𝐻 (𝑥) =

1
1 − 𝑡

+
∞∑
𝑛=1

∑
𝐿�𝑛

𝑡des(𝐿)+1

(1 − 𝑡)𝑛+1 𝑟𝐿𝑥
𝑛,

where 𝐻 (𝑧) �
∑∞

𝑛=0 ℎ𝑛𝑧
𝑛 is the ordinary generating function for the complete symmetric functions ℎ𝑛.

Then, upon applying Foulkes’s theorem, we get

〈
1

1 − 𝑠𝐻 (𝑥) ,
1

1 − 𝑡𝐻 (1)

〉
=

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑛=1

∑
𝐿,𝑀�𝑛

𝑠des(𝐿)+1𝑡des(𝑀 )+1

(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 〈𝑟𝐿 , 𝑟𝑀 〉𝑥𝑛

=
∞∑
𝑛=0

𝐴𝑛 (𝑠, 𝑡)
(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 𝑥

𝑛.

However, calculating the same scalar product but in a different way yields

〈
1

1 − 𝑠𝐻 (𝑥) ,
1

1 − 𝑡𝐻 (1)

〉
=

∞∑
𝑖, 𝑗=0

𝑠𝑖𝑡 𝑗

(1 − 𝑥)𝑖 𝑗 ,

and equating these two expressions recovers (1.1).
In fact, a third way of calculating the same scalar product leads to a new formula expressing the

two-sided Eulerian polynomials 𝐴𝑛 (𝑠, 𝑡) in terms of the Eulerian polynomials 𝐴𝑛 (𝑡). Let us use the
notations 𝜆 � 𝑛 and |𝜆 | = 𝑛 to indicate that 𝜆 is a partition of n, and let 𝑙 (𝜆) denote the number of parts
of 𝜆. We write 𝜆 = (1𝑚1 2𝑚2 · · · ) to mean that 𝜆 has 𝑚1 parts of size 1, 𝑚2 parts of size 2 and so on, and
define 𝑧𝜆 � 1𝑚1𝑚1! 2𝑚2𝑚2! · · · . Then it can be shown that〈

1
1 − 𝑠𝐻 (𝑥) ,

1
1 − 𝑡𝐻 (1)

〉
=

∑
𝜆

1
𝑧𝜆

𝐴𝑙 (𝜆) (𝑠)𝐴𝑙 (𝜆) (𝑡)
(1 − 𝑠)𝑙 (𝜆)+1(1 − 𝑡)𝑙 (𝜆)+1 𝑥

|𝜆 | ,

leading to

𝐴𝑛 (𝑠, 𝑡) =
∑
𝜆�𝑛

1
𝑧𝜆

((1 − 𝑠) (1 − 𝑡))𝑛−𝑙 (𝜆)𝐴𝑙 (𝜆) (𝑠)𝐴𝑙 (𝜆) (𝑡).
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Collecting terms with 𝑙 (𝜆) = 𝑘 then gives the formula

𝐴𝑛 (𝑠, 𝑡) =
1
𝑛!

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘) ((1 − 𝑠) (1 − 𝑡))𝑛−𝑘𝐴𝑘 (𝑠)𝐴𝑘 (𝑡),

(see Theorem 3.9), where the 𝑐(𝑛, 𝑘) are the unsigned Stirling numbers of the first kind [23, p. 26].
Perhaps surprisingly, many of the ‘two-sided polynomials’ that we study in this paper can be similarly
expressed as a simple sum involving products of the univariate polynomials encoding the distributions
of the individual statistics.

Foulkes’s theorem was also used by Stanley [21] in his study of alternating permutations; some of
our results, notably Theorems 3.5 and 4.5, generalize results of his.

1.2. Outline

We organize this paper as follows. Section 2 is devoted to background material on symmetric functions.
While we assume familiarity with basic symmetric function theory at the level of Stanley [24, Chapter 7],
we shall use this section to establish notation, recall some elementary facts that will be important for
our work and to give an exposition of various topics and results needed to develop our approach to two-
sided statistics; these include Foulkes’s theorem, plethysm and symmetric function generating functions
associated with descent statistics.

Our main results are given in Sections 3–6. We begin in Section 3 by using our symmetric function
approach to prove formulas for the two-sided statistic (pk, ipk, des, ides), which we then specialize
to formulas for (pk, ipk), (pk, ides) and (des, ides). We continue in Section 4 by deriving analogous
formulas for (lpk, ilpk, des, ides) and (lpk, ipk, des, ides), and their specializations. Notably, our results
for the two-sided distributions of pk and of lpk lead to a rederivation of Stanley’s [21] generating function
formula for ‘doubly alternating permutations’: alternating permutations whose inverses are alternating.

Section 5 considers (mixed) two-sided distributions involving the number of up-down runs, as well
as a couple involving the number of biruns. In Section 6, we give a rederivation of the Garsia–Gessel
formula for (maj, imaj, des, ides) using our approach and give formulas for several mixed two-sided
distributions involving the major index.

We conclude in Section 7 with several conjectures concerning real-rootedness and 𝛾-positivity of
some of the polynomials appearing in our work.

2. Symmetric functions background

Let Λ denote the Q-algebra of symmetric functions in the variables 𝑥1, 𝑥2, . . . . We recall the important
bases forΛ: the monomial symmetric functions𝑚𝜆, the complete symmetric functions ℎ𝜆, the elementary
symmetric functions 𝑒𝜆, the power sum symmetric functions 𝑝𝜆 and the Schur functions 𝑠𝜆. As usual,
we write ℎ (𝑛) as ℎ𝑛, 𝑒 (𝑛) as 𝑒𝑛 and 𝑝 (𝑛) as 𝑝𝑛.

We will also work with symmetric functions with coefficients involving additional variables such as
s, t, y, z and 𝛼, as well as symmetric functions of unbounded degree like

𝐻 (𝑧) =
∞∑
𝑛=0

ℎ𝑛𝑧
𝑛 and 𝐸 (𝑧) �

∞∑
𝑛=0

𝑒𝑛𝑧
𝑛.

We adopt the notation

𝐻 � 𝐻 (1) =
∞∑
𝑛=0

ℎ𝑛 and 𝐸 � 𝐸 (1) =
∞∑
𝑛=0

𝑒𝑛.
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2.1. The scalar product and Foulkes’s theorem

Let 〈·, ·〉 : Λ × Λ → Q denote the usual scalar product on symmetric functions defined by

〈
𝑚𝜆, ℎ𝜇

〉
=

{
1, if 𝜆 = 𝜇

0, otherwise,

for all partitions 𝜆 and 𝜇 and extending bilinearly, that is, by requiring that {𝑚𝜆} and {ℎ𝜇} be dual bases.
Then we have

〈
𝑝𝜆, 𝑝𝜇

〉
=

{
𝑧𝜆, if 𝜆 = 𝜇

0, otherwise,

for all 𝜆 and 𝜇 [23, Proposition 7.9.3]. We extend the scalar product in the obvious way to symmetric
functions involving other variables as well as symmetric functions of unbounded degree. Note that the
scalar product is not always defined for the latter; for example, we have 〈𝐻 (𝑧), 𝐻〉 =

∑∞
𝑛=0 𝑧

𝑛 but 〈𝐻, 𝐻〉
is undefined.

Given a composition L, let 𝑟𝐿 denote the skew Schur function of ribbon shape L. That is, for
𝐿 = (𝐿1, 𝐿2, . . . , 𝐿𝑘 ), we have

𝑟𝐿 =
∑

𝑖1 ,...,𝑖𝑛

𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑛 ,

where the sum is over all 𝑖1, . . . , 𝑖𝑛 satisfying

𝑖1 ≤ · · · ≤ 𝑖𝐿1︸�����������︷︷�����������︸
𝐿1

> 𝑖𝐿1+1 ≤ · · · ≤ 𝑖𝐿1+𝐿2︸�������������������︷︷�������������������︸
𝐿2

> · · · > 𝑖𝐿1+···+𝐿𝑘−1+1 ≤ · · · ≤ 𝑖𝑛︸������������������������︷︷������������������������︸ .

𝐿𝑘

The next theorem, due to Foulkes [9] (see also [12, Theorem 5] and [24, Corollary 7.23.8]), will play
a pivotal role in our approach to two-sided descent statistics.

Theorem 2.1. Let L and M be compositions. Then 〈𝑟𝐿 , 𝑟𝑀 〉 is the number of permutations 𝜋 with
descent composition L such that 𝜋−1 has descent composition M.

Foulkes’s theorem is a special case of a more general theorem of Gessel on quasisymmetric generating
functions, which we briefly describe below. For a composition 𝐿 = (𝐿1, 𝐿2, . . . , 𝐿𝑘 ), let Des(𝐿) �
{𝐿1, 𝐿1 + 𝐿2, . . . , 𝐿1 + · · · + 𝐿𝑘−1}, and recall that the fundamental quasisymmetric function 𝐹𝐿 is
defined by

𝐹𝐿 �
∑

𝑖1≤𝑖2≤···≤𝑖𝑛
𝑖 𝑗<𝑖 𝑗+1 if 𝑗∈Des(𝐿)

𝑥𝑖1𝑥𝑖2 · · · 𝑥𝑖𝑛 .

Moreover, given a set Π of permutations, its quasisymmetric generating function 𝑄(Π) is defined by

𝑄(Π) �
∑
𝜋∈Π

𝐹Comp(𝜋) .

The following is Corollary 4 of Gessel [12].

Theorem 2.2. Suppose that 𝑄(Π) is a symmetric function. Then the number of permutations in Π with
descent composition L is equal to 〈𝑟𝐿 , 𝑄(Π)〉.

Because 𝑟𝑀 is the quasisymmetric generating function for permutations whose inverse has descent
composition M, Foulkes’s theorem follows from Theorem 2.2.
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Gessel and Reutenauer [13] showed that, for any partition 𝜆, the quasisymmetric generating function
for permutations with cycle type𝜆 is a symmetric function, and they used this fact along with Theorem 2.2
to study the joint distribution of maj and des over sets of permutations with restricted cycle structure,
including cyclic permutations, involutions and derangements. The present authors later studied the
distributions of (pk, des), (lpk, des) and udr over permutations with restricted cycle structure [15]. Our
current work is a continuation of this line of research but for inverse descent classes.

2.2. Plethysm

Let A be aQ-algebra of formal power series (possibly containing Λ). Consider the operation Λ×𝐴 → 𝐴,
where the image of ( 𝑓 , 𝑎) ∈ Λ × 𝐴 is denoted 𝑓 [𝑎], defined by the following two properties:

1. For any 𝑖 ≥ 1, 𝑝𝑖 [𝑎] is the result of replacing each variable in a with its ith power.
2. For any fixed 𝑎 ∈ 𝐴, the map 𝑓 ↦→ 𝑓 [𝑎] is a Q-algebra homomorphism from Λ to A.

In other words, we have 𝑝𝑖 [ 𝑓 (𝑥1, 𝑥2, . . . )] = 𝑓 (𝑥𝑖1, 𝑥
𝑖
2, . . . ) for any 𝑓 ∈ Λ. If f contains variables other

than the 𝑥𝑖 , then they are all raised to the ith power as well. For example, if q and t are variables,
then 𝑝𝑖 [𝑞2𝑡 𝑝𝑚] = 𝑞2𝑖𝑡𝑖 𝑝𝑖𝑚. The map ( 𝑓 , 𝑎) ↦→ 𝑓 [𝑎] is called plethysm. As with the scalar product,
we extend plethysm in the obvious way to symmetric functions of unbounded degree with coefficients
involving other variables; whenever we do so, we implicitly assume that any infinite sums involved
converge as formal power series so that the plethysms are defined.

We will need several technical lemmas involving plethysm in order to evaluate the scalar products
needed in our work. All of these lemmas are from [15] by the present authors (or are easy consequences
of results from [15]).

A monic term is any monomial with coefficient 1.

Lemma 2.3. Let m ∈ 𝐴 be a monic term not containing any of the variables 𝑥1, 𝑥2, . . . . Then the maps
𝑓 ↦→ 〈 𝑓 , 𝐻 (m)〉 and 𝑓 ↦→ 〈𝐻 (m), 𝑓 〉 are Q-algebra homomorphisms on A.

Proof. By a special case of [15, Lemma 2.5], we have

𝑓 [m] = 〈 𝑓 , 𝐻 (m)〉 = 〈𝐻 (m), 𝑓 〉

and the result follows from the fact that 𝑓 ↦→ 𝑓 [m] is a Q-algebra homomorphism. �

Lemma 2.4. Let 𝑦 ∈ 𝐴 be a variable and 𝑘 ∈ Z. Then the map 𝑓 ↦→
〈
𝑓 , 𝐸 (𝑦)𝑘𝐻𝑘

〉
is a Q-algebra

homomorphism on A.

Proof. Given 𝑓 ∈ 𝐴 and a variable 𝛼 ∈ 𝐴, it is known [15, Lemma 3.2] that

𝑓 [𝑘 (1 − 𝛼)] =
〈
𝑓 , 𝐸 (−𝛼)𝑘𝐻𝑘

〉
.

Then the map 𝑓 ↦→
〈
𝑓 , 𝐸 (𝑦)𝑘𝐻𝑘

〉
is obtained by composing the map 𝑓 ↦→ 𝑓 [𝑘 (1−𝛼)] with evaluation

at 𝛼 = −𝑦, both of which are Q-algebra homomorphisms. �

Lemma 2.5. Let 𝛼, 𝛽 ∈ 𝐴 be variables, and let k be an integer. Then:

(a) 𝐻 (𝛽) [𝑘 (1 − 𝛼)] =
〈
𝐻 (𝛽), 𝐸 (−𝛼)𝑘𝐻𝑘

〉
= (1 − 𝛼𝛽)𝑘/(1 − 𝛽)𝑘 .

(b) 𝐸 (𝛽) [𝑘 (1 − 𝛼)] =
〈
𝐸 (𝛽), 𝐸 (−𝛼)𝑘𝐻𝑘

〉
= (1 + 𝛽)𝑘/(1 + 𝛼𝛽)𝑘 .

Proof. Part (a) is a special case of Lemma 2.4 (d) of [15]. Part (b) follows immediately from part (a)
and the well-known identity 𝐸 (𝛽) = (𝐻 (−𝛽))−1. �

The two lemmas below are Lemmas 3.5 and 6.6 of [15], respectively.

Lemma 2.6. Let 𝑓 , 𝑔 ∈ 𝐴, and let m ∈ 𝐴 be a monic term. Then 〈 𝑓 [𝑋 + m], 𝑔〉 = 〈 𝑓 , 𝐻 [m𝑋]𝑔〉.
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Lemma 2.7. Let 𝛼 ∈ 𝐴 be a variable and m ∈ 𝐴 a monic term. Then:

(a) 𝐻 (𝛼) [𝑋 + m] = 𝐻 (𝛼)/(1 − 𝛼m)
(b) 𝐸 (𝛼) [𝑋 + m] = (1 + 𝛼m)𝐸 (𝛼).

2.3. Symmetric function generating functions for descent statistics

As mentioned in the introduction, we will need generating functions for the ribbon skew Schur functions
𝑟𝐿 which keep track of the descent statistics that we are studying. Such generating functions were
produced in previous work by the present authors and are stated in the next lemma. Part (a) is essentially
a commutative version of [14, Lemma 17], whereas (b)–(d) are given in [15, Lemma 2.8].

Lemma 2.8. We have
∞∑
𝑛=0

𝑡𝑛
𝑛∏

𝑘=0
𝐻 (𝑞𝑘𝑥) =

∞∑
𝑛=0

∑
𝐿�𝑛 𝑞

maj(𝐿) 𝑡des(𝐿)𝑟𝐿
(1 − 𝑡) (1 − 𝑞𝑡) · · · (1 − 𝑞𝑛𝑡) 𝑥

𝑛, (a)

1
1 − 𝑡𝐸 (𝑦𝑥)𝐻 (𝑥) =

1
1 − 𝑡

+ (b)

1
1 + 𝑦

∞∑
𝑛=1

∑
𝐿�𝑛

(
1 + 𝑦𝑡

1 − 𝑡

)𝑛+1 ( (1 + 𝑦)2𝑡

(𝑦 + 𝑡) (1 + 𝑦𝑡)

)pk(𝐿)+1 (
𝑦 + 𝑡

1 + 𝑦𝑡

)des(𝐿)+1
𝑟𝐿𝑥

𝑛,

𝐻 (𝑥)
1 − 𝑡𝐸 (𝑦𝑥)𝐻 (𝑥) =

1
1 − 𝑡

+
∞∑
𝑛=1

∑
𝐿�𝑛

(1 + 𝑦𝑡)𝑛

(1 − 𝑡)𝑛+1

(
(1 + 𝑦)2𝑡

(𝑦 + 𝑡) (1 + 𝑦𝑡)

) lpk(𝐿) (
𝑦 + 𝑡

1 + 𝑦𝑡

)des(𝐿)
𝑟𝐿𝑥

𝑛, (c)

and

1 + 𝑡𝐻 (𝑥)
1 − 𝑡2𝐸 (𝑥)𝐻 (𝑥)

=
1

1 − 𝑡
+ 1

2(1 − 𝑡)2

∞∑
𝑛=1

∑
𝐿�𝑛

(1 + 𝑡2)𝑛

(1 − 𝑡2)𝑛−1

(
2𝑡

1 + 𝑡2

)udr(𝐿)
𝑟𝐿𝑥

𝑛. (d)

Some of these generating functions have nice power sum expansions that are expressible in terms
of Eulerian polynomials and type B Eulerian polynomials. The nth type B Eulerian polynomial 𝐵𝑛 (𝑡)
encodes the distribution of the type B descent number over the nth hyperoctahedral group (see [30,
Section 2.3] for definitions) but can also be defined by the formula

𝐵𝑛 (𝑡)
(1 − 𝑡)𝑛+1 =

∞∑
𝑘=0

(2𝑘 + 1)𝑛𝑡𝑘

analogous to Equation (1.3). Recall that 𝑙 (𝜆) is the number of parts of the partition 𝜆. We also define
𝑜(𝜆) to be the number of odd parts of 𝜆, and use the notation

∑
𝜆 odd for a sum over partitions in which

every part is odd.
The next lemma is [15, Lemma 2.9].

Lemma 2.9. We have

1
1 − 𝑡𝐸 (𝑦𝑥)𝐻 (𝑥) =

∑
𝜆

𝑝𝜆
𝑧𝜆

𝐴𝑙 (𝜆) (𝑡)
(1 − 𝑡)𝑙 (𝜆)+1 𝑥

|𝜆 |
𝑙 (𝜆)∏
𝑘=1

(1 − (−𝑦)𝜆𝑘 ) (a)

where 𝜆1, 𝜆2, . . . , 𝜆𝑙 (𝜆) are the parts of 𝜆,

𝐻 (𝑥)
1 − 𝑡𝐸 (𝑥)𝐻 (𝑥) =

∑
𝜆

𝑝𝜆
𝑧𝜆

𝐵𝑜 (𝜆) (𝑡)
(1 − 𝑡)𝑜 (𝜆)+1 𝑥

|𝜆 | , (b)
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and

1 + 𝑡𝐻 (𝑥)
1 − 𝑡𝐸 (𝑥)𝐻 (𝑥) =

∑
𝜆 odd

𝑝𝜆
𝑧𝜆

2𝑙 (𝜆)
𝐴𝑙 (𝜆) (𝑡2)

(1 − 𝑡2)𝑙 (𝜆)+1 𝑥
|𝜆 | + 𝑡

∑
𝜆

𝑝𝜆
𝑧𝜆

𝐵𝑜 (𝜆) (𝑡2)
(1 − 𝑡2)𝑜 (𝜆)+1 𝑥

|𝜆 | . (c)

2.4. Sums involving 𝑧𝜆 and Stanley’s formula for doubly alternating permutations

The remainder of this section is not strictly about symmetric functions but relates to the constants 𝑧𝜆
which appear in symmetric function theory, and a connection to an enumeration formula of Stanley
obtained via symmetric function techniques.

To derive some of our formulas later on, we will need to evaluate several sums like∑
𝜆�𝑛

𝑙 (𝜆)=𝑘

1
𝑧𝜆

. (2.1)

The key to evaluating these sums is the well-known fact that 𝑛!/𝑧𝜆 is the number of permutations in𝔖𝑛

of cycle type 𝜆; see, for example, [23, Proposition 1.3.2] and [24, pp. 298–299]. Thus, Equation (2.1)
is equal to 𝑐(𝑛, 𝑘)/𝑛!, where as before, 𝑐(𝑛, 𝑘) is the unsigned Stirling number of the first kind, which
counts permutations in 𝔖𝑛 with k cycles.

Now, let 𝑑 (𝑛, 𝑘) be the number of permutations in 𝔖𝑛 with k cycles, all of odd length; let 𝑒(𝑛, 𝑘) be
the number of permutations in𝔖𝑛 with k odd cycles (and any number of even cycles); and let 𝑓 (𝑛, 𝑘, 𝑚)
be the number of permutations in 𝔖𝑛 with k odd cycles and m cycles in total. Note that 𝑑 (𝑛, 𝑘), 𝑒(𝑛, 𝑘)
and 𝑓 (𝑛, 𝑘, 𝑚) are 0 if 𝑛 − 𝑘 is odd. Then by the same reasoning as above, we have the additional sum
evaluations in the next lemma.

Lemma 2.10. We have ∑
𝜆�𝑛

𝑙 (𝜆)=𝑘

1
𝑧𝜆

=
𝑐(𝑛, 𝑘)
𝑛!

, (a)

∑
𝜆�𝑛
odd

𝑙 (𝜆)=𝑘

1
𝑧𝜆

=
𝑑 (𝑛, 𝑘)

𝑛!
, (b)

∑
𝜆�𝑛

𝑜 (𝜆)=𝑘

1
𝑧𝜆

=
𝑒(𝑛, 𝑘)
𝑛!

, (c)

and ∑
𝜆�𝑛

𝑜 (𝜆)=𝑘
𝑙 (𝜆)=𝑚

1
𝑧𝜆

=
𝑓 (𝑛, 𝑘, 𝑚)

𝑛!
. (d)

The numbers 𝑐(𝑛, 𝑘), 𝑑 (𝑛, 𝑘), 𝑒(𝑛, 𝑘) and 𝑓 (𝑛, 𝑘, 𝑚) all have simple exponential generating functions.
Let

𝐿(𝑢) � 1
2

log
1 + 𝑢

1 − 𝑢
=

∞∑
𝑚=1

𝑢2𝑚−1

2𝑚 − 1
.
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Proposition 2.11. We have

∞∑
𝑛=0

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘)𝑣𝑘 𝑢
𝑛

𝑛!
= 𝑒−𝑣 log(1−𝑢) =

1
(1 − 𝑢)𝑣 , (a)

∞∑
𝑛=0

𝑛∑
𝑘=0

𝑑 (𝑛, 𝑘)𝑣𝑘 𝑢
𝑛

𝑛!
= 𝑒𝑣𝐿 (𝑢) =

(
1 + 𝑢

1 − 𝑢

) 𝑣/2
, (b)

∞∑
𝑛=0

𝑛∑
𝑘=0

𝑒(𝑛, 𝑘)𝑣𝑘 𝑢
𝑛

𝑛!
=

𝑒𝑣𝐿 (𝑢)
√

1 − 𝑢2
=

(1 + 𝑢) (𝑣−1)/2

(1 − 𝑢) (𝑣+1)/2 , (c)

and

∞∑
𝑛=0

𝑛∑
𝑘,𝑚=0

𝑓 (𝑛, 𝑘, 𝑚)𝑣𝑘𝑤𝑚 𝑢𝑛

𝑛!
=

𝑒𝑣𝑤𝐿 (𝑢)

(1 − 𝑢2)𝑤/2 =
(1 + 𝑢) (𝑣−1)𝑤/2

(1 − 𝑢) (𝑣+1)𝑤/2 . (d)

Proof. We prove only (c); the proofs of the other formulas are similar (and (a) is well known). For (c)
we want to count permutations in which odd cycles are weighted v and even cycles are weighted 1. So
by the exponential formula for permutations [24, Corollary 5.1.9], we have

∞∑
𝑛=0

𝑛∑
𝑘=0

𝑒(𝑛, 𝑘) 𝑢
𝑛

𝑛!
𝑣𝑘 = exp

(
𝑣

∞∑
𝑚=1

𝑢2𝑚−1

2𝑚 − 1
+

∞∑
𝑚=1

𝑢2𝑚

2𝑚

)
= exp

( 𝑣
2
(
− log(1 − 𝑢) + log(1 + 𝑢)

)
+ 1

2
(
− log(1 − 𝑢) − log(1 + 𝑢)

) )
=

(1 + 𝑢) (𝑣−1)/2

(1 − 𝑢) (𝑣+1)/2 . �

A permutation 𝜋 is called alternating if 𝜋(1) > 𝜋(2) < 𝜋(3) > 𝜋(4) < · · · , and it is well known that
alternating permutations in 𝔖𝑛 are counted by the nth Euler number 𝐸𝑛, whose exponential generating
function is

∑∞
𝑛=0 𝐸𝑛𝑥

𝑛/𝑛! = sec 𝑥+tan 𝑥. The series 𝐿(𝑢) defined above makes an appearance in Stanley’s
work on doubly alternating permutations: alternating permutations whose inverses are alternating. Let
𝐸̃𝑛 denote the number of doubly alternating permutations in 𝔖𝑛. Stanley showed that the ordinary
generating function for doubly alternating permutations is

∞∑
𝑛=0

𝐸̃𝑛𝑢
𝑛 =

1
√

1 − 𝑢2

∞∑
𝑟=0

𝐸2
2𝑟
𝐿(𝑢)2𝑟

(2𝑟)! +
∞∑
𝑟=0

𝐸2
2𝑟+1

𝐿(𝑢)2𝑟+1

(2𝑟 + 1)! (2.2)

[21, Theorem 3.1]. Stanley’s proof of Equation (2.2) uses Foulkes’s theorem, but Equation (2.2) can
also be recovered from our results, as shall be demonstrated at the end of Sections 3.2 and 4.3.

We note that Stanley’s formula (2.2) can be expressed in terms of the numbers 𝑑 (𝑛, 𝑘) and 𝑒(𝑛, 𝑘).
By Proposition 2.11, we have

1
√

1 − 𝑢2

𝐿(𝑢)2𝑟

(2𝑟)! =
∞∑
𝑛=0

𝑒(𝑛, 2𝑟) 𝑢
𝑛

𝑛!
and

𝐿(𝑢)2𝑟+1

(2𝑟 + 1)! =
∞∑
𝑑=0

𝑑 (𝑛, 2𝑟 + 1) 𝑢
𝑛

𝑛!
.
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Thus, Equation (2.2) is equivalent to the statement that

𝐸̃𝑛 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
𝑛!

∑
𝑟

𝑒(𝑛, 2𝑟)𝐸2
2𝑟 =

1
𝑛!

𝑛∑
𝑘=0

𝑒(𝑛, 𝑘)𝐸2
𝑘 , if 𝑛 is even,

1
𝑛!

∑
𝑟

𝑑 (𝑛, 2𝑟 + 1)𝐸2
2𝑟+1 =

1
𝑛!

𝑛∑
𝑘=0

𝑑 (𝑛, 𝑘)𝐸2
𝑘 , if 𝑛 is odd.

3. Two-sided peak and descent statistics

We are now ready to proceed to the main body of our work. Our first task will be to derive formulas
for the two-sided distribution of (pk, des)—that is, the joint distribution of pk, ipk, des and ides over
𝔖𝑛—and then we shall specialize our results to the (mixed) two-sided statistics (pk, ipk), (pk, ides) and
(des, ides).

3.1. Peaks, descents and their inverses

Define the polynomials 𝑃 (pk,ipk,des,ides)
𝑛 (𝑦, 𝑧, 𝑠, 𝑡) by

𝑃
(pk,ipk,des,ides)
𝑛 (𝑦, 𝑧, 𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑦pk(𝜋)+1𝑧ipk(𝜋)+1𝑠des(𝜋)+1𝑡ides(𝜋)+1,

which encodes the desired two-sided distribution.

Theorem 3.1. We have

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑛=1

(
(1+𝑦𝑠) (1+𝑧𝑡)
(1−𝑠) (1−𝑡)

)𝑛+1
𝑃
(pk,ipk,des,ides)
𝑛

(
(1+𝑦)2𝑠

(𝑦+𝑠) (1+𝑦𝑠) ,
(1+𝑧)2𝑡

(𝑧+𝑡) (1+𝑧𝑡) ,
𝑦+𝑠

1+𝑦𝑠 ,
𝑧+𝑡

1+𝑧𝑡

)
(1 + 𝑦) (1 + 𝑧) 𝑥𝑛 (a)

=
∞∑

𝑖, 𝑗=0

(
(1 + 𝑦𝑥) (1 + 𝑧𝑥)
(1 − 𝑦𝑧𝑥) (1 − 𝑥)

) 𝑖 𝑗
𝑠𝑖𝑡 𝑗

and, for all 𝑛 ≥ 1, we have(
(1+𝑦𝑠) (1+𝑧𝑡)
(1−𝑠) (1−𝑡)

)𝑛+1
𝑃
(pk,ipk,des,ides)
𝑛

(
(1+𝑦)2𝑠

(𝑦+𝑠) (1+𝑦𝑠) ,
(1+𝑧)2𝑡

(𝑧+𝑡) (1+𝑧𝑡) ,
𝑦+𝑠

1+𝑦𝑠 ,
𝑧+𝑡

1+𝑧𝑡

)
(1 + 𝑦) (1 + 𝑧) (b)

=
∑
𝜆�𝑛

∏𝑙 (𝜆)
𝑖=1 (1 − (−𝑦)𝜆𝑖 ) (1 − (−𝑧)𝜆𝑖 )

𝑧𝜆

𝐴𝑙 (𝜆) (𝑠)𝐴𝑙 (𝜆) (𝑡)
(1 − 𝑠)𝑙 (𝜆)+1(1 − 𝑡)𝑙 (𝜆)+1 .

Proof. To prove this theorem, we shall compute
〈
(1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥))−1, (1 − 𝑡𝐸 (𝑧)𝐻)−1〉 in three dif-

ferent ways. First, from Lemma 2.8 (b) we have〈
1

1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥) ,
1

1 − 𝑡𝐸 (𝑧)𝐻

〉

=
1

(1 − 𝑠) (1 − 𝑡) +
∞∑

𝑚,𝑛=1

(
1+𝑦𝑠
1−𝑠

)𝑚+1 ( 1+𝑧𝑡
1−𝑡

)𝑛+1 ∑
𝐿�𝑚, 𝑀�𝑛 𝑁𝐿,𝑀 〈𝑟𝐿 , 𝑟𝑀 〉

(1 + 𝑦) (1 + 𝑧) 𝑥𝑚,

(3.1)
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where

𝑁𝐿,𝑀 �
(

(1 + 𝑦)2𝑠

(𝑦 + 𝑠) (1 + 𝑦𝑠)

)pk(𝐿)+1 ( (1 + 𝑧)2𝑡

(𝑧 + 𝑡) (1 + 𝑧𝑡)

)pk(𝑀 )+1 (
𝑦 + 𝑠

1 + 𝑦𝑠

)des(𝐿)+1 (
𝑧 + 𝑡

1 + 𝑧𝑡

)des(𝑀 )+1
.

Upon applying Foulkes’s theorem (Theorem 2.1), Equation (3.1) simplifies to

〈
1

1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥) ,
1

1 − 𝑡𝐸 (𝑧)𝐻

〉

=
1

(1 − 𝑠) (1 − 𝑡) +
∞∑
𝑛=1

(
(1+𝑦𝑠) (1+𝑧𝑡)
(1−𝑠) (1−𝑡)

)𝑛+1 ∑
𝜋∈𝔖𝑛

𝑁Comp(𝜋) ,Comp(𝜋−1)

(1 + 𝑦) (1 + 𝑧) 𝑥𝑛

=
1

(1 − 𝑠) (1 − 𝑡) +
∞∑
𝑛=1

(
(1+𝑦𝑠) (1+𝑧𝑡)
(1−𝑠) (1−𝑡)

)𝑛+1
𝑃
(pk,ipk,des,ides)
𝑛

(
(1+𝑦)2𝑠

(𝑦+𝑠) (1+𝑦𝑠) ,
(1+𝑧)2𝑡

(𝑧+𝑡) (1+𝑧𝑡) ,
𝑦+𝑠

1+𝑦𝑠 ,
𝑧+𝑡

1+𝑧𝑡

)
(1 + 𝑦) (1 + 𝑧) 𝑥𝑛.

(3.2)

Second, we have

〈
1

1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥) ,
1

1 − 𝑡𝐸 (𝑧)𝐻

〉
=

〈 ∞∑
𝑖=0

𝐸 (𝑦𝑥)𝑖𝐻 (𝑥)𝑖𝑠𝑖 ,
∞∑
𝑗=0

𝐸 (𝑧) 𝑗𝐻 𝑗 𝑡 𝑗

〉

=
∞∑

𝑖, 𝑗=0

〈
𝐸 (𝑦𝑥)𝑖𝐻 (𝑥)𝑖 , 𝐸 (𝑧) 𝑗𝐻 𝑗

〉
𝑠𝑖𝑡 𝑗

=
∞∑

𝑖, 𝑗=0

〈
𝐸 (𝑦𝑥), 𝐸 (𝑧) 𝑗𝐻 𝑗

〉𝑖〈
𝐻 (𝑥), 𝐸 (𝑧) 𝑗𝐻 𝑗

〉𝑖
𝑠𝑖𝑡 𝑗

=
∞∑

𝑖, 𝑗=0

(1 + 𝑦𝑥)𝑖 𝑗

(1 − 𝑦𝑧𝑥)𝑖 𝑗
(1 + 𝑧𝑥)𝑖 𝑗

(1 − 𝑥)𝑖 𝑗 𝑠
𝑖𝑡 𝑗 , (3.3)

where the last two steps are obtained using Lemmas 2.4 and 2.5, respectively. Finally, from Lemma 2.9
(a) we have〈

1
1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥) ,

1
1 − 𝑡𝐸 (𝑧)𝐻

〉

=
∑
𝜆,𝜇

∏𝑙 (𝜆)
𝑖=1 (1 − (−𝑦)𝜆𝑖 )

∏𝑙 (𝜇)
𝑗=1 (1 − (−𝑧)𝜇𝑖 )

𝑧𝜆𝑧𝜇

𝐴𝑙 (𝜆) (𝑠)𝐴𝑙 (𝜇) (𝑡)
(1 − 𝑠)𝑙 (𝜆)+1(1 − 𝑡)𝑙 (𝜇)+1

〈
𝑝𝜆, 𝑝𝜇

〉
𝑥 |𝜆 |

=
∑
𝜆

∏𝑙 (𝜆)
𝑖=1 (1 − (−𝑦)𝜆𝑖 ) (1 − (−𝑧)𝜆𝑖 )

𝑧𝜆

𝐴𝑙 (𝜆) (𝑠)𝐴𝑙 (𝜆) (𝑡)
(1 − 𝑠)𝑙 (𝜆)+1(1 − 𝑡)𝑙 (𝜆)+1 𝑥

|𝜆 | . (3.4)

Combining Equation (3.2) with Equation (3.3) yields part (a), whereas combining Equation (3.2) with
Equation (3.4) and then extracting coefficients of 𝑥𝑛 yields part (b). �

The formulas in Theorem 3.1 and others appearing later in this paper can be ‘inverted’ upon making
appropriate substitutions. For example, Theorem 3.1 (a) can be rewritten as
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1
(1 − 𝛼) (1 − 𝛽) +

1
(1 + 𝑢) (1 + 𝑣)

∞∑
𝑛=1

(
(1 + 𝑢𝛼) (1 + 𝑣𝛽)
(1 − 𝛼) (1 − 𝛽)

)𝑛+1
𝑃
(pk,ipk,des,ides)
𝑛 (𝑦, 𝑧, 𝑠, 𝑡)𝑥𝑛

=
∞∑

𝑖, 𝑗=0

(
(1 + 𝑢𝑥) (1 + 𝑣𝑥)
(1 − 𝑢𝑣𝑥) (1 − 𝑥)

) 𝑖 𝑗
𝛼𝑖𝛽 𝑗 ,

where

𝑢 =
1 + 𝑠2 − 2𝑦𝑠 − (1 − 𝑠)

√
(1 + 𝑠)2 − 4𝑦𝑠

2(1 − 𝑦)𝑠 , 𝛼 =
(1 + 𝑠)2 − 2𝑦𝑠 − (1 + 𝑠)

√
(1 + 𝑠)2 − 4𝑦𝑠

2𝑦𝑠
,

𝑣 =
1 + 𝑡2 − 2𝑧𝑡 − (1 − 𝑡)

√
(1 + 𝑡)2 − 4𝑧𝑡

2(1 − 𝑧)𝑡 , and 𝛽 =
(1 + 𝑡)2 − 2𝑧𝑡 − (1 + 𝑡)

√
(1 + 𝑡)2 − 4𝑧𝑡

2𝑧𝑡
.

3.2. Peaks and inverse peaks

We will now consider specializations of the polynomials 𝑃
(pk,ipk,des,ides)
𝑛 (𝑦, 𝑧, 𝑠, 𝑡) that give the distri-

butions of the (mixed) two-sided statistics (pk, ipk), (pk, ides) and (des, ides). Let us begin with the
two-sided distribution of pk, which is encoded by

𝑃
(pk,ipk)
𝑛 (𝑠, 𝑡) � 𝑃

(pk,ipk,des,ides)
𝑛 (𝑠, 𝑡, 1, 1) =

∑
𝜋∈𝔖𝑛

𝑠pk(𝜋)+1𝑡ipk(𝜋)+1.

Theorem 3.2. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
4

∞∑
𝑛=1

(
(1 + 𝑠) (1 + 𝑡)
(1 − 𝑠) (1 − 𝑡)

)𝑛+1
𝑃
(pk,ipk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
𝑥𝑛 =

∞∑
𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
𝑠𝑖𝑡 𝑗 (a)

and, for all 𝑛 ≥ 1, we have(
(1 + 𝑠) (1 + 𝑡)
(1 − 𝑠) (1 − 𝑡)

)𝑛+1
𝑃
(pk,ipk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
= 4

∞∑
𝑖, 𝑗=0

𝑛∑
𝑘=0

(
2𝑖 𝑗
𝑘

) (
2𝑖 𝑗 + 𝑛 − 𝑘 − 1

𝑛 − 𝑘

)
𝑠𝑖𝑡 𝑗 (b)

and (
(1 + 𝑠) (1 + 𝑡)
(1 − 𝑠) (1 − 𝑡)

)𝑛+1
𝑃
(pk,ipk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
=

1
𝑛!

𝑛∑
𝑘=0

4𝑘+1𝑑 (𝑛, 𝑘) 𝐴𝑘 (𝑠)𝐴𝑘 (𝑡)
(1 − 𝑠)𝑘+1(1 − 𝑡)𝑘+1 (c)

with 𝑑 (𝑛, 𝑘) as defined in Section 2.4.

Proof. Parts (a) and (c) are obtained from evaluating Theorem 3.1 (a) and (b), respectively, at 𝑦 = 𝑧 = 1,
with the sum on 𝜆 in (c) evaluated by Lemma 2.10 (b). From the identities

(1 + 𝑥)𝑘 =
𝑘∑

𝑛=0

(
𝑘

𝑛

)
𝑥𝑛 and (1 − 𝑥)−𝑘 =

∞∑
𝑛=0

(
𝑘 + 𝑛 − 1

𝑛

)
𝑥𝑛,

we obtain (
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
=

∞∑
𝑛=0

𝑛∑
𝑘=0

(
2𝑖 𝑗
𝑘

) (
2𝑖 𝑗 + 𝑛 − 𝑘 − 1

𝑛 − 𝑘

)
𝑥𝑛. (3.5)

Substituting Equation (3.5) into (a) and extracting coefficients of 𝑥𝑛 yields (b). �
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Table 1. Joint distribution of pk and ipk over 𝔖𝑛.

n 𝑃
(pk,ipk)
𝑛 (𝑠, 𝑡)

1 𝑠𝑡
2 2𝑠𝑡
3 (3𝑠 + 𝑠2)𝑡 + (𝑠 + 𝑠2)𝑡2

4 (4𝑠 + 4𝑠2)𝑡 + (4𝑠 + 12𝑠2)𝑡2

5 (5𝑠 + 10𝑠2 + 𝑠3)𝑡 + (10𝑠 + 66𝑠2 + 12𝑠3)𝑡2 + (𝑠 + 12𝑠2 + 3𝑠3)𝑡3

6 (6𝑠 + 20𝑠2 + 6𝑠3)𝑡 + (20𝑠 + 248𝑠2 + 148𝑠3)𝑡2 + (6𝑠 + 148𝑠2 + 118𝑠3)𝑡3

7 (7𝑠+35𝑠2 +21𝑠3 + 𝑠4)𝑡 + (35𝑠+739𝑠2 +969𝑠3 +81𝑠4)𝑡2 + (21𝑠+969𝑠2 +1719𝑠3 +141𝑠4)𝑡3 + (𝑠+81𝑠2 +171𝑠3 +19𝑠4)𝑡4

The first several polynomials 𝑃
(pk,ipk)
𝑛 (𝑠, 𝑡) are displayed in Table 1. The coefficients of 𝑠𝑘 𝑡—

equivalently, the coefficients of 𝑠𝑡𝑘 by symmetry—are characterized by the following proposition.

Proposition 3.3. For any 𝑛 ≥ 1 and 𝑘 ≥ 0, the number of permutations 𝜋 ∈ 𝔖𝑛 with pk(𝜋) = 𝑘 and
ipk(𝜋) = 0 is equal to

( 𝑛
2𝑘+1

)
.

Proposition 3.3 was first stated as a corollary of a more general result of Troyka and Zhuang [26],
namely, that for any composition L of 𝑛 ≥ 1, there is exactly one permutation in 𝜋 ∈ 𝔖𝑛 with descent
composition L such that ipk(𝜋) = 0. However, it is also possible to prove Proposition 3.3 directly from
Theorem 3.2.

Next, we obtain a surprisingly simple formula expressing the two-sided peak polynomials
𝑃
(pk,ipk)
𝑛 (𝑠, 𝑡) in terms of products of the ordinary peak polynomials

𝑃
pk
𝑛 (𝑡) �

∑
𝜋∈𝔖𝑛

𝑡pk(𝜋)+1

giving the distribution of the peak number over 𝔖𝑛.

Theorem 3.4. For all 𝑛 ≥ 1, we have

𝑃
(pk,ipk)
𝑛 (𝑠, 𝑡) = 1

𝑛!

𝑛∑
𝑘=0

𝑑 (𝑛, 𝑘) ((1 − 𝑠) (1 − 𝑡))
𝑛−𝑘

2 𝑃
pk
𝑘 (𝑠)𝑃pk

𝑘 (𝑡).

Since 𝑑 (𝑛, 𝑘) = 0 when 𝑛 − 𝑘 is odd, the above formula does not involve any square roots.

Proof. It is known [25] that

𝐴𝑛 (𝑡) =
(

1 + 𝑡

2

)𝑛+1
𝑃

pk
𝑛

(
4𝑡

(1 + 𝑡)2

)
(3.6)

for 𝑛 ≥ 1. Combining Equation (3.6) with Theorem 3.2 (c) and then replacing the variables s and t with
u and v, respectively, yields

𝑃
(pk,ipk)
𝑛

(
4𝑢

(1 + 𝑢)2 ,
4𝑣

(1 + 𝑣)2

)
=

1
𝑛!

𝑛∑
𝑘=0

𝑑 (𝑛, 𝑘)
(
(1 − 𝑢) (1 − 𝑣)
(1 + 𝑢) (1 + 𝑣)

)𝑛−𝑘
𝑃

pk
𝑘

(
4𝑢

(1 + 𝑢)2

)
𝑃

pk
𝑘

(
4𝑣

(1 + 𝑣)2

)
.

Setting 𝑠 = 4𝑢/(1 + 𝑢)2 and 𝑡 = 4𝑣/(1 + 𝑣)2, we obtain

𝑃
(pk,ipk)
𝑛 (𝑠, 𝑡) = 1

𝑛!

𝑛∑
𝑘=0

𝑑 (𝑛, 𝑘)
(
(1 − 𝑢) (1 − 𝑣)
(1 + 𝑢) (1 + 𝑣)

)𝑛−𝑘
𝑃

pk
𝑘 (𝑠)𝑃pk

𝑘 (𝑡). (3.7)
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It can be verified that 𝑢 = 2𝑠−1(1 −
√

1 − 𝑠) − 1 and 𝑣 = 2𝑡−1(1 −
√

1 − 𝑡) − 1, which lead to

(1 − 𝑢) (1 − 𝑣)
(1 + 𝑢) (1 + 𝑣) =

√
(1 − 𝑠) (1 − 𝑡). (3.8)

Substituting Equation (3.8) into Equation (3.7) completes the proof. �

The substitution used in the proof of Theorem 3.4 allows us to invert the formulas in Theorem 3.2
and others involving the same quadratic transformation. For example, Theorem 3.2 (b) is equivalent to

𝑃
(pk,ipk)
𝑛 (𝑠, 𝑡)

(1 − 𝑠) 𝑛+1
2 (1 − 𝑡) 𝑛+1

2
= 4

∞∑
𝑖, 𝑗=0

𝑛∑
𝑘=0

(
2𝑖 𝑗
𝑘

) (
2𝑖 𝑗 + 𝑛 − 𝑘 − 1

𝑛 − 𝑘

)
𝑢𝑖𝑣 𝑗 ,

where, as before, 𝑢 = 2𝑠−1(1 −
√

1 − 𝑠) − 1 and 𝑣 = 2𝑡−1(1 −
√

1 − 𝑡) − 1. In fact, we can express u and
v in terms of the Catalan generating function

𝐶 (𝑥) � 1 −
√

1 − 4𝑥
2𝑥

=
∞∑
𝑛=0

1
𝑛 + 1

(
2𝑛
𝑛

)
𝑥𝑛

as 𝑢 = (𝑠/4)𝐶 (𝑠/4)2 and 𝑣 = (𝑡/4)𝐶 (𝑡/4)2.
If we multiply the formula of Theorem 3.4 by 𝑢𝑛 and sum over n using Proposition 2.11 (b), we

obtain the following generating function for the two-sided peak polynomials 𝑃 (pk,ipk)
𝑛 (𝑠, 𝑡).

Theorem 3.5. We have

∞∑
𝑛=0

𝑃
(pk,ipk)
𝑛 (𝑠, 𝑡)𝑢𝑛 =

∞∑
𝑘=0

1
𝑘!

(
𝐿(

√
(1 − 𝑠) (1 − 𝑡)𝑢)√
(1 − 𝑠) (1 − 𝑡)

) 𝑘
𝑃

pk
𝑘 (𝑠)𝑃pk

𝑘 (𝑡),

with 𝐿(𝑢) as defined in Section 2.4.
We can derive the odd part of Stanley’s generating function (2.2) for doubly alternating permutations

from Theorem 3.5. While an alternating permutation 𝜋 satisfies 𝜋(1) > 𝜋(2) < 𝜋(3) > 𝜋(4) < · · · , we
say that 𝜋 is reverse alternating if 𝜋(1) < 𝜋(2) > 𝜋(3) < 𝜋(4) > · · · . It is evident by symmetry that
reverse alternating permutations are also counted by the Euler numbers 𝐸𝑛. As shown by Stanley [21],
the number of doubly alternating permutations in 𝔖𝑛 is equal to the number 𝐸̃𝑛 of reverse alternating
permutations in 𝔖𝑛 whose inverses are reverse alternating.

It is readily verified that a permutation 𝜋 in𝔖𝑛 has at most (𝑛− 1)/2 peaks and has exactly (𝑛− 1)/2
peaks if and only if n is odd and 𝜋 is reverse alternating. Thus, we have

lim
𝑠→0

𝑃
pk
𝑘 (𝑠−2)𝑠𝑘+1 = lim

𝑠→0

∑
𝜋∈𝔖𝑘

𝑠𝑘−2 pk(𝜋)−1 =

{
0, if 𝑘 is even,
𝐸𝑘 , if 𝑘 is odd.

Similarly, we have

lim
𝑠→0

𝑃
(pk,ipk)
𝑛 (𝑠−2, 𝑡−2)𝑠𝑛+1𝑡𝑛+1 =

{
0, if 𝑛 is even,
𝐸̃𝑛, if 𝑛 is odd.

So, to obtain Stanley’s formula from Theorem 3.5, we first replace s with 𝑠−2, t with 𝑡−2 and u with 𝑠𝑡𝑢;
then we multiply by 𝑠𝑡 and take the limit as 𝑠, 𝑡 → 0. The substitution takes(

𝐿(
√
(1 − 𝑠) (1 − 𝑡)𝑢)√
(1 − 𝑠) (1 − 𝑡)

) 𝑘
𝑃

pk
𝑘 (𝑠)𝑃pk

𝑘 (𝑡)
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to (
𝐿(

√
(𝑠2 − 1) (𝑡2 − 1)𝑢)√

(1 − 𝑠−2) (1 − 𝑡−2)

) 𝑘
𝑃

pk
𝑘 (𝑠−2)𝑃pk

𝑘 (𝑡−2) =
(
𝐿(

√
(𝑠2 − 1) (𝑡2 − 1)𝑢)√
(𝑠2 − 1) (𝑡2 − 1)

) 𝑘
𝑠𝑘𝑃

pk
𝑘 (𝑠−2)𝑡𝑘𝑃pk

𝑘 (𝑡−2);

multiplying by 𝑠𝑡 and taking 𝑠, 𝑡 → 0 gives 𝐿(𝑢)𝑘𝐸2
𝑘 for k odd and 0 for k even, as desired.

We will later get the even part of Stanley’s generating function (2.2) in a similar way from Theorem 4.4,
which is the analogue of Theorem 3.5 for left peaks.

Before proceeding, we note that every formula like Theorem 3.4 has an analogous generating function
like Theorem 3.5. We will only write out these generating functions for (pk, ipk) and (lpk, ilpk) – which
are used in our rederivation of Stanley’s formula – as well as for (des, ides).

3.3. Peaks and inverse descents

Next, define the polynomials 𝑃 (pk,ides)
𝑛 (𝑠, 𝑡) by

𝑃
(pk,ides)
𝑛 (𝑠, 𝑡) � 𝑃

(pk,ipk,des,ides)
𝑛 (𝑠, 1, 1, 𝑡) =

∑
𝜋∈𝔖𝑛

𝑠pk(𝜋)+1𝑡ides(𝜋)+1.

We omit the proof of the next theorem as it is similar to that of Theorem 3.2, with the main difference
being that we specialize at 𝑦 = 1 and 𝑧 = 0 (as opposed to 𝑦 = 𝑧 = 1).

Theorem 3.6. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
2

∞∑
𝑛=1

(
1 + 𝑠

(1 − 𝑠) (1 − 𝑡)

)𝑛+1
𝑃
(pk,ides)
𝑛

(
4𝑠

(1 + 𝑠)2 , 𝑡

)
=

∞∑
𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

) 𝑖 𝑗
𝑠𝑖𝑡 𝑗 (a)

and, for all 𝑛 ≥ 1, we have(
1 + 𝑠

(1 − 𝑠) (1 − 𝑡)

)𝑛+1
𝑃
(pk,ides)
𝑛

(
4𝑠

(1 + 𝑠)2 , 𝑡

)
= 2

∞∑
𝑖, 𝑗=0

𝑛∑
𝑘=0

(
𝑖 𝑗

𝑘

) (
𝑖 𝑗 + 𝑛 − 𝑘 − 1

𝑛 − 𝑘

)
𝑠𝑖𝑡 𝑗 (b)

and (
1 + 𝑡

(1 − 𝑠) (1 − 𝑡)

)𝑛+1
𝑃
(pk,ides)
𝑛

(
4𝑠

(1 + 𝑠)2 , 𝑡

)
=

1
𝑛!

𝑛∑
𝑘=0

2𝑘+1𝑑 (𝑛, 𝑘) 𝐴𝑘 (𝑠)𝐴𝑘 (𝑡)
(1 − 𝑠)𝑘+1(1 − 𝑡)𝑘+1 . (c)

We display the first several polynomials 𝑃
(pk,ides)
𝑛 (𝑠, 𝑡) in Table 2, collecting terms with the same

power of s in order to display the symmetry in their coefficients. This symmetry follows from the fact
that the reverse 𝜋𝑟 � 𝜋(𝑛) · · · 𝜋(2)𝜋(1) of a permutation 𝜋 ∈ 𝔖𝑛 satisfies ides(𝜋𝑟 ) = 𝑛 − 1 − ides(𝜋)
[31, Proposition 2.6 (c)] but has the same number of peaks as 𝜋.

Furthermore, observe that the coefficients of 𝑡𝑘 𝑠 in 𝑃
(pk,ides)
𝑛 (𝑠, 𝑡) are binomial coefficients; this is a

consequence of the following proposition, which is Corollary 9 of [26].

Proposition 3.7. For any 𝑛 ≥ 1 and 𝑘 ≥ 0, the number of permutations 𝜋 ∈ 𝔖𝑛 with des(𝜋) = 𝑘 and
ipk(𝜋) = 0 is equal to

(𝑛−1
𝑘

)
.

In addition to being symmetric, the coefficients of 𝑠𝑘 in 𝑃
(pk,ides)
𝑛 (𝑠, 𝑡) seem to be unimodal polyno-

mials in t, which we know holds for 𝑘 = 0 in light of Proposition 3.7. In the last section of this paper,
we will state the conjecture that the polynomials [𝑠𝑘 ] 𝑃 (pk,ides)

𝑛 (𝑠, 𝑡) are in fact 𝛾-positive, a property
which implies unimodality and symmetry.
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Table 2. Joint distribution of pk and ides over 𝔖𝑛.

n 𝑃
(pk,ides)
𝑛 (𝑠, 𝑡)

1 𝑡𝑠
2 (𝑡 + 𝑡2)𝑠
3 (𝑡 + 2𝑡2 + 𝑡3)𝑠 + 2𝑡2𝑠2

4 (𝑡 + 3𝑡2 + 3𝑡3 + 𝑡4)𝑠 + (8𝑡2 + 8𝑡3)𝑠2

5 (𝑡 + 4𝑡2 + 6𝑡3 + 4𝑡4 + 𝑡5)𝑠 + (20𝑡2 + 48𝑡3 + 20𝑡4)𝑠2 + (2𝑡2 + 12𝑡3 + 12𝑡4)𝑠3

6 (𝑡 + 5𝑡2 + 10𝑡3 + 10𝑡4 + 5𝑡5 + 𝑡6)𝑠 + (40𝑡2 + 168𝑡3 + 168𝑡4 + 40𝑡5)𝑠2 + (12𝑡2 + 124𝑡3 + 124𝑡4 + 12𝑡5)𝑠3

7 (𝑡 + 6𝑡2 + 15𝑡3 + 20𝑡4 + 15𝑡5 + 6𝑡6 + 𝑡7)𝑠 + (70𝑡2 + 448𝑡3 + 788𝑡4 + 448𝑡5 + 70𝑡6)𝑠2 + (42𝑡2 + 672𝑡3 + 1452𝑡4 + 672𝑡5

+ 42𝑡6)𝑠3 + (2𝑡2 + 56𝑡3 + 156𝑡4 + 56𝑡5 + 2𝑡6)𝑠4

The next formula expresses 𝑃
(pk,ides)
𝑛 (𝑠, 𝑡) in terms of the products 𝑃

pk
𝑘 (𝑠)𝐴𝑘 (𝑡). The proof is very

similar to that of Theorem 3.4 and so it is omitted.

Theorem 3.8. For all 𝑛 ≥ 1, we have

𝑃
(pk,ides)
𝑛 (𝑠, 𝑡) = 1

𝑛!

𝑛∑
𝑘=0

𝑑 (𝑛, 𝑘)
(
(1 − 𝑠)1/2(1 − 𝑡)

)𝑛−𝑘
𝑃

pk
𝑘 (𝑠)𝐴𝑘 (𝑡).

3.4. Descents and inverse descents

To conclude this section, we state the analogous results for the two-sided Eulerian polynomials

𝐴𝑛 (𝑠, 𝑡) = 𝑃
(pk,ipk,des,ides)
𝑛 (1, 1, 𝑠, 𝑡) =

∑
𝜋∈𝔖𝑛

𝑠des(𝜋)+1𝑡ides(𝜋)+1.

Recall that parts (a) and (b) were originally due to Carlitz, Roselle and Scoville [5], whereas (c) and (d)
are new.

Theorem 3.9. We have

∞∑
𝑛=0

𝐴𝑛 (𝑠, 𝑡)
(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 𝑥

𝑛 =
∞∑

𝑖, 𝑗=0

𝑠𝑖𝑡 𝑗

(1 − 𝑥)𝑖 𝑗 (a)

and, for all 𝑛 ≥ 1, we have

𝐴𝑛 (𝑠, 𝑡)
(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 =

∞∑
𝑖, 𝑗=0

(
𝑖 𝑗 + 𝑛 − 1

𝑛

)
𝑠𝑖𝑡 𝑗 (b)

and

𝐴𝑛 (𝑠, 𝑡) =
1
𝑛!

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘) ((1 − 𝑠) (1 − 𝑡))𝑛−𝑘𝐴𝑘 (𝑠)𝐴𝑘 (𝑡). (c)

Moreover, we have

∞∑
𝑛=0

𝐴𝑛 (𝑠, 𝑡)𝑢𝑛 =
∞∑
𝑘=0

1
𝑘!

(
log

1
1 − (1 − 𝑠) (1 − 𝑡)𝑢

) 𝑘
𝐴𝑘 (𝑠)𝐴𝑘 (𝑡)

(1 − 𝑠)𝑘 (1 − 𝑡)𝑘
. (d)
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Parts (a)–(c) are proven similarly to Theorems 3.2, 3.4 and 3.6 except that we evaluate Theorem 3.1
at 𝑦 = 𝑧 = 0. Part (c) can also be derived directly from (b):

𝐴𝑛 (𝑠, 𝑡)
(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 =

∞∑
𝑖, 𝑗=0

(
𝑖 𝑗 + 𝑛 − 1

𝑛

)
𝑠𝑖𝑡 𝑗

=
∞∑

𝑖, 𝑗=0

1
𝑛!

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘) (𝑖 𝑗)𝑘 𝑠𝑖𝑡 𝑗

=
1
𝑛!

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘)
∞∑
𝑖=0

𝑖𝑘 𝑠𝑖
∞∑
𝑗=0

𝑗 𝑘 𝑡 𝑗

=
1
𝑛!

𝑛∑
𝑘=0

𝑐(𝑛, 𝑘) 𝐴𝑘 (𝑠)
(1 − 𝑡)𝑘+1

𝐴𝑘 (𝑡)
(1 − 𝑡)𝑘+1 .

Part (d) is obtained from (c) using Proposition 2.11 (a).

4. Two-sided left peak statistics

4.1. Left peaks, descents and their inverses

In this section, we will examine (mixed) two-sided distributions involving the left peak number lpk. Let
us first derive a generating function formula for the polynomials

𝑃
(lpk,ilpk,des,ides)
𝑛 (𝑦, 𝑧, 𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑦lpk(𝜋) 𝑧ilpk(𝜋) 𝑠des(𝜋) 𝑡ides(𝜋)

giving the joint distribution of lpk, ilpk, des and ides over 𝔖𝑛.

Theorem 4.1. We have

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑛=1

(1 + 𝑦𝑠)𝑛 (1 + 𝑧𝑡)𝑛𝑃 (lpk,ilpk,des,ides)
𝑛

(
(1+𝑦)2𝑠

(𝑦+𝑠) (1+𝑦𝑠) ,
(1+𝑧)2𝑡

(𝑧+𝑡) (1+𝑧𝑡) ,
𝑦+𝑠

1+𝑦𝑠 ,
𝑧+𝑡

1+𝑧𝑡

)
(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 𝑥𝑛

=
∞∑

𝑖, 𝑗=0

(1 + 𝑦𝑥)𝑖 ( 𝑗+1) (1 + 𝑧𝑥) (𝑖+1) 𝑗

(1 − 𝑦𝑧𝑥)𝑖 𝑗 (1 − 𝑥) (𝑖+1) ( 𝑗+1) 𝑠
𝑖𝑡 𝑗 .

Proof. From Lemma 2.8 (c), we have〈
𝐻 (𝑥)

1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥) ,
𝐻

1 − 𝑡𝐸 (𝑧)𝐻

〉
=

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑚,𝑛=1

∑
𝐿�𝑚
𝑀�𝑛

(1 + 𝑦𝑠)𝑚(1 + 𝑧𝑡)𝑛

(1 − 𝑠)𝑚+1(1 − 𝑡)𝑛+1 𝑁́𝐿,𝑀 〈𝑟𝐿 , 𝑟𝑀 〉𝑥𝑚, (4.1)

where

𝑁́𝐿,𝑀 �
(

(1 + 𝑦)2𝑠

(𝑦 + 𝑠) (1 + 𝑦𝑠)

) lpk(𝐿) ( (1 + 𝑧)2𝑡

(𝑧 + 𝑡) (1 + 𝑧𝑡)

) ilpk(𝑀 ) (
𝑦 + 𝑠

1 + 𝑦𝑠

)des(𝐿) (
𝑧 + 𝑡

1 + 𝑧𝑡

)des(𝑀 )
.
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By Foulkes’s theorem (Theorem 2.1), Equation (4.1) simplifies to〈
1

1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥) ,
1

1 − 𝑡𝐸 (𝑧)𝐻

〉

=
1

(1 − 𝑠) (1 − 𝑡) +
∞∑
𝑛=1

(1 + 𝑦𝑠)𝑛 (1 + 𝑧𝑡)𝑛
∑

𝜋∈𝔖𝑛
𝑁́Comp(𝜋) ,Comp(𝜋−1)

(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 𝑥𝑛

=
1

(1 − 𝑠) (1 − 𝑡) +
∞∑
𝑛=1

(1 + 𝑦𝑠)𝑛 (1 + 𝑧𝑡)𝑛𝑃 (lpk,ilpk,des,ides)
𝑛

(
(1+𝑦)2𝑠

(𝑦+𝑠) (1+𝑦𝑠) ,
(1+𝑧)2𝑡

(𝑧+𝑡) (1+𝑧𝑡) ,
𝑦+𝑠

1+𝑦𝑠 ,
𝑧+𝑡

1+𝑧𝑡

)
(1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 𝑥𝑛.

(4.2)

We now compute the same scalar product in a different way. We have〈
𝐻 (𝑥)

1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥) ,
𝐻

1 − 𝑡𝐸 (𝑧)𝐻

〉
=

〈 ∞∑
𝑖=0

𝐸 (𝑦𝑥)𝑖𝐻 (𝑥)𝑖+1𝑠𝑖 ,
∞∑
𝑗=0

𝐸 (𝑧) 𝑗𝐻 𝑗+1𝑡 𝑗

〉

=
∞∑

𝑖, 𝑗=0

〈
𝐸 (𝑦𝑥)𝑖𝐻 (𝑥)𝑖+1, 𝐸 (𝑧) 𝑗𝐻 𝑗+1〉𝑠𝑖𝑡 𝑗

=
∞∑

𝑖, 𝑗=0

〈
(𝐸 (𝑦𝑥)𝑖𝐻 (𝑥)𝑖+1) [𝑋 + 1], 𝐸 (𝑧) 𝑗𝐻 𝑗

〉
𝑠𝑖𝑡 𝑗

=
∞∑

𝑖, 𝑗=0

〈
(𝐸 (𝑦𝑥) [𝑋 + 1])𝑖 (𝐻 (𝑥) [𝑋 + 1])𝑖+1, 𝐸 (𝑧) 𝑗𝐻 𝑗

〉
𝑠𝑖𝑡 𝑗

=
∞∑

𝑖, 𝑗=0

〈
(1 + 𝑦𝑥)𝑖

(1 − 𝑥)𝑖+1 𝐸 (𝑦𝑥)
𝑖𝐻 (𝑥)𝑖+1, 𝐸 (𝑧) 𝑗𝐻 𝑗

〉
𝑠𝑖𝑡 𝑗

=
∞∑

𝑖, 𝑗=0

(1 + 𝑦𝑥)𝑖

(1 − 𝑥)𝑖+1

〈
𝐸 (𝑦𝑥), 𝐸 (𝑧) 𝑗𝐻 𝑗

〉𝑖〈
𝐻 (𝑥), 𝐸 (𝑧) 𝑗𝐻 𝑗

〉𝑖+1
𝑠𝑖𝑡 𝑗

=
∞∑

𝑖, 𝑗=0

(1 + 𝑦𝑥)𝑖 ( 𝑗+1)

(1 − 𝑦𝑧𝑥)𝑖 𝑗
(1 + 𝑧𝑥) (𝑖+1) 𝑗

(1 − 𝑥) (𝑖+1) ( 𝑗+1) 𝑠
𝑖𝑡 𝑗 ; (4.3)

here, we are using Lemma 2.6 for the third equality, and in the last three steps, we apply Lemmas 2.7,
2.4 and 2.5, respectively. Combining (4.2) and (4.3) completes the proof. �

4.2. Left peaks, inverse peaks, descents and inverse descents

Next, let us consider the joint distribution of lpk, ipk, des and ides over 𝔖𝑛. Define

𝑃
(lpk,ipk,des,ides)
𝑛 (𝑦, 𝑧, 𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑦lpk(𝜋) 𝑧ipk(𝜋)+1𝑠des(𝜋) 𝑡ides(𝜋)+1.

Theorem 4.2. We have

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑛=1

(1 + 𝑦𝑠)𝑛 (1 + 𝑧𝑡)𝑛+1𝑃
(lpk,ipk,des,ides)
𝑛

(
(1+𝑦)2𝑠

(𝑦+𝑠) (1+𝑦𝑠) ,
(1+𝑧)2𝑡

(𝑧+𝑡) (1+𝑧𝑡) ,
𝑦+𝑠

1+𝑦𝑠 ,
𝑧+𝑡

1+𝑧𝑡

)
(1 + 𝑧) (1 − 𝑠)𝑛+1(1 − 𝑡)𝑛+1 𝑥𝑛

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑦𝑥

1 − 𝑦𝑧𝑥

) 𝑖 𝑗 (1 + 𝑧𝑥

1 − 𝑥

) (𝑖+1) 𝑗
𝑠𝑖𝑡 𝑗 .
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Proof. The two sides of the above equation are obtained from evaluating the scalar product〈
𝐻

1 − 𝑠𝐸 (𝑦𝑥)𝐻 (𝑥) ,
1

1 − 𝑡𝐸 (𝑧)𝐻

〉
in two different ways; the proof is similar to that of Theorem 3.1 and so we omit the details. �

4.3. Left peaks and inverse left peaks

We now consider specializations of 𝑃 (lpk,ilpk,des,ides)
𝑛 (𝑦, 𝑧, 𝑠, 𝑡) and 𝑃

(lpk,ipk,des,ides)
𝑛 (𝑦, 𝑧, 𝑠, 𝑡), beginning

with the two-sided left peak polynomials

𝑃
(lpk,ilpk)
𝑛 (𝑠, 𝑡) � 𝑃

(lpk,ilpk,des,ides)
𝑛 (𝑠, 𝑡, 1, 1) =

∑
𝜋∈𝔖𝑛

𝑠lpk(𝜋) 𝑡ilpk(𝜋) .

Theorem 4.3. We have

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑛=1

((1 + 𝑠) (1 + 𝑡))𝑛

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ilpk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
𝑥𝑛 (a)

=
∞∑

𝑖, 𝑗=0

(1 + 𝑥)2𝑖 𝑗+𝑖+ 𝑗

(1 − 𝑥)2𝑖 𝑗+𝑖+ 𝑗+1 𝑠
𝑖𝑡 𝑗

and, for all 𝑛 ≥ 1, we have

((1 + 𝑠) (1 + 𝑡))𝑛

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ilpk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
=

∞∑
𝑖, 𝑗=0

𝑛∑
𝑘=0

(
2𝑖 𝑗 + 𝑖 + 𝑗

𝑘

) (
2𝑖 𝑗 + 𝑖 + 𝑗 + 𝑛 − 𝑘

𝑛 − 𝑘

)
𝑠𝑖𝑡 𝑗

(b)

and

((1 + 𝑠) (1 + 𝑡))𝑛

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ilpk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
=

𝑛∑
𝑘=0

𝑒(𝑛, 𝑘) 𝐵𝑘 (𝑠)𝐵𝑘 (𝑡)
(1 − 𝑠)𝑘+1(1 − 𝑡)𝑘+1 (c)

with 𝑒(𝑛, 𝑘) as defined in Section 2.4.

Proof. Evaluating Theorem 4.1 at 𝑦 = 𝑧 = 1 yields part (a), whereas (b) follows from (a) and

(1 + 𝑥)2𝑖 𝑗+𝑖+ 𝑗

(1 − 𝑥)2𝑖 𝑗+𝑖+ 𝑗+1 =
∞∑
𝑛=0

𝑛∑
𝑘=0

(
2𝑖 𝑗 + 𝑖 + 𝑗

𝑘

) (
2𝑖 𝑗 + 𝑖 + 𝑗 + 𝑛 − 𝑘

𝑛 − 𝑘

)
𝑥𝑛.

To prove (c), first observe that Lemma 2.9 (b) implies〈
𝐻 (𝑥)

1 − 𝑠𝐸 (𝑥)𝐻 (𝑥) ,
𝐻

1 − 𝑡𝐸𝐻

〉
=

∑
𝜆,𝜇

1
𝑧𝜆𝑧𝜇

𝐵𝑜 (𝜆) (𝑠)𝐵𝑜 (𝜇) (𝑡)
(1 − 𝑠)𝑜 (𝜆)+1(1 − 𝑡)𝑜 (𝜇)+1

〈
𝑝𝜆, 𝑝𝜇

〉
𝑥 |𝜆 |

=
∑
𝜆

1
𝑧𝜆

𝐵𝑜 (𝜆) (𝑠)𝐵𝑜 (𝜆) (𝑡)
(1 − 𝑠)𝑜 (𝜆)+1(1 − 𝑡)𝑜 (𝜆)+1 𝑥

|𝜆 | ,

but this same scalar product is also given by〈
𝐻 (𝑥)

1 − 𝑠𝐸 (𝑥)𝐻 (𝑥) ,
𝐻

1 − 𝑡𝐸𝐻

〉
=

1
(1 − 𝑠) (1 − 𝑡)

∞∑
𝑛=1

((1 + 𝑠) (1 + 𝑡))𝑛

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ilpk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
𝑥𝑛,
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Table 3. Joint distribution of lpk and ilpk over 𝔖𝑛.

n 𝑃
(lpk,ilpk)
𝑛 (𝑠, 𝑡)

1 1
2 1 + 𝑠𝑡
3 1 + 5𝑠𝑡
4 1 + (15𝑠 + 3𝑠2)𝑡 + (3𝑠 + 2𝑠2)𝑡2

5 1 + (35𝑠 + 23𝑠2)𝑡 + (23𝑠 + 38𝑠2)𝑡2

6 1 + (70𝑠 + 100𝑠2 + 9𝑠3)𝑡 + (100𝑠 + 335𝑠2 + 44𝑠3)𝑡2 + (9𝑠 + 44𝑠2 + 8𝑠3)𝑡3

7 1 + (126𝑠 + 324𝑠2 + 93𝑠3)𝑡 + (324𝑠 + 1951𝑠2 + 836𝑠3)𝑡2 + (93𝑠 + 836𝑠2 + 456𝑠3)𝑡3

which is obtained from evaluating Equation (4.2) at 𝑦 = 𝑧 = 1. Equating these two expressions, extracting
coefficients of 𝑥𝑛, and applying Lemma 2.10 (c) completes the proof. �

See Table 3 for the first several polynomials 𝑃 (lpk,ilpk)
𝑛 (𝑠, 𝑡).

Next, we express these two-sided left peak polynomials as a sum involving products of the ordinary
left peak polynomials

𝑃
lpk
𝑛 (𝑡) �

∑
𝜋∈𝔖𝑛

𝑡lpk(𝜋) .

Theorem 4.4. For all 𝑛 ≥ 1, we have

𝑃
(lpk,ilpk)
𝑛 (𝑠, 𝑡) = 1

𝑛!

𝑛∑
𝑘=0

𝑒(𝑛, 𝑘) ((1 − 𝑠) (1 − 𝑡))
𝑛−𝑘

2 𝑃
lpk
𝑘 (𝑠)𝑃lpk

𝑘 (𝑡).

Proof. The proof follows in the same way as the proof of Theorem 3.4 except that we use the formula

𝐵𝑛 (𝑡) = (1 + 𝑡)𝑛𝑃lpk
𝑛

(
4𝑡

(1 + 𝑡)2

)
(4.4)

[18, Proposition 4.15] in place of (3.6). The details are omitted. �

From Theorem 4.4 and Proposition 2.11 (c), we can obtain a generating function for the two-sided
left peak polynomials, analogous to Theorem 3.5 for the two-sided peak polynomials.

Theorem 4.5. We have

∞∑
𝑛=0

𝑃
(lpk,ilpk)
𝑛 (𝑠, 𝑡)𝑢𝑛 =

1√
1 − (1 − 𝑠) (1 − 𝑡)𝑢2

∞∑
𝑘=0

1
𝑘!

(
𝐿(

√
(1 − 𝑠) (1 − 𝑡)𝑢)√
(1 − 𝑠) (1 − 𝑡)

)𝑘
𝑃

lpk
𝑘 (𝑠)𝑃lpk

𝑘 (𝑡).

Just as we derived from Theorem 3.5 the odd part of Stanley’s formula (2.2) for doubly alternating
permutations, we can derive the even part of (2.2) from Theorem 4.5. First, we note that a permutation
𝜋 in 𝔖𝑛 has at most 𝑛/2 left peaks and has exactly 𝑛/2 left peaks if and only if n is even and 𝜋 is
alternating. Then we have

lim
𝑠→0

𝑃
lpk
𝑘 (𝑠−2)𝑠𝑘 = lim

𝑠→0

∑
𝜋∈𝔖𝑘

𝑠𝑘−2 lpk(𝜋) =

{
0, if 𝑛 is odd,
𝐸𝑘 , if 𝑛 is even,

and similarly

lim
𝑠→0

𝑃
(lpk,ilpk)
𝑛 (𝑠−2, 𝑡−2)𝑠𝑛𝑡𝑛 =

{
0, if 𝑛 is odd,
𝐸̃𝑛, if 𝑛 is even.
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Therefore, to obtain the even part of Stanley’s formula, we take Theorem 4.5 and replace s with 𝑠−2, t
with 𝑡−2 and u with 𝑠𝑡𝑢; then we take the limit as 𝑠, 𝑡 → 0, similarly to the computation for the odd part.

4.4. Left peaks and inverse peaks

We proceed to give analogous formulas for the polynomials

𝑃
(lpk,ipk)
𝑛 (𝑠, 𝑡) � 𝑃

(lpk,ipk)
𝑛 (𝑠, 𝑡, 1, 1) =

∑
𝜋∈𝔖𝑛

𝑠lpk(𝜋) 𝑡ipk(𝜋)+1

encoding the joint distribution of lpk and ipk over 𝔖𝑛.

Theorem 4.6. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
2

∞∑
𝑛=1

(1 + 𝑠)𝑛 (1 + 𝑡)𝑛+1

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ipk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
𝑥𝑛 =

∞∑
𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗+ 𝑗
𝑠𝑖𝑡 𝑗

(a)

and, for all 𝑛 ≥ 1, we have

(1 + 𝑠)𝑛 (1 + 𝑡)𝑛+1

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ipk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
= 2

∞∑
𝑖, 𝑗=0

𝑛∑
𝑘=0

(
2𝑖 𝑗 + 𝑗

𝑘

) (
2𝑖 𝑗 + 𝑗 + 𝑛 − 𝑘 − 1

𝑛 − 𝑘

)
𝑠𝑖𝑡 𝑗 (b)

and

(1 + 𝑠)𝑛 (1 + 𝑡)𝑛+1

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ipk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
=

1
𝑛!

𝑛∑
𝑘=0

2𝑘+1𝑑 (𝑛, 𝑘) 𝐵𝑘 (𝑠)𝐴𝑘 (𝑡)
(1 − 𝑠)𝑘+1(1 − 𝑡)𝑘+1 . (c)

Proof. The proof of parts (a) and (b) is the same as that of Theorem 4.3 (a) and (b), except that we
specialize Theorem 4.2 as opposed to Theorem 4.1. To prove (c), notice that from Lemma 2.9 (a)–(b)
we have 〈

1
1 − 𝑠𝐸 (𝑥)𝐻 (𝑥) ,

𝐻

1 − 𝑡𝐸𝐻

〉
=

∑
𝜆 odd

∑
𝜇

2𝑙 (𝜆)

𝑧𝜆𝑧𝜇

𝐴𝑙 (𝜆) (𝑠)𝐵𝑜 (𝜇) (𝑡)
(1 − 𝑠)𝑙 (𝜆)+1(1 − 𝑡)𝑜 (𝜇)+1

〈
𝑝𝜆, 𝑝𝜇

〉
𝑥 |𝜇 |

=
∑
𝜆 odd

2𝑙 (𝜆)

𝑧𝜆

𝐴𝑙 (𝜆) (𝑠)𝐵𝑙 (𝜆) (𝑡)
(1 − 𝑠)𝑙 (𝜆)+1(1 − 𝑡)𝑙 (𝜆)+1 𝑥

|𝜆 | , (4.5)

and the same scalar product can be shown to be equal to〈
1

1 − 𝑠𝐸 (𝑥)𝐻 (𝑥) ,
𝐻

1 − 𝑡𝐸𝐻

〉
=

1
(1 − 𝑠) (1 − 𝑡)

+ 1
2

∞∑
𝑛=1

(1 + 𝑠)𝑛+1(1 + 𝑡)𝑛

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ipk)
𝑛

(
4𝑠

(1 + 𝑠)2 ,
4𝑡

(1 + 𝑡)2

)
𝑥𝑛

(4.6)

by using Lemma 2.8 (b)–(c). Equating Equations (4.5) and (4.6), extracting coefficients of 𝑥𝑛, and then
applying Lemma 2.10 (b) completes the proof of (c). �
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Table 4. Joint distribution of lpk and ipk over 𝔖𝑛.

n 𝑃
(lpk,ipk)
𝑛 (𝑠, 𝑡)

1 t
2 (1 + 𝑠)𝑡
3 (1 + 3𝑠)𝑡 + 2𝑠𝑡2

4 (1 + 6𝑠 + 𝑠2)𝑡 + (12𝑠 + 4𝑠2)𝑡2

5 (1 + 10𝑠 + 5𝑠2)𝑡 + (42𝑠 + 46𝑠2)𝑡2 + (6𝑠 + 10𝑠2)𝑡3

6 (1 + 15𝑠 + 15𝑠2 + 𝑠3)𝑡 + (112𝑠 + 272𝑠2 + 32𝑠3)𝑡2 + (52𝑠 + 192𝑠2 + 28𝑠3)𝑡3

7 (1 + 21𝑠 + 35𝑠2 + 7𝑠3)𝑡 + (252𝑠 + 1136𝑠2 + 436𝑠3)𝑡2 + (252𝑠 + 1776𝑠2 + 852𝑠3)𝑡3 + (18𝑠 + 164𝑠2 + 90𝑠3)𝑡4

Table 4 displays the first several polynomials 𝑃
(lpk,ipk)
𝑛 (𝑠, 𝑡). The following proposition, which is

Corollary 11 of [26], characterizes the coefficients of 𝑠𝑘 𝑡 in 𝑃
(lpk,ipk)
𝑛 (𝑠, 𝑡).

Proposition 4.7. For any 𝑛 ≥ 1 and 𝑘 ≥ 0, the number of permutations 𝜋 ∈ 𝔖𝑛 with lpk(𝜋) = 𝑘 and
ipk(𝜋) = 0 is equal to

( 𝑛
2𝑘

)
.

The next formula expresses the polynomial 𝑃 (pk,ilpk)
𝑛 (𝑠, 𝑡) as a sum involving products of the peak

and left peak polynomials. The proof follows in the same way as that of Theorem 3.4, except that we
begin by substituting both Equations (3.6) and (4.4) into Theorem 4.6 (c).

Theorem 4.8. For all 𝑛 ≥ 1, we have

𝑃
(lpk,ipk)
𝑛 (𝑠, 𝑡) = 1

𝑛!

𝑛∑
𝑘=0

𝑑 (𝑛, 𝑘) ((1 − 𝑠) (1 − 𝑡))
𝑛−𝑘

2 𝑃
lpk
𝑘 (𝑠)𝑃pk

𝑘 (𝑡).

4.5. Left peaks and inverse descents

Finally, define

𝑃
(lpk,ides)
𝑛 (𝑠, 𝑡) � 𝑃

(lpk,ipk,des,ides)
𝑛 (𝑠, 1, 𝑡, 1) =

∑
𝜋∈𝔖𝑛

𝑠lpk(𝜋) 𝑡ides(𝜋)+1.

We omit the proofs of the following theorems as they are very similar to the proofs of analogous results
presented earlier.

Theorem 4.9. We have

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑛=1

(1 + 𝑠)𝑛

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ides)
𝑛

(
4𝑠

(1 + 𝑠)2 , 𝑡

)
𝑥𝑛 =

∞∑
𝑖, 𝑗=0

(1 + 𝑥)𝑖 ( 𝑗+1)

(1 − 𝑥) (𝑖+1) ( 𝑗+1) 𝑠
𝑖𝑡 𝑗 , (a)

and, for all 𝑛 ≥ 1, we have

(1 + 𝑠)𝑛

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ides)
𝑛

(
4𝑠

(1 + 𝑠)2 , 𝑡

)
=

∞∑
𝑖, 𝑗=0

𝑛∑
𝑘=0

(
𝑖( 𝑗 + 1)

𝑘

) (
𝑖 𝑗 + 𝑖 + 𝑗 + 𝑛 − 𝑘

𝑛 − 𝑘

)
𝑠𝑖𝑡 𝑗 (b)

and

(1 + 𝑠)𝑛

((1 − 𝑠) (1 − 𝑡))𝑛+1 𝑃
(lpk,ides)
𝑛

(
4𝑠

(1 + 𝑠)2 , 𝑡

)
=

1
𝑛!

𝑛∑
𝑘,𝑚=0

𝑓 (𝑛, 𝑘, 𝑚) 𝐵𝑘 (𝑠)𝐴𝑚(𝑡)
(1 − 𝑠)𝑘+1(1 − 𝑡)𝑚+1 (c)

with 𝑓 (𝑛, 𝑘, 𝑚) as defined in Section 2.4.
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Table 5. Joint distribution of lpk and ides over 𝔖𝑛.

n 𝑃
(lpk,ides)
𝑛 (𝑠, 𝑡)

1 t
2 𝑡 + 𝑠𝑡2

3 𝑡 + 4𝑠𝑡2 + 𝑠𝑡3

4 𝑡 + (10𝑠 + 𝑠2)𝑡2 + (7𝑠 + 4𝑠2)𝑡3 + 𝑠𝑡4

5 𝑡 + (20𝑠 + 6𝑠2)𝑡2 + (27𝑠 + 39𝑠2)𝑡3 + (10𝑠 + 16𝑠2)𝑡4 + 𝑠𝑡5

6 𝑡 + (35𝑠 + 21𝑠2 + 𝑠3)𝑡2 + (77𝑠 + 205𝑠2 + 20𝑠3)𝑡3 + (53𝑠 + 213𝑠2 + 36𝑠3)𝑡4 + (13𝑠 + 40𝑠2 + 4𝑠3)𝑡5 + 𝑠𝑡6

7 𝑡 + (56𝑠 + 56𝑠2 + 8𝑠3)𝑡2 + (182𝑠 + 776𝑠2 + 233𝑠3)𝑡3 + (200𝑠 + 1480𝑠2 + 736𝑠3)𝑡4 + (88𝑠 + 719𝑠2 + 384𝑠3)𝑡5 + (16𝑠
+ 80𝑠2 + 24𝑠3)𝑡6 + 𝑠𝑡7

Theorem 4.10. For all 𝑛 ≥ 1, we have

𝑃
(lpk,ides)
𝑛 (𝑠, 𝑡) = 1

𝑛!

𝑛∑
𝑘,𝑚=0

𝑓 (𝑛, 𝑘, 𝑚) (1 − 𝑠)
𝑛−𝑘

2 (1 − 𝑡)𝑛−𝑚𝑃lpk
𝑘 (𝑠)𝐴𝑚(𝑡).

See Table 5 for the first several polynomials 𝑃 (lpk,ides)
𝑛 (𝑠, 𝑡).

5. Up-down runs and biruns

We will now give analogous formulas for (mixed) two-sided distributions involving the number of up-
down runs, as well as a couple involving the number of biruns.

5.1. Up-down runs and inverse up-down runs

Consider the two-sided up-down run polynomials

𝑃 (udr,iudr)
𝑛 (𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑠udr(𝜋) 𝑡iudr(𝜋) .

Theorem 5.1. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
4(1 − 𝑠)2(1 − 𝑡)2

∞∑
𝑛=1

(1 + 𝑠2)𝑛 (1 + 𝑡2)𝑛

(1 − 𝑠2)𝑛−1(1 − 𝑡2)𝑛−1 𝑃
(udr,iudr)
𝑛

(
2𝑠

1 + 𝑠2 ,
2𝑡

1 + 𝑡2

)
𝑥𝑛

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
(
1 + 𝑠

(
1 + 𝑥

1 − 𝑥

) 𝑗

+ 𝑡

(
1 + 𝑥

1 − 𝑥

) 𝑖
+ 𝑠𝑡

(1 + 𝑥)𝑖+ 𝑗

(1 − 𝑥)𝑖+ 𝑗+1

)
𝑠2𝑖𝑡2 𝑗 .

The proof of Theorem 5.1 follows the same structure as our proofs from Sections 3–4: We compute
an appropriate scalar product in multiple ways and set them equal to each other. We shall provide the
full proof here but will omit the proofs for all remaining results in this section due to their similarity
with what has been presented earlier.

Proof. First, Lemma 2.8 (d) along with Foulkes’s theorem (Theorem 2.1) leads to〈
1 + 𝑠𝐻 (𝑥)

1 − 𝑠2𝐸 (𝑥)𝐻 (𝑥)
,

1 + 𝑡𝐻

1 − 𝑡2𝐸𝐻

〉
=

1
(1 − 𝑠) (1 − 𝑡)

+ 1
4(1 − 𝑠)2(1 − 𝑡)2

∞∑
𝑛=1

(1 + 𝑠2)𝑛 (1 + 𝑡2)𝑛

(1 − 𝑠2)𝑛−1(1 − 𝑡2)𝑛−1 𝑃
(udr,iudr)
𝑛

(
2𝑠

1 + 𝑠2 ,
2𝑡

1 + 𝑡2

)
𝑥𝑛. (5.1)
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Next, using Lemmas 2.4 and 2.5, we obtain〈
1 + 𝑠𝐻 (𝑥)

1 − 𝑠2𝐸 (𝑥)𝐻 (𝑥)
,

1
1 − 𝑡2𝐸𝐻

〉
=

∞∑
𝑖, 𝑗=0

〈
(1 + 𝑠𝐻 (𝑥))𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖 , 𝐸 𝑗𝐻 𝑗

〉
𝑠2𝑖𝑡2 𝑗

=
∞∑

𝑖, 𝑗=0

(〈
𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖 , 𝐸 𝑗𝐻 𝑗

〉
+ 𝑠

〈
𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖+1, 𝐸 𝑗𝐻 𝑗

〉)
𝑠2𝑖𝑡2 𝑗

=
∞∑

𝑖, 𝑗=0

(〈
𝐸 (𝑥), 𝐸 𝑗𝐻 𝑗

〉𝑖〈
𝐻 (𝑥), 𝐸 𝑗𝐻 𝑗

〉𝑖 + 𝑠
〈
𝐸 (𝑥), 𝐸 𝑗𝐻 𝑗

〉𝑖〈
𝐻 (𝑥), 𝐸 𝑗𝐻 𝑗

〉𝑖+1
)
𝑠2𝑖𝑡2 𝑗

=
∞∑

𝑖, 𝑗=0

((
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
+ 𝑠

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗+ 𝑗
)
𝑠2𝑖𝑡2 𝑗

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
(
1 + 𝑠

(
1 + 𝑥

1 − 𝑥

) 𝑗
)
𝑠2𝑖𝑡2 𝑗 . (5.2)

Similarly, using Lemmas 2.4–2.7, we obtain〈
1 + 𝑠𝐻 (𝑥)

1 − 𝑠2𝐸 (𝑥)𝐻 (𝑥)
,

𝑡𝐻

1 − 𝑡2𝐸𝐻

〉
=

∞∑
𝑖, 𝑗=0

〈
(1 + 𝑠𝐻 (𝑥))𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖 , 𝐸 𝑗𝐻 𝑗+1〉𝑠2𝑖𝑡2 𝑗+1

=
∞∑

𝑖, 𝑗=0

〈
((1 + 𝑠𝐻 (𝑥))𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖) [𝑋 + 1], 𝐸 𝑗𝐻 𝑗

〉
𝑠2𝑖𝑡2 𝑗+1

=
∞∑

𝑖, 𝑗=0

〈
(𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖 + 𝑠𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖+1) [𝑋 + 1], 𝐸 𝑗𝐻 𝑗

〉
𝑠2𝑖𝑡2 𝑗+1

=
∞∑

𝑖, 𝑗=0

〈
(𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖 + 𝑠𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖+1) [𝑋 + 1], 𝐸 𝑗𝐻 𝑗

〉
𝑠2𝑖𝑡2 𝑗+1

=
∞∑

𝑖, 𝑗=0

〈(
1 + 𝑥

1 − 𝑥

) 𝑖
𝐸 (𝑥)𝑖𝐻 (𝑥)𝑖 + 𝑠

(1 + 𝑥)𝑖

(1 − 𝑥)𝑖+1 𝐸 (𝑥)
𝑖𝐻 (𝑥)𝑖+1, 𝐸 𝑗𝐻 𝑗

〉
𝑠2𝑖𝑡2 𝑗+1

=
∞∑

𝑖, 𝑗=0

((
1 + 𝑥

1 − 𝑥

) 𝑖〈
𝐸 (𝑥), 𝐸 𝑗𝐻 𝑗

〉𝑖〈
𝐻 (𝑥), 𝐸 𝑗𝐻 𝑗

〉𝑖
+ 𝑠

(1 + 𝑥)𝑖

(1 − 𝑥)𝑖+1

〈
𝐸 (𝑥), 𝐸 𝑗𝐻 𝑗

〉𝑖〈
𝐻 (𝑥), 𝐸 𝑗𝐻 𝑗

〉𝑖+1
)
𝑠2𝑖𝑡2 𝑗+1

=
∞∑

𝑖, 𝑗=0

((
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗+𝑖
+ 𝑠

(1 + 𝑥)2𝑖 𝑗+𝑖+ 𝑗

(1 − 𝑥)2𝑖 𝑗+𝑖+ 𝑗+1

)
𝑠2𝑖𝑡2 𝑗+1

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
(
𝑡

(
1 + 𝑥

1 − 𝑥

) 𝑖
+ 𝑠𝑡

(1 + 𝑥)𝑖+ 𝑗

(1 − 𝑥)𝑖+ 𝑗+1

)
𝑠2𝑖𝑡2 𝑗 . (5.3)

Summing Equations (5.2) and (5.3) yields〈
1 + 𝑠𝐻 (𝑥)

1 − 𝑠2𝐸 (𝑥)𝐻 (𝑥)
,

1 + 𝑡𝐻

1 − 𝑡2𝐸𝐻

〉
=

∞∑
𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
(
1 + 𝑠

(
1 + 𝑥

1 − 𝑥

) 𝑗

+ 𝑡

(
1 + 𝑥

1 − 𝑥

) 𝑖
+ 𝑠𝑡

(1 + 𝑥)𝑖+ 𝑗

(1 − 𝑥)𝑖+ 𝑗+1

)
𝑠2𝑖𝑡2 𝑗 ;

comparing this with Equation (5.1) completes the proof. �
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Table 6. Joint distribution of udr and iudr over 𝔖𝑛.

n 𝑃 (udr,iudr)
𝑛 (𝑠, 𝑡)

1 𝑠𝑡
2 𝑠𝑡 + 𝑠2𝑡2

3 𝑠𝑡 + (2𝑠2 + 𝑠3)𝑡2 + (𝑠2 + 𝑠3)𝑡3

4 𝑠𝑡 + (3𝑠2 + 3𝑠3 + 𝑠4)𝑡2 + (3𝑠2 + 6𝑠3 + 2𝑠4)𝑡3 + (𝑠2 + 2𝑠3 + 2𝑠4)𝑡4

5 𝑠𝑡 + (4𝑠2 + 6𝑠3 + 4𝑠4 + 𝑠5)𝑡2 + (6𝑠2 + 19𝑠3 + 13𝑠4 + 5𝑠5)𝑡3 + (4𝑠2 + 13𝑠3 + 21𝑠4 + 7𝑠5)𝑡4 + (𝑠2 + 5𝑠3 + 7𝑠4 + 3𝑠5)𝑡5

6 𝑠𝑡 + (5𝑠2 + 10𝑠3 + 10𝑠4 + 5𝑠5 + 𝑠6)𝑡2 + (10𝑠2 + 45𝑠3 + 47𝑠4 + 38𝑠5 + 8𝑠6)𝑡3 + (10𝑠2 + 47𝑠3 + 109𝑠4 + 78𝑠5 + 24𝑠6)𝑡4

+ (5𝑠2 + 38𝑠3 + 78𝑠4 + 70𝑠5 + 20𝑠6)𝑡5 + (𝑠2 + 8𝑠3 + 24𝑠4 + 20𝑠5 + 8𝑠6)𝑡6

The first several polynomials 𝑃 (udr,iudr)
𝑛 (𝑠, 𝑡) are given in Table 6. We note that the permutations in

𝔖𝑛 with n up-down runs are precisely the alternating permutations in 𝔖𝑛, so the coefficient of 𝑠𝑛𝑡𝑛 of
𝑃 (udr,iudr)
𝑛 (𝑠, 𝑡) is the number of doubly alternating permutations in 𝔖𝑛. In fact, Stanley’s formula (2.2)

for doubly alternating permutations can be derived from Theorem 5.1, although it is simpler to work
with our formulas for (pk, ipk) and (lpk, ilpk).

To invert Theorem 5.1 and other formulas in this section, we will need to solve 𝑠 = 2𝑢/(1+ 𝑢2) for u,
and the solution is given by 𝑢 = 𝑠−1(1 −

√
1 − 𝑠2) = (𝑠/2)𝐶 (𝑠2/4), where 𝐶 (𝑥) is the Catalan number

generating function. Hence, Theorem 5.1 can be written as

1
(1 − 𝑢) (1 − 𝑣) +

1
4(1 − 𝑢)2(1 − 𝑣)2

∞∑
𝑛=1

(1 + 𝑢2)𝑛 (1 + 𝑣2)𝑛

(1 − 𝑢2)𝑛−1(1 − 𝑣2)𝑛−1 𝑃
(udr,iudr)
𝑛 (𝑠, 𝑡)𝑥𝑛

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
(
1 + 𝑢

(
1 + 𝑥

1 − 𝑥

) 𝑗

+ 𝑣

(
1 + 𝑥

1 − 𝑥

) 𝑖
+ 𝑢𝑣

(1 + 𝑥)𝑖+ 𝑗

(1 − 𝑥)𝑖+ 𝑗+1

)
𝑢2𝑖𝑣2 𝑗 ,

where 𝑢 = 𝑠−1(1 −
√

1 − 𝑠2) = (𝑠/2)𝐶 (𝑠2/4) and 𝑣 = 𝑡−1(1 −
√

1 − 𝑡2) = (𝑡/2)𝐶 (𝑡2/4).

5.2. Up-down runs, inverse peaks and inverse descents

Next, let us study the statistic (udr, ipk, ides) and its specializations (udr, ipk) and (udr, ides). Define

𝑃
(udr,ipk,ides)
𝑛 (𝑠, 𝑦, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑠udr(𝜋) 𝑦ipk(𝜋)+1𝑡ides(𝜋)+1,

𝑃
(udr,ipk)
𝑛 (𝑠, 𝑡) � 𝑃

(udr,ipk,ides)
𝑛 (𝑠, 𝑡, 1) =

∑
𝜋∈𝔖𝑛

𝑠udr(𝜋) 𝑡ipk(𝜋)+1 and

𝑃 (udr,ides)
𝑛 (𝑠, 𝑡) � 𝑃

(udr,ipk,ides)
𝑛 (𝑠, 1, 𝑡) =

∑
𝜋∈𝔖𝑛

𝑠udr(𝜋) 𝑡ides(𝜋)+1.

Theorem 5.2. We have

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑛=1

(1 + 𝑠2)𝑛

(1 − 𝑠2)𝑛−1

(
1 + 𝑦𝑡

1 − 𝑡

)𝑛+1 𝑃
(udr,ipk,ides)
𝑛

(
2𝑠

1+𝑠2 ,
(1+𝑦)2𝑡

(𝑦+𝑡) (1+𝑦𝑡) ,
𝑦+𝑡

1+𝑦𝑡

)
2(1 − 𝑠)2(1 + 𝑦)

𝑥𝑛 (a)

=
∞∑

𝑖, 𝑗=0

(
(1 + 𝑥) (1 + 𝑦𝑥)
(1 − 𝑦𝑥) (1 − 𝑥)

) 𝑖 𝑗 (
1 + 𝑠

(
1 + 𝑦𝑥

1 − 𝑥

) 𝑗
)
𝑠2𝑖𝑡 𝑗
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and, for all 𝑛 ≥ 1, we have

(1 + 𝑠2)𝑛

(1 − 𝑠2)𝑛−1

(
1 + 𝑦𝑡

1 − 𝑡

)𝑛+1 𝑃
(udr,ipk,ides)
𝑛

(
2𝑠

1+𝑠2 ,
(1+𝑦)2𝑡

(𝑦+𝑡) (1+𝑦𝑡) ,
𝑦+𝑡

1+𝑦𝑡

)
2(1 − 𝑠)2(1 + 𝑦)

(b)

=
∑
𝜆�𝑛
odd

2𝑙 (𝜆)

𝑧𝜆

𝐴𝑙 (𝜆) (𝑠2)𝐴𝑙 (𝜆) (𝑡)
(1 − 𝑠2)𝑙 (𝜆)+1(1 − 𝑡)𝑙 (𝜆)+1

𝑙 (𝜆)∏
𝑘=1

(1 − (−𝑦)𝜆𝑘 )

+ 𝑠
∑
𝜆�𝑛

1
𝑧𝜆

𝐵𝑜 (𝜆) (𝑠2)𝐴𝑙 (𝜆) (𝑡)
(1 − 𝑠2)𝑜 (𝜆)+1(1 − 𝑡)𝑙 (𝜆)+1

𝑙 (𝜆)∏
𝑘=1

(1 − (−𝑦)𝜆𝑘 ).

As before, we set 𝑦 = 1 to specialize to (udr, ipk), immediately arriving at parts (a) and (b) of the
following theorem. Part (c) is proven similarly to Theorem 3.4, except that we also use the formula

2𝑛𝐴𝑛 (𝑡2) + 𝑡𝐵𝑛 (𝑡2) =
(1 + 𝑡)2(1 + 𝑡2)𝑛

2
𝑃udr
𝑛

(
2𝑡

1 + 𝑡2

)
[15, Section 6.3], where

𝑃udr
𝑛 (𝑡) �

∑
𝜋∈𝔖𝑛

𝑡udr(𝜋) .

Theorem 5.3. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
4(1 − 𝑠)2

∞∑
𝑛=1

(1 + 𝑠2)𝑛

(1 − 𝑠2)𝑛−1

(
1 + 𝑡

1 − 𝑡

)𝑛+1
𝑃
(udr,ipk)
𝑛

(
2𝑠

1 + 𝑠2 ,
4𝑡

(1 + 𝑡)2

)
𝑥𝑛 (a)

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
(
1 + 𝑠

(
1 + 𝑥

1 − 𝑥

) 𝑗
)
𝑠2𝑖𝑡 𝑗

and, for all 𝑛 ≥ 1, we have

1
4(1 − 𝑠)2

(1 + 𝑠2)𝑛

(1 − 𝑠2)𝑛−1

(
1 + 𝑡

1 − 𝑡

)𝑛+1
𝑃
(udr,ipk)
𝑛

(
2𝑠

1 + 𝑠2 ,
4𝑡

(1 + 𝑡)2

)
(b)

=
1
𝑛!

𝑛∑
𝑘=0

2𝑘𝑑 (𝑛, 𝑘) (2
𝑘𝐴𝑘 (𝑠2) + 𝑠𝑏 : 𝑘 (𝑠2))𝐴𝑘 (𝑡)
(1 − 𝑠2)𝑘+1(1 − 𝑡)𝑘+1

and

𝑃
(udr,ipk)
𝑛 (𝑠, 𝑡) = 1

𝑛!

𝑛∑
𝑘=0

𝑑 (𝑛, 𝑘)
(
(1 − 𝑠2) (1 − 𝑡)

) 𝑛−𝑘
2
𝑃udr
𝑘 (𝑠)𝑃pk

𝑘 (𝑡). (c)

The first several polynomials 𝑃
(udr,ipk)
𝑛 (𝑠, 𝑡) are displayed in Table 7. The coefficients of 𝑠𝑘 𝑡 in

𝑃
(udr,ipk)
𝑛 (𝑠, 𝑡) are binomial coefficients, just like the coefficients of 𝑠𝑡𝑘 in 𝑃

(pk,ides)
𝑛 (𝑠, 𝑡) from Table 2.

Proposition 5.4. For any 𝑛 ≥ 1 and 𝑘 ≥ 0, the number of permutations 𝜋 ∈ 𝔖𝑛 with udr(𝜋) = 𝑘 and
ipk(𝜋) = 0 is equal to

(𝑛−1
𝑘−1

)
.

Unlike the analogous results given earlier, Proposition 5.4 was not proven in [26], so we shall supply
a proof here.
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Table 7. Joint distribution of udr and ipk over 𝔖𝑛.

n 𝑃
(udr,ipk)
𝑛 (𝑠, 𝑡)

1 𝑠𝑡
2 (𝑠 + 𝑠2)𝑡
3 (𝑠 + 2𝑠2 + 𝑠3)𝑡 + (𝑠2 + 𝑠3)𝑡2

4 (𝑠 + 3𝑠2 + 3𝑠3 + 𝑠4)𝑡 + (4𝑠2 + 8𝑠3 + 4𝑠4)𝑡2

5 (𝑠 + 4𝑠2 + 6𝑠3 + 4𝑠4 + 𝑠5)𝑡 + (10𝑠2 + 32𝑠3 + 34𝑠4 + 12𝑠5)𝑡2 + (𝑠2 + 5𝑠3 + 7𝑠4 + 3𝑠5)𝑡3

6 (𝑠 + 5𝑠2 + 10𝑠3 + 10𝑠4 + 5𝑠5 + 𝑠6)𝑡 + (20𝑠2 + 92𝑠3 + 156𝑠4 + 116𝑠5 + 32𝑠6)𝑡2 + (6𝑠2 + 46𝑠3 + 102𝑠4 + 90𝑠5 + 28𝑠6)𝑡3

7 (𝑠 + 6𝑠2 + 15𝑠2 + 20𝑠4 + 15𝑠5 + 6𝑠6 + 𝑠7)𝑡 + (35𝑠2 + 217𝑠3 + 522𝑠4 + 614𝑠5 + 355𝑠6 + 81𝑠7)𝑡2 + (21𝑠2 + 231𝑠3 + 738𝑠4

+ 1038𝑠5 + 681𝑠6 + 171𝑠7)𝑡3 + (𝑠2 + 17𝑠3 + 64𝑠4 + 100𝑠5 + 71𝑠6 + 19𝑠7)𝑡4

Proof. Let us define the up-down composition of a permutation 𝜋, denoted udComp(𝜋), in the fol-
lowing way: If 𝑢1, 𝑢2, . . . , 𝑢𝑘 are the lengths of the up-down runs of 𝜋 in the order that they appear,
then udComp(𝜋) � (𝑢1, 𝑢2 − 1, . . . , 𝑢𝑘 − 1). For example, if 𝜋 = 312872569, then udComp(𝜋) =
(1, 1, 2, 2, 3). Note that if 𝜋 ∈ 𝔖𝑛, then udComp(𝜋) is a composition of n. It is not hard to verify that
the descent composition determines the up-down composition and vice versa.

According to [26, Theorem 5], for any composition 𝐿 � 𝑛, there exists exactly one permutation
𝜋 ∈ 𝔖𝑛 with descent composition L such that ipk(𝜋) = 0. In light of this fact and Proposition 3.7,
it suffices to construct a bijection between compositions 𝐿 � 𝑛 with k parts and compositions 𝐾 � 𝑛
satisfying udr(𝐾) = 𝑘 . This bijection is obtained by mapping L to the descent composition K of any
permutation with up-down composition L. For example, the composition 𝐿 = (1, 1, 2, 2, 3) is mapped
to 𝐾 = (1, 3, 1, 4), which is the descent composition of the permutation 𝜋 from above. �

Setting 𝑦 = 0 in Theorem 5.2 yields the analogous result for (udr, ides).

Theorem 5.5. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
2(1 − 𝑠)2

∞∑
𝑛=1

(1 + 𝑠2)𝑛

(1 − 𝑠2)𝑛−1(1 − 𝑡)𝑛+1 𝑃
(udr,ides)
𝑛

(
2𝑠

1 + 𝑠2 , 𝑡

)
𝑥𝑛 (a)

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

) 𝑖 𝑗 (
1 + 𝑠

(1 − 𝑥) 𝑗

)
𝑠2𝑖𝑡 𝑗

and, for all 𝑛 ≥ 1, we have

(1 + 𝑠2)𝑛

2(1 − 𝑠)2(1 − 𝑠2)𝑛−1(1 − 𝑡)𝑛+1 𝑃
(udr,ides)
𝑛

(
2𝑠

1 + 𝑠2 , 𝑡

)
𝑥𝑛 (b)

=
1
𝑛!

𝑛∑
𝑘=0

2𝑘𝑑 (𝑛, 𝑘) 𝐴𝑘 (𝑠2)𝐴𝑘 (𝑡)
(1 − 𝑠2)𝑘+1(1 − 𝑡)𝑘+1 + 𝑠

𝑛!

𝑛∑
𝑘,𝑚=0

𝑓 (𝑛, 𝑘, 𝑚) 𝐵𝑘 (𝑠2)𝐴𝑚(𝑡)
(1 − 𝑠2)𝑘+1(1 − 𝑡)𝑚+1 .

Table 8 contains the first several polynomials 𝑃 (udr,ides)
𝑛 (𝑠, 𝑡).

5.3. Up-down runs, inverse left peaks and inverse descents

Define

𝑃
(udr,ilpk,ides)
𝑛 (𝑠, 𝑦, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑠udr(𝜋) 𝑦ilpk(𝜋) 𝑡ides(𝜋) and

𝑃
(udr,ilpk)
𝑛 (𝑠, 𝑡) � 𝑃

(udr,ilpk,ides)
𝑛 (𝑠, 𝑡, 1) =

∑
𝜋∈𝔖𝑛

𝑠udr(𝜋) 𝑡ilpk(𝜋) .

https://doi.org/10.1017/fms.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.89


Forum of Mathematics, Sigma 29

Table 8. Joint distribution of udr and ides over 𝔖𝑛.

n 𝑃 (udr,ides)
𝑛 (𝑠, 𝑡)

1 𝑠𝑡
2 𝑠𝑡 + 𝑠2𝑡2

3 𝑠𝑡 + (2𝑠2 + 2𝑠3)𝑡2 + 𝑠2𝑡3

4 𝑠𝑡 + (3𝑠2 + 7𝑠3 + 𝑠4)𝑡2 + (3𝑠2 + 4𝑠3 + 4𝑠4)𝑡3 + 𝑠2𝑡4

5 𝑠𝑡 + (4𝑠2 + 16𝑠3 + 4𝑠4 + 2𝑠5)𝑡2 + (6𝑠2 + 21𝑠3 + 27𝑠4 + 12𝑠5)𝑡3 + (4𝑠2 + 6𝑠3 + 14𝑠4 + 2𝑠5)𝑡4 + 𝑠2𝑡5

6 𝑠𝑡 + (5𝑠2 + 30𝑠3 + 10𝑠4 + 11𝑠5 + 𝑠6)𝑡2 + (10𝑠2 + 67𝑠3 + 101𝑠4 + 104𝑠5 + 20𝑠6)𝑡3 + (10𝑠2 + 43𝑠3 + 125𝑠4 + 88𝑠5

+ 36𝑠6)𝑡4 + (5𝑠2 + 8𝑠3 + 32𝑠4 + 8𝑠5 + 4𝑠6)𝑡5 + 𝑠2𝑡6

Theorem 5.6. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
2(1 − 𝑠)2

∞∑
𝑛=1

(1 + 𝑠2)𝑛 (1 + 𝑦𝑡)𝑛𝑃 (udr,ilpk,ides)
𝑛

(
2𝑠

1+𝑠2 ,
(1+𝑦)2𝑡

(𝑦+𝑡) (1+𝑦𝑡) ,
𝑦+𝑡

1+𝑦𝑡

)
(1 − 𝑠2)𝑛−1(1 − 𝑡)𝑛+1 𝑥𝑛

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

) 𝑖 ( 𝑗+1) ( 1 + 𝑦𝑥

1 − 𝑦𝑥

) 𝑖 𝑗 (
1 + 𝑠

(1 + 𝑦𝑥) 𝑗

(1 − 𝑥) 𝑗+1

)
𝑠2𝑖𝑡 𝑗 .

Setting 𝑦 = 1 in Theorem 5.6 yields part (a) of the following theorem. Part (b) is obtained by
computing the scalar product

〈
1 + 𝑠𝐻 (𝑥)

1 − 𝑠𝐸 (𝑥)𝐻 (𝑥) ,
𝐻

1 − 𝑡𝐸𝐻

〉

using Lemmas 2.8 (c)–(d) and 2.9 (b)–(c). Part (c) is obtained from (b) in a way similar to the proof of
Theorem 4.4, making use of Equation (4.4).

Theorem 5.7. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
2(1 − 𝑠)2

∞∑
𝑛=1

(1 + 𝑠2)𝑛 (1 + 𝑡)𝑛

(1 − 𝑠2)𝑛−1(1 − 𝑡)𝑛+1 𝑃
(udr,ilpk)
𝑛

(
2𝑠

1 + 𝑠2 ,
4𝑡

(1 + 𝑡)2

)
𝑥𝑛 (a)

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

) 𝑖 (2 𝑗+1) (
1 + 𝑠

(1 + 𝑥) 𝑗

(1 − 𝑥) 𝑗+1

)
𝑠2𝑖𝑡 𝑗

and, for all 𝑛 ≥ 1, we have

(1 + 𝑠2)𝑛 (1 + 𝑡)𝑛

2(1 − 𝑠)2(1 − 𝑠2)𝑛−1(1 − 𝑡)𝑛+1 𝑃
(udr,ilpk)
𝑛

(
2𝑠

1 + 𝑠2 ,
4𝑡

(1 + 𝑡)2

)
(b)

=
1
𝑛!

𝑛∑
𝑘=0

2𝑘𝑑 (𝑛, 𝑘) 𝐴𝑘 (𝑠2)𝐵𝑘 (𝑡)
(1 − 𝑠2)𝑘+1(1 − 𝑡)𝑘+1 + 𝑠

𝑛!

𝑛∑
𝑘=0

𝑒(𝑛, 𝑘) 𝐵𝑘 (𝑠2)𝐵𝑘 (𝑡)
(1 − 𝑠2)𝑘+1(1 − 𝑡)𝑘+1
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Table 9. Joint distribution of udr and ilpk over 𝔖𝑛.

n 𝑃
(udr,ilpk)
𝑛 (𝑠, 𝑡)

1 s
2 𝑠 + 𝑠2𝑡
3 𝑠 + (3𝑠2 + 2𝑠3)𝑡
4 𝑠 + (6𝑠2 + 9𝑠3 + 3𝑠4)𝑡 + (𝑠2 + 2𝑠3 + 2𝑠4)𝑡2

5 𝑠 + (10𝑠2 + 25𝑠3 + 17𝑠4 + 6𝑠5)𝑡 + (5𝑠2 + 18𝑠3 + 28𝑠4 + 10𝑠5)𝑡2

6 𝑠 + (15𝑠2 + 55𝑠3 + 57𝑠4 + 43𝑠5 + 9𝑠6)𝑡 + (15𝑠2 + 85𝑠3 + 187𝑠4 + 148𝑠5 + 44𝑠6)𝑡2 + (𝑠2 + 8𝑠3 + 24𝑠4 + 20𝑠5 + 8𝑠6)𝑡3

7 𝑠 + (21𝑠2 + 105𝑠3 + 147𝑠4 + 177𝑠5 + 75𝑠6 + 18𝑠7)𝑡 + (35𝑠2 + 289𝑠3 + 847𝑠4 + 1104𝑠5 + 672𝑠6 + 164𝑠7)𝑡2 + (7𝑠2 + 86𝑠3

+ 350𝑠4 + 486𝑠5 + 366𝑠6 + 90𝑠7)𝑡3

and

(1 + 𝑠)2(1 + 𝑠2)𝑛𝑃 (udr,ilpk)
𝑛

(
2𝑠

1 + 𝑠2 , 𝑡

)
(c)

=
1
𝑛!

𝑛∑
𝑘=0

2𝑘+1𝑑 (𝑛, 𝑘)
(
(1 − 𝑠2) (1 − 𝑡)1/2

)𝑛−𝑘
𝐴𝑘 (𝑠2)𝑃lpk

𝑘 (𝑡)

+ 2𝑠
𝑛!

𝑛∑
𝑘=0

𝑒(𝑛, 𝑘)
(
(1 − 𝑠2) (1 − 𝑡)1/2

)𝑛−𝑘
𝐵𝑘 (𝑠2)𝑃lpk

𝑘 (𝑡).

See Table 9 for the first several polynomials 𝑃 (udr,ilpk)
𝑛 (𝑠, 𝑡).

5.4. Biruns

Recall that a birun is a maximal monotone consecutive subsequence, whereas an up-down run is either
a birun or an initial descent. In [15], the authors gave the formula

2 + 𝑡𝐻 (𝑥) + 𝑡𝐸 (𝑥)
1 − 𝑡2𝐸 (𝑥)𝐻 (𝑥)

=
2

1 − 𝑡
+ 2𝑡
(1 − 𝑡)2 𝑥ℎ1 +

(1 + 𝑡)3

2(1 − 𝑡)

∞∑
𝑛=2

∑
𝐿�𝑛

(1 + 𝑡2)𝑛−1

(1 − 𝑡2)𝑛

(
2𝑡

1 + 𝑡2

)br(𝐿)
𝑥𝑛𝑟𝐿

(cf. Lemma 2.8), which allows us to produce formulas for (mixed) two-sided distributions involving the
number of biruns. For example, computing the scalar product〈

2 + 𝑠𝐻 (𝑥) + 𝑠𝐸 (𝑥)
1 − 𝑠2𝐸 (𝑥)𝐻 (𝑥)

,
2 + 𝑡𝐻 + 𝑡𝐸

1 − 𝑡2𝐸𝐻

〉
(5.4)

would yield a formula for the two-sided distribution of br, but we chose not to derive this formula as
it would be complicated to write down. Looking back at the formula in Theorem 5.1 for the two-sided
distribution of udr, we see that the right-hand side is a summation whose summands are each a sum
involving four terms, which is because the numerators in the scalar product〈

1 + 𝑠𝐻 (𝑥)
1 − 𝑠2𝐸 (𝑥)𝐻 (𝑥)

,
1 + 𝑡𝐻

1 − 𝑡2𝐸𝐻

〉
that we sought to compute has two terms each. The numerators in the scalar product (5.4) contain three
terms each, which will lead to nine terms in the formula for (br, ibr) as opposed to four.

On the other hand, formulas for the polynomials

𝑃
(br,ipk)
𝑛 (𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑠br(𝜋) 𝑡ipk(𝜋)+1 and 𝑃 (br,ides)
𝑛 (𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑠br(𝜋) 𝑡ides(𝜋)+1

have fewer such terms, and so we present them below.
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Table 10. Joint distribution of br and ipk over 𝔖𝑛.

n 𝑃
(br,ipk)
𝑛 (𝑠, 𝑡)

1 𝑠𝑡
2 2𝑠𝑡
3 (2𝑠 + 2𝑠2)𝑡 + 2𝑠2𝑡2

4 (2𝑠 + 4𝑠2 + 2𝑠3)𝑡 + (8𝑠2 + 8𝑠3)𝑡2

5 (2𝑠 + 6𝑠2 + 6𝑠3 + 2𝑠4)𝑡 + (20𝑠2 + 44𝑠3 + 24𝑠4)𝑡2 + (2𝑠2 + 8𝑠3 + 6𝑠4)𝑡3

6 (2𝑠 + 8𝑠2 + 12𝑠3 + 8𝑠4 + 2𝑠5)𝑡 + (40𝑠2 + 144𝑠3 + 168𝑠4 + 64𝑠5)𝑡2 + (12𝑠2 + 80𝑠3 + 124𝑠4 + 56𝑠5)𝑡3

7 (2𝑠 + 10𝑠2 + 20𝑠3 + 20𝑠4 + 10𝑠5 + 2𝑠6)𝑡 + (70𝑠2 + 364𝑠3 + 680𝑠4 + 548𝑠5 + 162𝑠6)𝑡2 + (42𝑠2 + 420𝑠3 + 1056𝑠4

+ 1020𝑠5 + 342𝑠6)𝑡3 + (2𝑠2 + 32𝑠3 + 96𝑠4 + 104𝑠5 + 38𝑠6)𝑡4

Table 11. Joint distribution of br and ides over 𝔖𝑛.

n 𝑃 (br,ides)
𝑛 (𝑠, 𝑡)

1 𝑡𝑠
2 (𝑡 + 𝑡2)𝑠
3 (𝑡 + 𝑡3)𝑠 + 4𝑡2𝑠2

4 (𝑡 + 𝑡4)𝑠 + (6𝑡2 + 6𝑡3)𝑠2 + (5𝑡2 + 5𝑡3)𝑠3

5 (𝑡 + 𝑡5)𝑠 + (8𝑡2 + 12𝑡3 + 8𝑡4)𝑠2 + (14𝑡2 + 30𝑡3 + 14𝑡4)𝑠3 + (4𝑡2 + 24𝑡3 + 4𝑡4)𝑠4

6 (𝑡 + 𝑡6)𝑠 + (10𝑡2 + 20𝑡3 + 20𝑡4 + 10𝑡5)𝑠2 + (28𝑡2 + 90𝑡3 + 90𝑡4 + 28𝑡5)𝑠3 + (14𝑡2 + 136𝑡3 + 136𝑡4 + 14𝑡5)𝑠4 + (5𝑡2

+ 56𝑡3 + 56𝑡4 + 5𝑡5)𝑠5

Theorem 5.8. We have

1
(1 − 𝑠) (1 − 𝑡) +

2𝑠𝑡𝑥
(1 − 𝑠)2(1 − 𝑡)2 + (1 + 𝑠)3

8(1 − 𝑠)

∞∑
𝑛=2

(1 + 𝑠2)𝑛−1(1 + 𝑡)𝑛+1𝑃
(br,ipk)
𝑛

(
2𝑠

1+𝑠2 ,
4𝑡

(1+𝑡)2

)
(1 − 𝑠2)𝑛 (1 − 𝑡)𝑛+1 𝑥𝑛 (a)

=
∞∑

𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

)2𝑖 𝑗
(
1 + 𝑠

(
1 + 𝑥

1 − 𝑥

) 𝑗
)
𝑠2𝑖𝑡 𝑗

and

1
(1 − 𝑠) (1 − 𝑡) +

𝑠𝑡𝑥

(1 − 𝑠)2(1 − 𝑡)2 + (1 + 𝑠)3

4(1 − 𝑠)

∞∑
𝑛=2

(1 + 𝑠2)𝑛−1𝑃 (br,ides)
𝑛

(
2𝑠

1+𝑠2 , 𝑡
)

(1 − 𝑠2)𝑛 (1 − 𝑡)𝑛+1 𝑥𝑛 (b)

=
1
2

∞∑
𝑖, 𝑗=0

(
1 + 𝑥

1 − 𝑥

) 𝑖 𝑗 (
2 + 𝑠

(1 − 𝑥) 𝑗 + 𝑠(1 + 𝑥) 𝑗
)
𝑠2𝑖𝑡 𝑗 .

The first several polynomials 𝑃
(br,ipk)
𝑛 (𝑠, 𝑡) and 𝑃 (br,ides)

𝑛 (𝑠, 𝑡) are displayed in Tables 10–11. Notice
that the coefficients of 𝑠𝑘 𝑡 in 𝑃

(br,ipk)
𝑛 (𝑡) are twice the coefficients of 𝑠𝑘 𝑡 in 𝑃

(udr,ipk)
𝑛−1 (𝑡); we shall give a

simple proof of this fact.

Proposition 5.9. For any 𝑛 ≥ 2 and 𝑘 ≥ 0, the number of permutations in 𝔖𝑛 with br(𝜋) = 𝑘 and
ipk(𝜋) = 0 is equal to 2

(𝑛−2
𝑘−1

)
, twice the number of permutations in𝔖𝑛−1 with udr(𝜋) = 𝑘 and ipk(𝜋) = 0.

Proof. In light of Proposition 5.4 and its proof, it suffices to construct a one-to-two map from compo-
sitions 𝐿 � 𝑛 − 1 with k parts to compositions 𝐾 � 𝑛 satisfying br(𝐾) = 𝑘 . We claim that such a map
is given by sending 𝐿 = (𝐿1, 𝐿2, . . . , 𝐿𝑘 ) to the descent compositions corresponding to the up-down
compositions 𝐽 = (𝐿1 + 1, 𝐿2, . . . , 𝐿𝑘 ) and 𝐽 ′ = (1, 𝐿1, 𝐿2, . . . , 𝐿𝑘 ). It is easy to see that br(𝜋) = 𝑘
if and only if udComp(𝜋) has k parts with initial part greater than 1 or if udComp(𝜋) has 𝑘 + 1 parts
with initial part 1, so this map is well defined. For example, let 𝐿 = (4, 1, 1, 2). Then permutations with
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up-down compositions 𝐽 = (5, 1, 1, 2) and 𝐽 ′ = (1, 4, 1, 1, 2) have descent compositions 𝐾 = (5, 2, 1, 1)
and 𝐾 ′ = (1, 1, 1, 1, 2, 3), respectively, so our map sends L to K and 𝐾 ′. The reverse procedure is
given by first taking the up-down composition corresponding to the descent composition input and then
removing the first part if it is equal to 1 and subtracting 1 from the first part otherwise. �

In Table 11, we first collect powers of s in displaying the 𝑃 (br,ides)
𝑛 (𝑠, 𝑡) to showcase the symmetry

present in the coefficients of 𝑠𝑘 . This symmetry can be explained in the same way as for the polynomials
𝑃
(pk,ides)
𝑛 (𝑠, 𝑡): Upon taking reverses, we have that ides(𝜋𝑟 ) = 𝑛 − 1 − ides(𝜋) but br(𝜋𝑟 ) = br(𝜋). Note

that the coefficients of 𝑠𝑘 for 𝑘 ≥ 2 also seem to be unimodal, but in general they are not 𝛾-positive.

6. Major index

6.1. A rederivation of the Garsia–Gessel formula

We now return full circle by showing how our approach can be used to rederive Garsia and Gessel’s
formula (1.4) for the polynomials 𝐴𝑛 (𝑠, 𝑡, 𝑞, 𝑟) =

∑
𝜋∈𝔖𝑛

𝑠des(𝜋) 𝑡ides(𝜋)𝑞maj(𝜋)𝑟 imaj(𝜋) .

Proof of the Garsia–Gessel formula. We seek to compute the the scalar product〈 ∞∑
𝑖=0

𝑠𝑖
𝑖∏

𝑘=0
𝐻 (𝑞𝑘𝑥),

∞∑
𝑗=0

𝑡 𝑗
𝑗∏

𝑙=0
𝐻 (𝑟 𝑙)

〉

in two different ways. First, from Lemma 2.8 (a) we have〈 ∞∑
𝑖=0

𝑠𝑖
𝑖∏

𝑘=0
𝐻 (𝑞𝑘𝑥),

∞∑
𝑗=0

𝑡 𝑗
𝑗∏

𝑙=0
𝐻 (𝑟 𝑙)

〉

=
∞∑

𝑚,𝑛=0

∑
𝐿�𝑚,𝑀�𝑛 𝑠

des(𝐿) 𝑡des(𝑀 )𝑞maj(𝐿)𝑟maj(𝑀 ) 〈𝑟𝐿 , 𝑟𝑀 〉
(1 − 𝑠) (1 − 𝑞𝑠) · · · (1 − 𝑞𝑚𝑠) (1 − 𝑡) (1 − 𝑟𝑡) · · · (1 − 𝑟𝑛𝑡) 𝑥

𝑚

=
∞∑
𝑛=0

∑
𝜋∈𝔖𝑛

𝑠des(𝜋) 𝑡ides(𝜋)𝑞maj(𝜋)𝑟 imaj(𝜋)

(1 − 𝑠) (1 − 𝑞𝑠) · · · (1 − 𝑞𝑛𝑠) (1 − 𝑡) (1 − 𝑟𝑡) · · · (1 − 𝑟𝑛𝑡) 𝑥
𝑛

=
∞∑
𝑛=0

𝐴𝑛 (𝑠, 𝑡, 𝑞, 𝑟)
(1 − 𝑠) (1 − 𝑞𝑠) · · · (1 − 𝑞𝑛𝑠) (1 − 𝑡) (1 − 𝑟𝑡) · · · (1 − 𝑟𝑛𝑡) 𝑥

𝑛, (6.1)

where, as usual, we apply Foulkes’s theorem (Theorem 2.1) to calculate the scalar product 〈𝑟𝐿 , 𝑟𝑀 〉.
Second, observe that〈 ∞∑

𝑖=0
𝑠𝑖

𝑖∏
𝑘=0

𝐻 (𝑞𝑘𝑥),
∞∑
𝑗=0

𝑡 𝑗
𝑗∏

𝑙=0
𝐻 (𝑟 𝑙)

〉
=

∞∑
𝑖, 𝑗=0

𝑠𝑖𝑡𝑖

〈
𝑖∏

𝑘=0
𝐻 (𝑞𝑘𝑥),

𝑗∏
𝑙=0

𝐻 (𝑟 𝑙)
〉

=
∞∑

𝑖, 𝑗=0
𝑠𝑖𝑡𝑖

𝑖∏
𝑘=0

𝑗∏
𝑙=0

〈
𝐻 (𝑞𝑘𝑥), 𝐻 (𝑟 𝑙)

〉
by Lemma 2.3. To evaluate

〈
𝐻 (𝑞𝑘𝑥), 𝐻 (𝑟 𝑙)

〉
, let us recall that ℎ𝑛 =

∑
𝜆�𝑛 𝑚𝜆. Then

〈
𝐻 (𝑞𝑘𝑥), 𝐻 (𝑟 𝑙)

〉
=

〈 ∞∑
𝑖=0

ℎ𝑖𝑞
𝑘𝑖𝑥𝑖 ,

∞∑
𝑗=0

ℎ 𝑗𝑟
𝑙 𝑗

〉

=
∞∑
𝑖=0

∞∑
𝑗=0

∑
𝜆�𝑖

〈
𝑚𝜆, ℎ 𝑗

〉
𝑞𝑘𝑖𝑥𝑖𝑟 𝑙 𝑗
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=
∞∑
𝑗=0

𝑞𝑘 𝑗𝑥 𝑗𝑟 𝑙 𝑗

=
1

1 − 𝑥𝑞𝑘𝑟 𝑙
,

whence 〈 ∞∑
𝑖=0

𝑠𝑖
𝑖∏

𝑘=0
𝐻 (𝑞𝑘𝑥),

∞∑
𝑗=0

𝑡 𝑗
𝑗∏

𝑙=0
𝐻 (𝑟 𝑙)

〉
=

∞∑
𝑖, 𝑗=0

𝑠𝑖𝑡𝑖
𝑖∏

𝑘=0

𝑗∏
𝑙=0

1
1 − 𝑥𝑞𝑘𝑟 𝑙

. (6.2)

Combining Equations (6.1) and (6.2) yields Garsia and Gessel’s formula (1.4). �

6.2. Major index and other statistics

Lemma 2.8 (a) also enables us to derive formulas for mixed two-sided distributions involving the major
index. Define

𝑃
(maj,ipk,des,ides)
𝑛 (𝑞, 𝑦, 𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑞maj(𝜋) 𝑦ipk(𝜋)+1𝑠des(𝜋) 𝑡ides(𝜋)+1,

𝑃
(maj,ilpk,des,ides)
𝑛 (𝑞, 𝑦, 𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑞maj(𝜋) 𝑦ilpk(𝜋) 𝑠des(𝜋) 𝑡ides(𝜋) , and

𝑃
(maj,iudr,des)
𝑛 (𝑞, 𝑠, 𝑡) �

∑
𝜋∈𝔖𝑛

𝑞maj(𝜋) 𝑠iudr(𝜋) 𝑡des(𝜋) .

We leave the proofs of the following formulas to the interested reader.

Theorem 6.1. We have

1
(1 − 𝑠) (1 − 𝑡) +

1
1 + 𝑦

∞∑
𝑛=1

(
1 + 𝑦𝑡

1 − 𝑡

)𝑛+1 𝑃
(maj,ipk,des,ides)
𝑛

(
𝑞, (1+𝑦)2𝑡

(𝑦+𝑡) (1+𝑦𝑡) , 𝑠,
𝑦+𝑡

1+𝑦𝑡

)
(1 − 𝑠) (1 − 𝑞𝑠) · · · (1 − 𝑞𝑛𝑠) 𝑥𝑛 (a)

=
∞∑

𝑖, 𝑗=0
𝑠𝑖𝑡 𝑗

𝑖∏
𝑘=0

(
1 + 𝑞𝑘 𝑦𝑥

1 − 𝑞𝑘𝑥

) 𝑗

,

1
(1 − 𝑠) (1 − 𝑡) +

∞∑
𝑛=1

(1 + 𝑡)𝑛

(1 − 𝑡)𝑛+1

𝑃
(maj,ilpk,des,ides)
𝑛

(
𝑞, (1+𝑦)2𝑡

(𝑦+𝑡) (1+𝑦𝑡) , 𝑠,
𝑦+𝑡

1+𝑦𝑡

)
(1 − 𝑠) (1 − 𝑞𝑠) · · · (1 − 𝑞𝑛𝑠) 𝑥𝑛 (b)

=
∞∑

𝑖, 𝑗=0
𝑠𝑖𝑡 𝑗

𝑖∏
𝑘=0

(1 + 𝑞𝑘 𝑦𝑥) 𝑗

(1 − 𝑞𝑘𝑥) 𝑗+1

and

1
(1 − 𝑠) (1 − 𝑡) +

1
2(1 − 𝑠)2

∞∑
𝑛=1

(1 + 𝑠2)𝑛

(1 − 𝑠2)𝑛−1

𝑃
(maj,iudr,des)
𝑛

(
𝑞, 2𝑠

1+𝑠2 , 𝑡
)

(1 − 𝑡) (1 − 𝑞𝑡) · · · (1 − 𝑞𝑛𝑡) (c)

=
∞∑

𝑖, 𝑗=0
𝑠2𝑖𝑡 𝑗

(
1 + 𝑠

𝑗∏
𝑘=0

1
1 − 𝑞𝑘𝑥

)
𝑗∏

𝑘=0

(
1 + 𝑞𝑘𝑥

1 − 𝑞𝑘𝑥

) 𝑖
.
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One may obtain formulas for (maj, ipk), (maj, ilpk) and (maj, iudr) by specializing Theorem 6.1
appropriately. For example, setting 𝑦 = 1 in Theorem 6.1 (a), multiplying both sides by 1 − 𝑠, and then
taking the limit of both sides as 𝑠 → 1 yields

1
1 − 𝑡

+ 1
2

∞∑
𝑛=1

(
1 + 𝑡

1 − 𝑡

)𝑛+1 𝑃
(maj,ipk)
𝑛

(
𝑞, 4𝑡

(1+𝑡)2

)
(1 − 𝑞) (1 − 𝑞2) · · · (1 − 𝑞𝑛)

𝑥𝑛 =
∞∑
𝑗=0

𝑡 𝑗
∞∏
𝑘=0

(
1 + 𝑞𝑘𝑥

1 − 𝑞𝑘𝑥

) 𝑗

,

where 𝑃
(maj,ipk)
𝑛 (𝑞, 𝑡) � 𝑃

(maj,ipk,des,ides)
𝑛 (𝑞, 𝑡, 1, 1) =

∑
𝜋∈𝔖𝑛

𝑞maj(𝜋) 𝑡ipk(𝜋)+1.

7. Conjectures

We conclude with a discussion of some conjectures concerning some of the permutation statistic
distributions studied in this paper.

7.1. Real-rootedness

A univariate polynomial is called real-rooted if it has only real roots. We conjecture that the distributions
of ipk and ilpk over permutations in 𝔖𝑛 with any fixed value of pk, lpk, and udr—as well as that of
ipk upon fixing br—are all encoded by real-rooted polynomials. This conjecture has been empirically
verified for all 𝑛 ≤ 50; our formulas from Sections 3–6 played a crucial role in formulating and gathering
supporting evidence for this conjecture as they have allowed us to efficiently compute the polynomials
in question.
Conjecture 7.1. The following polynomials are real-rooted for all 𝑛 ≥ 1:

(a) [𝑠𝑘+1] 𝑃 (pk,ipk)
𝑛 (𝑠, 𝑡) =

∑
𝜋∈𝔖𝑛

pk(𝜋)=𝑘

𝑡ipk(𝜋)+1 for 0 ≤ 𝑘 ≤ 
(𝑛 − 1)/2�,

(b) [𝑠𝑘 ] 𝑃 (lpk,ilpk)
𝑛 (𝑠, 𝑡) =

∑
𝜋∈𝔖𝑛

lpk(𝜋)=𝑘

𝑡ilpk(𝜋) for 0 ≤ 𝑘 ≤ 
𝑛/2�,

(c) [𝑠𝑘 ] 𝑃 (pk,ilpk)
𝑛 (𝑡, 𝑠) =

∑
𝜋∈𝔖𝑛

lpk(𝜋)=𝑘

𝑡ipk(𝜋)+1 for 0 ≤ 𝑘 ≤ 
𝑛/2�,

(d) [𝑠𝑘+1] 𝑃 (pk,ilpk)
𝑛 (𝑠, 𝑡) =

∑
𝜋∈𝔖𝑛

pk(𝜋)=𝑘

𝑡ilpk(𝜋) for 0 ≤ 𝑘 ≤ 
(𝑛 − 1)/2�,

(e) [𝑠𝑘 ] 𝑃 (udr,ipk)
𝑛 (𝑠, 𝑡) =

∑
𝜋∈𝔖𝑛

udr(𝜋)=𝑘

𝑡ipk(𝜋)+1 for 1 ≤ 𝑘 ≤ 𝑛,

(f) [𝑠𝑘 ] 𝑃 (udr,ilpk)
𝑛 (𝑠, 𝑡) =

∑
𝜋∈𝔖𝑛

udr(𝜋)=𝑘

𝑡ilpk(𝜋) for 1 ≤ 𝑘 ≤ 𝑛 and

(g) [𝑠𝑘 ] 𝑃 (br,ipk)
𝑛 (𝑠, 𝑡) =

∑
𝜋∈𝔖𝑛

br(𝜋)=𝑘

𝑡ipk(𝜋)+1 for 1 ≤ 𝑘 ≤ 𝑛.

Conjecture 7.1 would imply that all of these polynomials are unimodal and log-concave and can be
used to show that the distributions of ipk and ilpk over permutations in 𝔖𝑛 with a fixed value k for the
relevant statistics each converge to a normal distribution as 𝑛 → ∞.

It is worth noting that the peak and left peak polynomials

𝑃
pk
𝑛 (𝑡) =

∑
𝜋∈𝔖𝑛

𝑡pk(𝜋)+1 =
∑
𝜋∈𝔖𝑛

𝑡ipk(𝜋)+1 and 𝑃
lpk
𝑛 (𝑡) =

∑
𝜋∈𝔖𝑛

𝑡lpk(𝜋) =
∑
𝜋∈𝔖𝑛

𝑡ilpk(𝜋)
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are known to be real-rooted (see, e.g., [18, 25]), so Conjecture 7.1 would also have the consequence
that both of these ‘real-rooted distributions’ can be partitioned into real-rooted distributions based on
the value of another statistic.

7.2. Gamma-positivity

Real-rootedness provides a powerful method of proving unimodality results in combinatorics, but when
the polynomials in question are known to be symmetric,3 an alternate avenue to unimodality is 𝛾-
positivity. Any symmetric polynomial 𝑓 (𝑡) ∈ R[𝑡] with center of symmetry 𝑛/2 can be written uniquely
as a linear combination of the polynomials {𝑡 𝑗 (1 + 𝑡)𝑛−2 𝑗 }0≤ 𝑗≤
𝑛/2�—referred to as the gamma basis—
and 𝑓 (𝑡) is called 𝛾-positive if its coefficients in the gamma basis are nonnegative. The 𝛾-positivity of
a polynomial directly implies its unimodality, and 𝛾-positivity has appeared in many contexts within
combinatorics and geometry; see [1] for a detailed survey.

The prototypical example of a family of 𝛾-positive polynomials are the Eulerian polynomials 𝐴𝑛 (𝑡),
as established by Foata and Schützenberger [8], and there is also a sizable literature on the 𝛾-positivity of
‘Eulerian distributions’ (polynomials encoding the distribution of the descent number des) over various
restricted subsets of 𝔖𝑛. For example, the Eulerian distribution over linear extensions of sign-graded
posets [2], r-stack-sortable permutations [3], separable permutations [10] and involutions [28] are all
known to be 𝛾-positive. The two-sided Eulerian distribution (des, ides) is also known to satisfy a refined
𝛾-positivity property which was conjectured by Gessel and later proved by Lin [16].

Define

𝐴̂𝑛,𝑘 (𝑡) �
∑
𝜋∈𝔖𝑛

pk(𝜋)=𝑘

𝑡ides(𝜋)+1

to be the polynomial encoding the distribution of ides over permutations in 𝔖𝑛 with k peaks, or
equivalently, the distribution of des (i.e., the Eulerian distribution) over permutations in 𝔖𝑛 whose
inverses have k peaks. We conjecture that these polynomials are 𝛾-positive as well.

Conjecture 7.2. For all 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 
(𝑛 − 1)/2�, the polynomials 𝐴̂𝑛,𝑘 (𝑡) are 𝛾-positive with
center of symmetry (𝑛 + 1)/2.

In fact, we shall give a stronger conjecture which refines by ‘pinnacle sets’. Given a permutation
𝜋 ∈ 𝔖𝑛, the pinnacle set Pin(𝜋) of 𝜋 is defined by

Pin(𝜋) � { 𝜋(𝑘) : 𝜋(𝑘 − 1) < 𝜋(𝑘) > 𝜋(𝑘 + 1) and 2 ≤ 𝑘 ≤ 𝑛 − 1 }.

In other words, Pin(𝜋) contains all of the values 𝜋(𝑘) at which k is a peak of 𝜋. Given 𝑛 ≥ 1 and
𝑆 ⊆ [𝑛], define the polynomial 𝐴̂ides

𝑛,𝑆 (𝑡) by

𝐴̂ides
𝑛,𝑆 (𝑡) �

∑
𝜋∈𝔖𝑛

Pin(𝜋)=𝑆

𝑡ides(𝜋)+1;

this gives the distribution of the inverse descent number over permutations in 𝔖𝑛 with a fixed pinnacle
set S or, equivalently, the Eulerian distribution over permutations in 𝔖𝑛 with ‘inverse pinnacle set’ S.

Conjecture 7.3. For all 𝑛 ≥ 1 and 𝑆 ⊆ [𝑛], the polynomials 𝐴̂ides
𝑛,𝑆 (𝑡) are 𝛾-positive with center of

symmetry (𝑛 + 1)/2.

3The use of the term ‘symmetric polynomial’ in this context is different from that in symmetric function theory. Here, a
symmetric polynomial refers to a univariate polynomial whose coefficients form a symmetric sequence.
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Note that

𝐴̂ides
𝑛,𝑘 (𝑡) =

∑
𝑆⊆[𝑛]
|𝑆 |=𝑘

𝐴̂ides
𝑛,𝑆 (𝑡).

Because the sum of 𝛾-positive polynomials with the same center of symmetry is again 𝛾-positive, a
positive resolution to Conjecture 7.3 would imply Conjecture 7.2. However, we do not have nearly as
much empirical evidence to support Conjecture 7.3. Since we do not have a formula for the polynomials
𝐴̂ides
𝑛,𝑘 (𝑡), we were only able to verify Conjecture 7.3 up to 𝑛 = 10, whereas Conjecture 7.2 has been

verified for all 𝑛 ≤ 80 with the assistance of Theorem 3.6 (a).

Acknowledgements. We thank Kyle Petersen for insightful discussions concerning the work in this paper, and in particular for
his suggestion to look at refining Conjecture 7.2 by pinnacle sets. We also thank two anonymous referees for their careful reading
of an earlier version of this paper and providing thoughtful comments.

Competing interests. The authors have no competing interest to declare.

Financial support. YZ was partially supported by an AMS-Simons Travel Grant and NSF grant DMS-2316181.

References

[1] C. A. Athanasiadis, ‘Gamma-positivity in combinatorics and geometry’, Sém. Lothar. Combin. 77 (2016–2018), Art. B77i.
[2] P. Brändén, ‘Sign-graded posets, unimodality of 𝑊-polynomials and the Charney–Davis conjecture’, Electron. J. Combin.

11(2) (2004/06), Research Paper 9.
[3] P. Brändén, ‘Actions on permutations and unimodality of descent polynomials’, European J. Combin. 29(2) (2008), 514–531.
[4] B. Brück and F. Röttger, ‘A central limit theorem for the two-sided descent statistic on Coxeter groups’, Electron. J. Combin.

29(1) (2022), Paper No. 1.1.
[5] L. Carlitz, D. P. Roselle and R. A. Scoville, ‘Permutations and sequences with repetitions by number of increases’, J. Com-

binatorial Theory 1 (1966), 350–374.
[6] S. Chatterjee and P. Diaconis, ‘A central limit theorem for a new statistic on permutations’, Indian J. Pure Appl. Math. 48(4)

(2017), 561–573.
[7] V. Féray, ‘On the central limit theorem for the two-sided descent statistics in Coxeter groups’, Electron. Commun. Probab.

25 (2020), Paper No. 28.
[8] D. Foata and M.-P. Schützenberger, Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Mathematics, vol. 138

(Springer-Verlag, Berlin-New York, 1970).
[9] H. O. Foulkes, ‘Enumeration of permutations with prescribed up-down and inversion sequences’, Discrete Math. 15(3)

(1976), 235–252.
[10] S. Fu, Z. Lin and J. Zeng, ‘On two unimodal descent polynomials’, Discrete Math. 341(9) (2018), 2616–2626.
[11] A. M. Garsia and I. Gesse, ‘Permutation statistics and partitions’, Adv. in Math. 31(3) (1979), 288–305.
[12] I. M. Gessel, ‘Multipartite 𝑃-partitions and inner products of skew Schur functions’, Contemp. Math. 34 (1984), 289–317.
[13] I. M. Gessel and C. Reutenauer, ‘Counting permutations with given cycle structure and descent set’, J. Combin. Theory Ser.

A 64(2) (1993), 189–215.
[14] I. M. Gessel and Y. Zhuang, ‘Counting permutations by alternating descents’, Electron. J. Combin. 21(4) (2014), Paper

P4.23, 21.
[15] I. M. Gessel and Y. Zhuang, ‘Plethystic formulas for permutation enumeration’, Adv. Math. 375 (2020), 107370.
[16] Z. Lin, ‘Proof of Gessel’s 𝛾-positivity conjecture’, Electron. J. Combin. 23(3) (2016), Paper 3.15.
[17] P. A. MacMahon, Combinatory Analysis, Two volumes (Chelsea Publishing Co., New York, 1960). Originally published in

two volumes by Cambridge University Press, 1915–1916.
[18] T. K. Petersen, ‘Enriched 𝑃-partitions and peak algebras’, Adv. Math. 209(2) (2007), 561–610.
[19] T. K. Petersen, ‘Two-sided Eulerian polynomials via balls in boxes’, Math. Mag. 86(3) (2013), 159–176.
[20] D. P. Roselle, ‘Coefficients associated with the expansion of certain products’, Proc. Amer. Math. Soc. 45 (1974), 144–150.
[21] R. P. Stanley, ‘Alternating permutations and symmetric functions’, J. Combin. Theory Ser. A 114(3) (2007), 436–460.
[22] R. P. Stanley, ‘Longest alternating subsequences of permutations’, Michigan Math. J. 57 (2008), 675–687.
[23] R. P. Stanley, Enumerative Combinatorics Vol. 1, second edn. (Cambridge University Press, 2011).
[24] R. P. Stanley, Enumerative Combinatorics Vol. 2 (Cambridge University Press, 2001).
[25] J. R. Stembridge, ‘Enriched 𝑃-partitions’, Trans. Amer. Math. Soc. 349(2) (1997), 763–788.
[26] J. M. Troyka and Y. Zhuang, ‘Fibonacci numbers, consecutive patterns, and inverse peaks’, Adv. in Appl. Math. 141 (2022),

Paper No. 102406.

https://doi.org/10.1017/fms.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.89


Forum of Mathematics, Sigma 37

[27] V. A. Vatutin, ‘The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically
independent’, Diskret. Mat. 8(1) (1996), 41–51.

[28] D. Wang, ‘The Eulerian distribution on involutions is indeed 𝛾-positive’, J. Combin. Theory Ser. A 165 (2019), 139–151.
[29] Y. Zhuang, ‘Counting permutations by runs’, J. Comb. Theory Ser. A 142 (2016), 147–176.
[30] Y. Zhuang, ‘Eulerian polynomials and descent statistics’, Adv. in Appl. Math. 90 (2017), 86–144.
[31] Y. Zhuang, ‘A lifting of the Goulden–Jackson cluster method to the Malvenuto–Reutenauer algebra’, Algebr. Comb. 5(6)

(2022), 1391–1425.

https://doi.org/10.1017/fms.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.89

	1 Introduction
	1.1 Descent statistics
	1.2 Outline

	2 Symmetric functions background
	2.1 The scalar product and Foulkes's theorem
	2.2 Plethysm
	2.3 Symmetric function generating functions for descent statistics
	2.4 Sums involving zλ and Stanley's formula for doubly alternating permutations

	3 Two-sided peak and descent statistics
	3.1 Peaks, descents and their inverses
	3.2 Peaks and inverse peaks
	3.3 Peaks and inverse descents
	3.4 Descents and inverse descents

	4 Two-sided left peak statistics
	4.1 Left peaks, descents and their inverses
	4.2 Left peaks, inverse peaks, descents and inverse descents
	4.3 Left peaks and inverse left peaks
	4.4 Left peaks and inverse peaks
	4.5 Left peaks and inverse descents

	5 Up-down runs and biruns
	5.1 Up-down runs and inverse up-down runs
	5.2 Up-down runs, inverse peaks and inverse descents
	5.3 Up-down runs, inverse left peaks and inverse descents
	5.4 Biruns

	6 Major index
	6.1 A rederivation of the Garsia–Gessel formula
	6.2 Major index and other statistics

	7 Conjectures
	7.1 Real-rootedness
	7.2 Gamma-positivity

	References

